

On the ConTEXt mailing list, occasionally a user asks if we can post a complete document with the associated style. One reason for not honouring this request is that we want users to cook up their own styles. Besides that, there are a couple of styles in the regular ConTEXt distribution.
When browsing through this document, a ConT $\mathrm{E}_{\mathrm{E}} \mathrm{Xt}$ user may wonder what style was used to achieve its look and feel. We hope that while reading the text and playing with the examples, the reader will accomplish the skills to define more than just simple layouts.
This document is not easy reading. Occasionally we spend some time explaining features not described in other manuals. The design of this document is to a large extent determined by its purpose, and as a result not always functional. For instance, we typeset on a grid which doesn't look too good. Also the order of presenting features, tips and tricks is kind of random and unstructured. The idea is that the visual effects will draw you to the right trick. Also, if you really want to benefit from these features, there is no way but to read the whole story. In spite of all its shortcomings, I hope that you enjoy reading this (yet unfinished) manual. Keep in mind that this manual is far from finished.
\square
Hans Hagen
Hasselt NL
2002^{+}MkII
2015^{+}MkIV

\square

$$
2
$$

1 Snapping heads 5
2 Pseudo columns 41
3 Backgrounds behind text 45
4 Tuning math formulas 65
5 Floating around 75
6 Finetuning graphics 119
7 Ornaments everywhere 133
8 Grid trickery 145
9 Caption handling 153
About this document 161
四14

The grid snapper in MkIV is quite different from the one in MkII. For not too complex layouts the old grid snapper was quite ok, but the new one should be a bit more robust. In the old situation the running text was assumed to fit on the grid and the normal baseline skip should do the job in combination with the grid aware spacing features and placement mechanisms like tables and figures.
Snapping on a fixed grid is sort of counter intuitive in $T_{E} X$ because it has an a advanced spacing model with glue. Publishers however love grids so we do need to support it. Of course when complex layouts are involved in a later stage of document preparation the grid is often abandoned. This manual uses the grid but I personally never use the grid. There are better ways to make your document look good and often a grid snapped document doesn't look that great anyway, because all elements should somehow fit in multiples of the line height.
The MkIV snapper does more analysis and therefore can compensate for the more nasty cases. Of course it can still fail but we hope to fix those cases when we run into them. Grids are controlled by keywords or a combination of them.

maxdepth:0.1,maxheight:0.1
maxdepth:0.1,maxheight:0.2
maxdepth:0.1, maxheight:0.3
maxdepth:0.1,maxheight:0.4
maxaepth:0.2,maxheight:0.2
maxdepth:0.1,maxheight:0.5
maxdepth:0.2,maxheight:0.1
maxdepth:0.1, maxheight:0.6

maxdepth:0.3,maxheight:0.4:
maxdepth:0.3,maxheight:0.5
maxdepth:0.3, maxheight:0.6
maxdepth:0.3,maxheight:0.1
maxdepth:0.4, maxheight:0.4
maxdepth:0.4, maxheight:0.3
maxdepth:0.3, maxheight:0.6
maxth:0.3,maxheight:0.8

maxdepth:0.8,maxheight:0.4
maxdepth:0.8,maxheight:0.5
maxdepth:0.8,maxheight:0.6
maxdepth:0.8,maxheight:0.1
maxdepth:0.8,maxheight:0.8
maxdepth:0.8,maxheight:0.9
maxdepth:0.8,maxheight:10
maxdepth:0.9,maxheight:0.7
maxdepth:0.9,maxheight:0.0
maxdepth:0.9,maxheight:0.6
maxdepth:0. $0.9,9$, maxheight:0.9
maxheight:10

maxdepth:10,maxheight:0.0
maxdepth:10,maxheight:0.1
maxdepth:10,maxheight:0.2
maxdepth:10,maxheight:0.3
maxdepth:10,maxheight:0.4
maxdepth:10,maxheight:0.5
maxdepth:10,maxheight:0.6
maxdepth:10,maxheight:10
maxdepth:10,maxheight:0.1
maxdepth:10,maxheight:0.9
im:10,maxheight:0.8

Next we show some of the options in action. For practical reasons we start a new page each time. The sample is input as:

\qquad

1.4 Grid snapping method "top"

This is just a line to start with but next we show what method top does. none
none
test
test test
grid

none

test grid

grid

strut

setstrut

And here we end the demo.

