
This Way
ConTEXt magazine #1103

September 2011

Cross document referencing
Hans Hagen

PRAGMA ADE

The (cross) reference mechanism in ConTEXt is rather complex (in terms of code) and
provides a lot of functionality. Of course one can ask for page numbers, section num-
bers, titles, or arbitrary text, but also control the viewer, go to locations and have chains
of actions. In this document we only discuss some aspects of cross document referenc-
ing. This is not a complete manual.

C
ro

ss
do

cu
m

en
tr

ef
er

en
ci

ng

C
ross

docum
entreferencing

1

#1103 October 1, 2011 This Way 1

Other documents

A straightforward way to refer to something in an other document is by prefixing
the reference by a document tag. Take for instance:

\in{chapter}[other::whatever]

Here, other is either a tag or a filename. In the case if a tag, you also need a definition
like:

\useexternalfile[other][somefilename]

Because we load the references of the other file (when present), you can also ask for
titles of chapters. In fact, all the following work:

\at {page}[other::whatever]
\in {chapter}[other::whatever]
\about [other::whatever]
\goto{location}[other::whatever]

given of course that in the other file we have set a reference:

\startchapter[reference=whatever,title={Who cares}]
...

\stopchapter

In MkIV this mechanisms has been extended to deal with products and components.
In order not to get clashes between references in multiple chapters, you can do some-
thing like this:

\setuphead[chapter][referenceprefix=whatever]

This will create a namespace for this chapter. A more automated alternative is:

\setuphead[chapter][referenceprefix=+]

Here the given reference (whatever) will automatically become the namespace for
that chapter.

Products and components

This is however somewhat cumbersome when we deal with a project structure.
There we have the complication that we can process components within a product
and although one will only do this for proofing it makes sense at least to deal with
references in other components.

C
ro

ss
do

cu
m

en
tr

ef
er

en
ci

ng

C
ross

docum
entreferencing

2

2 This Way October 1, 2011 #1103

In the test suite there are four files demonstrating what is possible. They can be
recognized by the name cross-*.tex. The product file cross-100 includes two
components:

\startproduct cross-100

\component cross-001
\component cross-002

\stopproduct

In these components there are references to the other component. The cross refer-
ence mechanism will automatically use the component’s name as namespace but
only when you say:

\setupreferencing[autofile=yes]

A component looks as follows:

\setupreferencing[autofile=yes]
\setupinteraction[state=start]

\startcomponent cross-001

\product cross-100

\startchapter[title=One,reference=one]
...

\stopchapter

\stopcomponent

When a component is processed, the references of the product are also loaded. Ac-
tually, some more information fetched so that for instance the chapter number gets
set as well as the page number.

Of course this will not guarantee that all referencing turns out right, but it’s better
than nothing. There are now several ways to refer to something, and as we have quite
some fallback heuristics in place all the following will work out well. However, keep
in mind that when multiple one’s are uses you might end up with the wrong one
when no prefix is given.

\at {page}[one]
\in {chapter}[one]
\about [one]
\goto{location}[one]

C
ro

ss
do

cu
m

en
tr

ef
er

en
ci

ng

C
ross

docum
entreferencing

3

#1103 October 1, 2011 This Way 3

\at {page}[cross-001:one]
\in {chapter}[cross-001:one]
\about [cross-001:one]
\goto{location}[cross-001:one]

\at {page}[cross-001::one]
\in {chapter}[cross-001::one]
\about [cross-001::one]
\goto{location}[cross-001::one]

\at {page}[cross-001:::one]
\in {chapter}[cross-001:::one]
\about [cross-001:::one]
\goto{location}[cross-001:::one]

So what do the (subtle) differences in colons mean? The cross-001: prefix is just a
prefix. Such a prefix is not always related to a document but it happens that when no
other match is found, an extra check takes place to see if it is a component namespace.
This is new per September 2011.

The cross-001:: prefix is the official way to refer to another document and this
is no news. However, the cross-001::: prefix is new and depending on how the
document is run, is either a regular namespace prefix (one colon) or an external ref-
erence (two colons). When you use the project structure this might be the best way
to go. The reason is that order of looking (and fallbacks) is better defined this way.

