
BEYOND
luametatex & context lmtx



1



2

Table of contents

1 Introduction 4

2 A new take on paragraphs 6

3 Twins 8

4 Namespaces 10



3



Introduction 4

1 Introduction

This is the eights wrapup of the LuaTEX and LuaMetaTEX development cycle. The last
one was ontarget and focussed on what we did when the engine got mature. This
time we zoom in on developments that go a bit beyond what we originally planned.
One can argue that for instance some of the math extensions should have ended up
here but for us a turning point was when additional par passes became stable, which
was around the time of the 2024 ConTEXt meeting. We'll see what comes after that.

Hans Hagen
Hasselt NL
August 2024++



5 Introduction



A new take on paragraphs 6

2 A new take on paragraphs

Appears first in TUGboat.



7 A new take on paragraphs



Twins 8

3 Twins

Appears first in TUGboat.



9 Twins



Namespaces 10

4 Namespaces

Occasionally on TEX related mailing lists, meetings, articles or forums performance
comes up. It makes no sense for me to go into the specific (assumed) bottlenecks
mentioned but as in ConTEXt we do keep an eye on performance every now and then
I also spend words on it, so here are some.

The nature of the (multilingual) user interface of ConTEXt there is extensive use of
the \csname and related primitives. For instance, if we have the namespace 999>
and a keyword testkeyword, we can have a specific property set with:

\expandafter\def\csname 999>testkeyword\endcsname{}

We can then test if a macro with the inaccessible name ‘999>testkeyword’ exists and
has been set with a test command available in all engines that carry 𝜀-TEX extensions:

\ifcsname 999>testkeyword\endcsname
% whatever

\fi

In order to test this, the list of tokens starting at 9 and ending at d has to be converted
into a (C) string that is used for a hash lookup. One can expect this to be a costly
operation. In a 300 page book with many thousands of formulas this easily runs into
the millions. Testing this five times on one million such tests gives:

0.303 0.293 0.283 0.301 0.298

for LuaMetaTEX and

0.276 0.287 0.287 0.274 0.274

for LuaTEX. I deliberately show five numbers because one has to keep some system
load into account. When I'm interested in performance I only care about trends be
cause no run ever gets the whole machine for its job. That said, where does the no
ticeable difference between these engines come from? It can partly be explained by
LuaMetaTEX having more primitives and therefore a bit more overhead (more scat
tered code in memory and cpu cache). But as the basic code that kicks in here is not
that much different I figured that it might be the hash lookup and, because indeed we
had a follow up lookup in the hash (two steps), by using a larger hash table we could
limit that to a direct hit.

0.288 0.281 0.280 0.288 0.277



11 Namespaces

So we ended up with similar measurements for these engines. Before we carry on,
let's ask ourselves if these numbers worry us. Say that this book takes 12 seconds to
process, does it matter much if we half this overhead? Probably not, but in the follow
ing, we need to keep in mind that much can interfere. A simple million times test is
likely very cpu cache friendly. There are however other factors in play: convenience
coding, abstraction, less cluttered tracing, more detailed feedback from the engine,
less code and memory usage, the size of the format file. Trying to get lower numbers
is also kind of fun.

Back to the user interface, we now introduce some abstraction (the test in the names
avoids clashes with existing definitions):

\def\??testfoo {999>}
\def\c!testkeyword{keyword}

\ifcsname\??testfoo\c!testkeyword\endcsname
% whatever

\fi

Again LuaMetaTEX is a little slower but it is kind of noise:

0.243 0.243 0.247 0.241 0.249 luatex
0.251 0.250 0.250 0.249 0.249 luametatex

But how about the following timings for LuaMetaTEX:

0.136 0.143 0.139 0.139 0.140
0.132 0.132 0.133 0.129 0.130

In the first case we defined the namespace and keyword as follows:

\cdef\??testfoo {999>}
\cdef\c!testkeyword{keyword}

A \cdef's macro is basically an \edef. This definition is scanned as token list and
therefore we know the macro has no arguments. It operates as any macro but in a
\csname related command it is just passes as-is and only expanded when we need
to do a lookup. When that happens we don't need to go through a token list (copy) but
directly can go to string characters.

The second measurement shows a little improvement and is the outcome from an
experiment with build in namespaces. Think of this:

\namespaceifcsnamedef\iftestfoocsname 999



Namespaces 12

\iftestfoocsname\c!testkeyword\endcsname
% whatever

\fi

That variant is faster but we're talking .05 second on 2.5 million calls in the book be
cause we already use \cdef. Even more important is to notice that most documents
have only tens of thousands such calls. And 0.15 seconds csname “test and call” on
the whole run is not that bad. So, if we go beyond \cdef usage we don't need the effi
ciency argument but the other ones. So, after a few days of playing with this I rejected
this solution. First of all the source didn't become more readable. We also had many
more commands because there were for instance:

\namespacecsnamedef \csnamefoo 999
\namespacedefcsnamedef \defcsnamefoo 999
\namespaceifcsnamedef \ifcsnamefoo 999
\namespacebegincsnamedef\begincsnamefoo 999

We also had a callback for reporting associated names when tracing. Of course there
can be use cases where we have tens of millions of \csnamecalls but I still need to find
them. But don't expect miracles now that we're in these low numbers. Integrating all
this is also not that trivial because TEX has two separated code paths for expandable
commands and ones more related to housekeeping and typesetting (the mail loop).
This means that one has to intercept expansion of encoded namespaces and that
gives a bit of a mess, especially because we also need to handle nested csnames.

As an aside I also played a bit with ‘compiling’ regular csname commands followed
by a namespace into one token but that was even more messier.1 So in the end I re
moved all that experimental namespace code and happily accept the fact that there's
nothing to gain, but it was a fun experiment.

As a side effect of this experiment I decided to enable a primitive that had been com
mented. When it was tested years ago there was no real gain but I realized that it
could be implemented a bit more efficient in specific scenarios. Think of this:

\csname\ifcsname999>foobar:width\endcsname999>foo:width\fi\endcsname

when abstracted becomes:

\csname\ifcsname\??testme foobar:\c!width\endcsname\??testme
foo:\c!width\fi\endcsname

1 Occasionally I consider some compilation of tokens lists into more efficient ones but so far I could
resist.



13 Namespaces

In both cases the same list of tokens (\??testme foobar:\c!width) has to be con
verted into a byte string, which we can avoid by:

\csname\ifcsname\??testme
foobar:\c!width\endcsname\csnamestring\fi\endcsname

when we have a hit. After all, the found macro has a known name that has been reg
istered as a string. This variant runs over 10 percent faster, which of course can be
neglected, especially if we don't call it millions of times; the book has 400.000 calls
to \csnamestring. But as with many optimizations: gaining 20 times 0.1 seconds
on different subsystems eventually adds up to 20 % on a 10 seconds run for that 300
page, math extensive, book.

When looking at timings one always need to keep in mind that a simple test (in a
loop) is very easy on the cpu cache while in a real document there can be more cache
misses simply because the cache is limited in size. That is why in practice we often
see a bit more positive impact than shown here. In the case of the \csnamestring
we not only gain a bit on parameter handling but also on some font related opera
tions, but again the gain depends on how many (more complex) font switches hap
pen, which is more likely in for instance manuals.