1.6 Grid snapping method "both"

This is just a line to start with but next we show what method both does. none
none
grid
strut
setstrut
And here we end the demo.
test test test

none

test
grid grid

1.8 Grid snapping method "fit"

This is just a line to start with but next we show what method fit does. none
none
none
test
test
test
grid
grid
grid
strut
strut
strut
setstrut
setstrut
And here we end the demo.

1.9 Grid snapping method "first"

This is just a line to start with but next we show what method first does.

none
test
grid ${ }_{\text {grid }}^{\text {test }}$
strut
ktrut
setstrut

And here we end the demo.
none
test
grid
strut
setstrut
1.10 Grid snapping method "last"

This is just a line to start with but next we show what method last does. none

none	none
test	
test	test
grid grid	
grid	grid
strut	
setstrut	strut
setstrut	
And here we end the demo.	

1.11 Grid snapping method "high"
trasidiustaitre to start with hasite we show what method high does.

And here we end the demo.

1.12 Grid snapping method "one"

This is just a line to start with but next we show what method one does. none
none

test
 grid ${ }^{\text {test }}$

test

strut
strut
setstrut
And here we end the demo.

none

grid

strut
setstrut
\qquad

1.13 Grid snapping method "low"

	none
test test	test
grid grid	grid
strut strut $^{\text {d }}$	strut
ketstrut	setstrut

here we end the demo
1.14 Grid snapping method "none"

And here we end the demo.
\qquad

1.16 Grid snapping method "strut"

This is just a line to start with but next we show what method strut does. none

test	none
test	
grid test	
grid	
strut grid	
strut	strut
setstrut	setstrut

1.17 Grid snapping method "box"

1.18 Grid snapping method "min"

This is just a line to start with but next we show what method min does. none
none

test
 test grid
 grid

grid	grid
strut $_{\text {strut }}$	strut
setstrut	setstrut
And here we end the demo.	

And here we end the demo.

none

test

1.20 Grid snapping method "middle"

This is just a line to start with but next we show what method middle does. none
none
none
test
test
test
grid
grid
grid
strut
strut
strut
setstrut
setstrut
And here we end the demo.

We now come to the topic of this chapter: snapping heads. The problem with section heads is that they often exceed the line height. Even worse, they can be more than one line high.
The next pages show some ways to control snapping around heads. The result can be confusing, even when we use a font that we assume behaves like a regular style. For instance in Latin Modern the bold style has larger heights and depths than the regular style and even 0.1 pt can force the snapper to add a line. The examples use that font.
The grid option of setuphead normally takes one keyword that refers to the local snapper. However, the result gets then snapped again. This is because the local snapper can use a different line height. Historically the local snapper is the default but you can force global snapping by prefixing with the global keyword. The next table summarizes the ways you can control snapping:

(nothing)	local snapping plus global snapping
local	local snapping plus global snapping
foo	local foo snapping cf. font style plus global snapping
local:foo	local foo snapping cf. font style plus global snapping
global	global snapping
global:foo	global foo snapping

$\backslash \mathrm{bf}$, none \par	
\bfb \hskip2cm	none \par
\bfd \hskip6cn	none \par
$\backslash \mathrm{bf}$	test \par
\bfb \hskip2cm	test \par
\bfd \hskip6cm	test \par
\bf	grid \par
\bfb \hskip2cm	grid \par
\bfd \hskip6cn	grid \par
$\backslash \mathrm{bf}$	\strut strut \par
\bfb \hskip2cm	\strut strut \par
\bfd \hskip6cm	\strut strut \par
\bfb \hskip2cm	\strut setstrut \par
\bfd \hskip6cm	\strut setstrut \par

some head 1.1 1
line following 1.1 2
some head 1.2 3
line following 1.2 - 4
some head 1.3a 5
some head 1.3b 6
line following 1.3 7
some head 2.18some head 2.19
line following 2.1 10
11
some head 2.2 12
line following 2.2 13
some head 2.3a 15
some head 2.3b 16
line following 2.3 17
some head 3.1 19
line following 3.1 21
some head 3.2 23
line following 3.2 25
some head 3.3a 26
27
some head 3.3b 28
line following 3.3 30
some head 4.1
33
line following 4.1 34
some head 4.2
, 36
line following 4.2 38