So, given that you have a proper usage of product and components, the following
method is to be preferred:

\at {page}[other:::one] in \from[other]
\in chapter}[other:::one] of \from[other] (\about[other:::one])
\goto{details}[other:::one]

Keep in mind that in most cases a combination of components and extra prefixes
(that is, explicitly set prefixes) work ok. The prefixing mechanism is controlled with:

\setupreferencing[prefix=blabla]

but you will seldom need this command. In order to prevent clashes you can best
use some redundancy:

\placefigure[here][fig:foo]{}{}{}
\placetable [here][tab:foo]{}{}{}

works out quite well.

C
ro

ss
do

cu
m

en
tr

ef
er

en
ci

ng

C
ross

docum
entreferencing

4

4 This Way October 1, 2011 #1103

Reference commands

In MkII the main reference mechanism handled not only user references but also
stored section numbers, section titles, captions and all that made sense to refer to.
In MkIV we carry around way more information and references are stored in and
retrieved from several data structures. Although we keep much more information
in memory and store more information in the auxiliary file, we save some too because
now (for instance) section titles are stored only once.

The following two commands store an explicit reference, unrelated to a structural
component. However, with the page number we also store information about the
current section so that we can add a prefix any time we want.

\textreference[sometag]{some text}
\pagereference[sometag]

Keep in mind that these commands insert a so called node so they can best be at-
tached to some content in order not to dangle around and interfere with spacing.
The following works okay:

\dontleavehmode\textreference[ward]{Quoting Ward}\input ward

A rather low level (not interactive) fetching can be done as follows:

\ref[text][sometag]
\ref[page][sometag]

We already saw some more advanced commands to retrieve reference data:

\at {page}[one]
\in {chapter}[one]
\about [one]
\goto{location}[one]

These commands will create a hyperlink when interactivity is turned on.

The \at command typesets the page number and the \in command typesets a num-
ber. The \about command deals with the title. In the case of a regular reference the
last two commands do a similar thing but the last one adds quotes (by default). The
\goto command only has a meaning in interactive documents. It does not add any-
thing to the text.

In interactive mode all these commands will apply a so called contrast color in case
the reference refers to the page itself.

There are two commands that relate to current location:

C
ro

ss
do

cu
m

en
tr

ef
er

en
ci

ng

C
ross

docum
entreferencing

5

#1103 October 1, 2011 This Way 5

\somewere{before}{current}{after}[one]
\atpage[one]

The first command typesets one of the three texts, which one depends of the typeset
and referred one being on the same page. The second command generates a text
automatically.

Although not related to the kind of references we discuss here, you can define sym-
bolic references with:

\definereference[symbolic name][real reference]
\resetreference[symbolic name]

Using this only makes sense in interactive documents where we can have special
operations with arguments and combinations of such references.

Reference formats

You can control the formatting of references in detail using the setup command. For
instance you can tweak the way sections numbers are prefixed but as this relates to
numbering this will not be discussed here. Reference formats are another way to
control the rendering

\definereferenceformat[informula] [left=(,right=),text=formula]
\definereferenceformat[informulas] [left=(,right=),text=formulas]
\definereferenceformat[andformula] [left=(,right=),text=and]
\definereferenceformat[andformulas][left=(,right=),text=and]

\informula [b] and \informula [for:c]
the \informula {formulas}[b] \informula {and} [for:c]
the \informulas {formulas}[b] \informula {and} [for:c]
the \informulas [b] \informula {en} [for:c]
the \informulas [b] \andformula [for:c]

Instead of a text, one can specify a label, which should be defined with
\setuplabeltext.

User references

You can create user references too. This is done with the following command:

\setreference[myref][key-1=value-1,key-2=value-2]

You can then ask for keys using:

C
ro

ss
do

cu
m

en
tr

ef
er

en
ci

ng

C
ross

docum
entreferencing

6

6 This Way October 1, 2011 #1103

\getreference[myref][key-2]

In principle you can add filters and rendering variants as well using Lua code but
that is rather specialized and often not needed.

C
ro

ss
do

cu
m

en
tr

ef
er

en
ci

ng
C

ross
docum

entreferencing