Figure 1.1

```
tolerant
```

some head 1.1 1
line following 1.1 2
some head 1.2 3
line following 1.2 4
some head 1.3a 5
some head 1.3b 6
line following 1.3 7
8
some head 2.1 9
line following 2.1 10some head 2.211
12some head 2.2
line following 2.2 13

some head 2.3a

some head 2.3a 1514
some head 2.3b 16
line following 2.3 17some head 3.119
some head 3.1 20
line following 3.1 21some head 3.223
24
line following 3.2 25
some head 3.3a 26
27
some head 3.3b 28
line following 3.3 30
some head 4.1
some head 4.1 3231
line following 4.1 34
some head 4.2 36
line following 4.2 38

```
global:tolerant
```

some head 1.1line following 1.1some head 1.2
line following 1.2 4
some head 1.3a 5
some head 1.3b 6
line following 1.3 7
some head 2.1 - 8
line following 2.1 -9
some head 2.2 10
line following 2.2 11
some head 2.3a 12
some head 2.3b 13
line following 2.3 14
some head 3.1 16
line following 3.1 18
some head 3.2 20
line following 3.2
some head 3.3a 23
24
some head 3.3b 2526
line following 3.3 27
some head 4.129
30
line following 4.1 31
32
some head 4.2 33
line following 4.2 35

- 36

In desk top publishing applications the grid is pretty dominant in defining layouts. On the other hand, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is pretty good defining layouts in terms of relative dimensions. This means that mapping a desk top publishing layout into its $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (or ConT ${ }^{\mathrm{E}} \mathrm{Xt}$) counterpart takes some effort. For what it's worth, personally I don't like grids that much, specially not in complex documents, unless one makes sure that all elements are suitable sized for the grid used.
We not only have to deal with vertical grids, but also with horizontal ones. Here we focus on the second category. When implementing designs, it is best first to look into the normal page layout areas. For most documents these are sufficient, but occasionally we need a more detailed approach.
When playing with grids, you need to make sure that grid snapping is turned on. It helps if you turn on the grid so that you can see where things end up. When a horizontal grid is defined, gray vertical rules show their boundaries.
\setuplayout[grid=yes]
The \setuplayout command
pseudo columns. These are in
only play a role in placing text
\setuplayout
[columndistance=12pt,
columns=3]

You can use \layoutcolumnoffset for positioning relative to the left boundary of the running text:
\hskip\layoutcolumnoffset\{2\}\{\red Text positioned in column 2!\}
Text positioned in column 2!
This mechanism is actually meant to ease the definition of complicated (title) pages where many text and graphic elements need to be anchored at well defined places. The layer mechanism is the most natural candidate for this.

\definelayer [text]	\setupbackgrounds [text]	[background=text]
When anchoring elements on a layer, you can specify absolute positions using the x and y keys but grid based positioning is possible with the column and line keys. We need to pass grid as location specifier.		
\setlayer[text][column=1, line=48, location=grid] \{these are not\}		
\setlayer[text][column=2,line=47,location=grid] \{real columns\}		
\setlayer[text][column=3,1ine=48,location=grid] \{but fake ones\}		
real columns		
these are not		but fake ones

10

\qquad

```
\setlayer [text] [column=1,line=32,location=grid]
    {\ruledvtop {\hsize\layoutcolumnwidth
            \style[regular:3]{nitty\par gritty}}}
\setlayer [text] [column=2,line=37,location=grid]
    {\ruledvbox {\hsize\layoutcolumnwidth
        \style[regular:3]{nitty\par gritty}}}
\setlayer [text] [column=3,line=42,location=grid]
    {\ruledvcenter {\hsize\layoutcolumnwidth
        \style[regular:3]{nitty\par gritty}}}
```

The data that goes into the layer is collected and flushed as soon as $T_{E} X$ builds the page. The buffer associated to the layer is then ready for new data (for the next page).
In this example, you can see that the baselines of the boxes (here visualized by dashed rules) are put at the specified lines. You can use the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ box commands Ivbox, \vtop and \vcenter to specify where the main baseline of the box content is positioned (at the top or bottom line, or centered)
\setlayer
[text]
[column=2,line=48, $x=$ llayoutcolumnwidth,location=left]
\{\framed
[background=color, backgroundcolor=red, foregroundstyle=regular:2,foregroundcolor=white, frame=off]
\{Why ain't I framed?\}\}

nitty gritty

Why ain't I framed?

On the previous page we demonstrated a more complicated call to \setlayer and more features will be introduced in later chapters. We position the framed text in column 2 and at line 48. In addition we shift the text over the pseudo column width, i.e. we position the text at the right of the column. The location specifier aligns the text left from the point of positioning.
When we have set up the pseudo columns, we have access to a couple of variables:
\layoutcolumns
\layoutlines
\layoutcolumnwidth
\layoutcolumnoffset\{n\}

counter	number of columns
counter	number of gridlines

This is typically a feature that has been there for quite a while but that I forget about. It's probably because I never have to use grids myself.
In the examples before we used some predefined (font) styles:
Idefinefont[regular:1][Regular*default sa 1]
$\square{ }^{-16}$
\definefont[regular:3] [Regular*default sa 3]
\definefont[regular:3][Regular*default sa 3]
|definefont[regular:4] [Regular*default sa 4]

A rather common way to draw attention to a passage, is to add a background. In this chapter we will therefore discuss how to enhance your document with those colorful areas that either or not follow the shape of your paragraph. Be warned: this chapter has so many backgrounds that you might start to dislike them.

In the previous paragraph we demonstrated two important features of the background handler: you can nest backgrounds and backgrounds can be tight or wide. Features like this will often be used in combination with others, like special section headers. The raw coding of the previous paragraph is therefore not representative.
\starttextbackground[intro]
A rather common way to draw attention to a passage, is to add a
background. In this chapter we will therefore discuss how to enhance
your
document with \starttextbackground [subintro] those colorful areas
that either
or not follow the shape of your paragraph. \stoptextbackground Be
warned: this chapter has so many backgrounds that you might start
to
dislike them.
\stoptextbackground

The outer background commands is defined as follows:
\definetextbackground
[intro]
[backgroundcolor=infogray, 27
backgroundoffset $=.25 \mathrm{~cm}$,
frame=off,
location=paragraph,
color=red]

Here, the paragraph option ensures that the background covers the width of the body text. The inner background is defined in a similar way, but this time we choose text location.
\definetextbackground
[subintro]
[backgroundcolor=textgray,
\qquad
frame=off,
location=text,
color=blue]

In this document we use protruding characters (hanging punctuation) so we've chosen a rather large offset, one that also matches the rest of the page design. Those who are familiar with the way $T_{E} X$ works will probably see what problems
can occur with backgrounds like this. What happens for instance when we cross page boundaries, and how will more complicated paragraph shapes be handled? The current implementation tries to handle page breaks and paragraph shapes as good as possible. This works well in normal one-column mode as well as in columns.

In this example, the paragraph shape is determined by the graphic placed left of the text. This feature is implemented using the \hangindent and \hangafter primitives, which means that we need to keep track of their state. In addition, we need to handle the indentation directives \leftskip, \rightskip and \parindent. Be-
Figure 3.1 cause backgrounds end up in a different background overlay, nesting them is no problem, and it is even possible to move them to the front and back, as we will demonstrate later on. While the mechanism discussed here will always be improved when we find border cases, the fundaments it is built upon are quite stable.

```
\placefigure[left]{}{\externalfigure[detcow] [width=2cm]}
```

Istarttextbackground [A]
In this example, the paragraph shape is determined by the graphic
placed
left of the text.
\starttextbackground [B]
This feature is implemented using the \type $\{$ \hangindent\} and \type
\{\hangafter\} primitives, which means that we need to keep track of
their state. In addition, we need to handle the indentation directives
\type \{\leftskip\}, \type \{\rightskip\} and \type $\{\backslash$ parindent $\}$.
\stoptextbackground \}
Because backgrounds end up in a different background overlay, nesting
them is no problem, and it is even possible to move them to the
front
and back, as we will demonstrate later on. While the mechanism discussed
here will always be improved when we find border cases, the fundaments
it is built upon are quite stable.
\stoptextbackground
The backgrounds were defined as:
\definetextbackground [A] [backgroundcolor=infogray]
\definetextbackground [B] [backgroundcolor=textgray]
\setuptextbackground

background	the part of a paint- one ing representing what lies behind objects is the foreground
foreground	the part of a scene two or representation that is nearest to and in front of the specta- tor
spectatorone who looks on or three watches	

Keeping track of the state of a paragraph in a table in combination with background is not entirely trivial. The current implementation evolved from less clever ones and, unless you start doing complicated box manipulations with the float content, works quite well. One reason why we made backgrounds work in tables (and especially floating tables) is that is was needed for typesetting books for primary and secundary education. In there, we want to be able to hide the answers that students are supposed to fill in.

Table 3.2

In figure 3.3 you can see an advanced example of backgrounds running over columns. If you look carefully, you will notice that the background depends on the kind of background at hand:

1. the text starts and flows on
2. the text flows on (or stands alone)
3. the text flows on and ends

This information is available when you want to draw your own backgrounds. Here the graphic was defined as follows:

1

8

-20

1
-2
-3
-4
-5 -6

7

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Tuning math formulas

Because of its look and feel, a math formula can look too widely spaced when put on a grid. There are a few ways to control this. First of all, the default grid option bound to math is already more tolerant. But you can control it locally too. Take the following formula:
\square
This has been entered as:
\startformula
$a=b^{\wedge} c$
\stopformula
?
and because it is just a line of math it comes out as expected. The next code
\startformula
$\mathrm{a}=\backslash \mathrm{frac}\{\mathrm{a}\}\{\mathrm{b}\}$
\stopformula
produces a higher line:

$$
a=\frac{a}{b}
$$

as does:

\startformula
$a=\backslash$ frac $\{\backslash$ frac $\{b\}\{c\}\}\{\backslash$ frac $\{d\}\{e\}\}$
\stopformula

$$
a=\frac{\frac{b}{c}}{\frac{d}{e}}
$$

We will now demonstrate three ways to compensate fo rexcessive spacing. The first variant just sets a grid parameter:
\startformula[grid=math:-halfline]
$a=\backslash f r a c\{\backslash f r a c ~\{b\}\{c\}\}\{\backslash f r a c ~\{d\}\{e\}\}$
\stopformula

$$
a=\frac{\frac{b}{c}}{\frac{d}{e}}
$$

You can also pass this as an option. Only a few such grid related options are defined: halfline, line, -halfline and -grid.
\startformula[-halfline]
$a=\backslash$ frac $\{\backslash$ frac $\{b\}\{c\}\}\{\backslash$ frac $\{d\}\{e\}\}$
\stopformula

$$
a=\frac{\frac{b}{c}}{\frac{d}{e}}
$$

\startformula[grid=math:-halfline]
$a=$ Ifrac $\{\backslash f r a c\{b\}\{c\}\}\{\backslash f r a c\{d\}\{e\}\}$
\stopformula

If you need to compensate frequently you can consider defining an instance:
\defineformula[tight][grid=math:-halfline]
\starttightformula
$\quad \mathrm{a}=\backslash \mathrm{frac}\{\backslash \mathrm{frac}\{\mathrm{b}\}\{c\}\}\{\backslash \mathrm{frac}\{d\}\{e\}\}$
\stoptightformula

$$
a=\frac{\frac{b}{c}}{\frac{d}{e}}
$$

$$
a=\frac{\frac{b}{c}}{\frac{d}{e}}(\text { top } 10 \text { compensated })
$$

5
6
-7
-8
-9

$$
\begin{array}{r}
11 \\
-12 \\
-13 \\
-14
\end{array}
$$

$$
\begin{array}{r}
14 \\
-15
\end{array}
$$

$$
\begin{array}{r}
10 \\
-16 \\
-\quad 17 \\
-18 \\
-19 \\
-20
\end{array}
$$

As said, the compensation is achieved with the page directive. The previous pages were rendered using:

\dorecurse \{15\} \{

\startformula[grid=\{math,-halfline\}]
$a=\backslash f r a c\{\backslash f r a c ~\{b\}\{c\}\}\{\backslash f r a c\{d\}\{e\}\}$
(\hbox\{top \#1 default\})
\stopformula
\blank[samepage]
\fakeline
\}
and
\dorecurse \{15\} \{
\startformula[grid=\{math,-halfline,split\}]
a = \frac $\{\backslash$ frac $\{b\}\{c\}\}\{\backslash$ frac $\{d\}\{e\}\}$
(\hbox\{top \#1 compensated\})
\stopformula
\blank[samepage]
\fakeline
$\}$
\}
In order to get a consistent result we keep the depth of the formula the same but effectively shift it down a bit, still honouring the grid. So what about the bottom.
We can decide that the snapped formula doesn't fit and force a new page but we can also accept that it sticks out to the bottom, which is less worse than the top-of-the-page case.

$$
a=\frac{\frac{b}{c}}{\frac{d}{e}}(\text { bottom default })
$$

$$
a=\frac{\frac{b}{c}}{\frac{d}{e}}(\text { bottom compensated })
$$

These mechanisms might be improved over time but as we don't use it frequently that might take a while.
The following formula was posted at the $\mathrm{ConT}_{\mathrm{E}} \mathrm{Xt}$ mailing list in a grid snapping thread and we will use it to demonstrate how you can mess a bit with the snapping.

```
\(\mathrm{g}\left(\mathrm{x}_{-}\{*\}\right)=\) \lim_\{n\to\infty\} \(\mathrm{g}\left(\mathrm{a} \_\right.\)\{n\}) \leq 0 \leq \lim_\{n\to\infty\}
\(g\left(b_{-}\{n\}\right)=g\left(x_{-}\{*\}\right)\)
```

We show the given grid parameter as well as its expansion into the low level grid directives.
grid=math
expanded: maxdepth:1.05,maxheight:1.05,strut

$$
g\left(x_{*}\right)=\lim _{n \rightarrow \infty} g\left(a_{n}\right) \leq 0 \leq \lim _{n \rightarrow \infty} g\left(b_{n}\right)=g\left(x_{*}\right)
$$

grid=low, halfline
expanded: maxheight,mindepth, none, halfline

$$
g\left(x_{*}\right)=\lim _{n \rightarrow \infty} g\left(a_{n}\right) \leq 0 \leq \lim _{n \rightarrow \infty} g\left(b_{n}\right)=g\left(x_{*}\right)
$$

grid=math, nodepth expanded: maxdepth:1.05,maxheight:1.05,strut, nodepth
$g\left(x_{*}\right)=\lim _{n \rightarrow \infty} g\left(a_{n}\right) \leq 0 \leq \lim _{n \rightarrow \infty} g\left(b_{n}\right)=g\left(x_{*}\right)$

Floating around

Graphics, tables and alike are often treated as floating bodies. This means that when such a body does not fit on the current page, it will be moved to the next one. In the examples we will use figures, but much of what we demonstrate here applies to all floats.
A side float is a float which placement one way or another depends on the text that follows it. In its simplest form, the text flows around it, for instance in:

```
\placefigure[left,none]{caption}{\framed[height=1cm]{graphic}}
```

The first keyword of such a call is treated as a placement directive, so this figure will be placed left. The none directive nils the caption.

When the figure does not fit on the page, a page break is issued. A figure can span multiple paragraphs. When a next graphic is placed the previous figure will be padded if needed. First an example of multiple paragraphs.

Multiple floats in a row will lead to padding. The amount of padding is a combination of empty lines and the normal white space following the float. The visual quality of the result depends on the graphic itself.

Here we show the baseline of the first paragraph after the float as well as the filler. The whitespace around a graphic also depends on the inter-paragraph whitespace. As with many automated mechanisms, compromises are made. A

instance:
\setupfloat
\quad [figure]
\quad [sidealign=line]

The three keywords height, line and depth can also be passed directly:
\placefigure
[left, none, height] \{\}
\{\framed[height=1cm] \{graphic\}\}
The three alignments disable the spacing before the float and show up as follows.

So far the floats took up space in the main text body area. In addition to the left (or right) directive we can use inner or outer to force left or right placement depending in the spread.
Instead of spoiling paper in the text areas, we can use the margin and edges: leftmargin and leftedge, rightmargin and rightedge, but also innermargin and outermargin, inneredge and outeredge.
The next couple of pages we will highlight the margins and edges so that we can see what happens.
\placefigure
[leftmargin, none]
\{\} $\{\backslash$ framed $\{!\}\}$

\placefigure
[leftmargin, none]
\{\} $\{\backslash$ framed[width $=1.5 \mathrm{~cm}]\{!\}\}$

The placement directives can be combined with setting distance and width parameters, thereby not only opening a world of possibilities, but also creating confusion. Therefore, we will illustrate these features by cloning floats.

```
\definefloat
    [marginfigure]
    [figure]
\setupfloat
    [marginfigure]
    [leftmargindistance=-\leftmargintotal,
        default={left,none,low}]
```

The definition command clones figure into a new class of figures. There are two ways to use such a float:

```
\placefloat
```

[marginfigure]
$\}\{\backslash$ framed [width $=1.5 \mathrm{~cm}]\{!\}\}$
or directly:

```
\placemarginfigure
```

$\}\{\backslash$ framed [width $=1.5 \mathrm{~cm}]\{!\}\}$
Both placement calls will result in a figure sticking into the margin.

By manipulating the margin distance, you can align graphics to vertical grid lines, like the edge:

```
\definefloat
    [edgefigure]
    [figure]
```

\setupfloat
[edgefigure]
[edgefigure]
[leftmargindistance=-\innercombitotal,
[leftmargindistance=-\innercombitotal,
default={left,none,low,high}]
default={left,none,low,high}]
The \innercombitotal is one of the many available dimensions. This measure is the combined width of the margin and edge.
\placeedgefigure
\placeedgefigure
{} {\framed[width=1.5cm]{!}}
{} {\framed[width=1.5cm]{!}}
\placeedgefigure
\{\} \{\framed[width=\innercombitotal]\{!\}\}
You need to be aware of the fact that the margins and edges are not related to the backspace and cut space settings. When you set up a layout, you need to think of the right page as starting point. In a double sided layout, the margins are swapped in the page composition stage. Unless you explicitly go to a left or right page, you don't know if your left margin will be swapped or not.
For this reason $\mathrm{ConT}_{\mathrm{E}} \mathrm{Xt}$ provides the inner and outer margin/edge dimensions. These are automatically synchronized when the float is constructed. So, if you want to automatically adapt the float placement and width to the current left margin in a double sided document, you can use the inner dimensions.

dimension	left page	right page
\outermarginwidth	\leftmarginwidth	\rightmarginwidth
\innermarginwidth	\rightmarginwidth	\leftmarginwidth
\outermargindistance	\leftmargindistance	\rightmargindistance
\innermargindistance	\rightmargindistance	\leftmargindistance

Similar dimensions are available for the edges. You can save yourself some calculations by using the following dimensions:
\leftmargintotal left margin width + left margin distance -39
\rightmargintotal right margin width + right margin distance
\innermargintotal inner margin width + inner margin distance
loutermargintotal outer margin width + outer margin distance
As you may expect, the edge totals are available as well, which leave a few more totals, namely the combinations of margin and edge.

\leftsidetotal left margin width +left edge total
\rightsidetotal right margin width +right edge total
\innersidetotal inner margin width+inner edge total
\outersidetotal outer margin width+outer edge total
\leftcombitotal left margin total +left edge total
\rightcombitotal right margin total +right edge total
\innercombitotal inner margin total +inner edge total
\outercombitotal outer margin total +outer edge total
Adaptive back- and cutspace dimensions are also available:
\innerspacewidth adaptive backspace
louterspacewidth adaptive cutspace

There is one drawback in using the inner and outer dimensions: if you also change the height of the float dynamically, you may end up in a kind of loop because a page break may occur at a non-expected place.
While negative values move float into the margin, positive values will move the float into the text. It will be of no surprise that you can also set the right margin distance. Keep in mind that this distance is not related to the text margin, but to the float margin.

```
    \setupfloat
    [edgefigure]
    [leftmargindistance=-\outercombitotal,
    rightmargindistance=-\outercombitotal,
    default={outer,none,low,high}]
```

The locations inner and outer change with the left or right page.

This will automatically turn figures that are wider than 25% of the text width
into normal floats instead of side floats. But let's not fall back on that feature now.
You can use maxwidth and minwidth variables to control the placement in more detail. The exact result depends on the settings of location. By default we center, but you can set the location to left or right to achieve a different alignment.

```
\definefloat
    [midmarginfigure]
    [figure]
```

\setupfloat
[midmarginfigure]
[minwidth=\leftmarginwidth,
default=\{leftmargin, none\}]

You can use maxwidth and minwidth variables to control the placement in more detail. The exact result depends on the settings of location. By default we center, but you can set the location to left or right to achieve a different alignment.

\placemidmarginfigure

\{\} \{\framed[width=1.5cm]\{!\}\}

The meaning of maxwidth depends on the kind of float. First we place a left float with a width smaller than maxwidth.

```
\setupfloat[figure][maxwidth=2cm]
```

\placefigure[left, none] $\}\{\backslash$ framed[width=1cm] $\{!\}\}$

When the width exceeds the maxwidth, the float will be centered. This is because we have no reference alignment point.
\placefigure[left, none]\{\}\{\framed[width=5cm]\{!\}\}

In margin floats, the maxwidth settings have a different result. First we place a small graphic.
\setupfloat[figure] [maxwidth=\leftmarginwidth]

Because the left and right margin of this document are the same - the edges differ- we don't need to use inner and outer dimensions.
\setupfloat[figure] [maxwidth=\leftmarginwidth]
A wider than maxwidth graphic will behave like a mixture of a margin and text side float. Watch how we align the float to the margin.
\placefigure[leftmargin, none] \{\}\{\framed[width=5cm] \{!\}\}

드ㄴㅡㅡ를
Instead of setting the width you can give hanging a try. The next examples demonstrate this.
$\backslash p l a c e f i g u r e[l e f t m a r g i n$, hanging, none] $\}\{\backslash$ framed[width=5cm] \{! \}\}
\placefigure[left, hanging, none] \{\}\{\framed[width=5cm] \{!\}\}

You can move down/up margin floats with the \movesidefloat macro. Such shifts come in handy when you have multiple side floats near to each other.

```
\movesidefloat [+2*line]
\placemidmarginfigure {} {\framed{!}}
```


Given the default placement template, this is equivalent to the following command. Watch out, a simple line has a different effect (alignment).

```
\placemidmarginfigure
    [leftmargin, none,+2*line]
    {} {\framed{!}}
```

Another nice keyword is long:

```
\placefigure
```

 [leftmargin, none,long]
 \{\} \(\{\backslash\) framed[height \(=2 \mathrm{~cm}\), width \(=2 \mathrm{~cm}]\{!\}\}\)
 Watch how we move down. The effect is that we skip over the margin figure.
\placefigure
[leftmargin, none]
\{\} \{\framed[height=1cm,width=2cm]\{!\}\}

Watch how we move down. The effect is that we skip over the margin figure.

\placefigure

[leftmargin, none]
\{\} $\{\backslash$ framed[height $=2 \mathrm{~cm}$, width $=2 \mathrm{~cm}]\{!\}\}$
Do we clash or not?
\placefigure
[leftmargin, none]
\{\} $\{\backslash$ framed[height $=2 \mathrm{~cm}$, width $=2 \mathrm{~cm}]\{!\}\}$
Did we clash or not?

Do we clash or not?

Did we clash or not?
There are a few macros that can be of help with solving clashes in side floats:
\flushsidefloats This macro moves down as much as is needed to separate the side floats of each other.
Iforgetsidefloats this macro kind of forgets that a side float is in progress.
Use these macros with care. If you change the dimensions of the graphic and/or content involved, reconsider the use of these directives.
The next couple of spreads we will demonstrate some example definitions. These placements are taken from one of the styles we made for typesetting a series of school math books which illustrations and tables all over the pages.
First we fine tune the spacing around side floats and verbatim text.

```
\setupfloats
    [sidespacebefore=none,
        sidespaceafter=depth]
```

\setuptyping
[margin=]

The placements have rather verbose names. In this case the word 'edge' is used to identify bleeding floats (with an cut-off margin of 3 mm). The 'text' floats are side floats positioned in the main text flow.
\setupfloats
[sidespacebefore=none, sidespaceafter=depth]
\setuptyping
[margin=]
Watch how we define fall backs for too wide content (criterium as well as use maxwidth to manipulate the placement of content that falls off the margins.
The black rules are set up with:
|setupblackrules[color=tred, depth=0pt, height=1.5cm]


```\setupfloat [rightfigure] [criterium=.5\textwidth, default={right,none}]```				
\placerightfigure\{\}\{\blackrule[width=. 25 cm ]\}				
\placerightfigure\{\}\{\blackrule[width=.5cm]\}				
\placerightfigure\{\}\{\blackrule[width=1cm]\}				
\placerightfigure\{\}\{\blackrule[width=2cm]\}				
\placerightfigure\{\}\{\blackrule[width=4cm]\}				
\placerightfigure\{\}\{\blackrule [width=8cm]\}				
\|placerightfigure\{\}\{\blackrule[width=16cm]\}				





\setupfloat
[bleedfigure]
[criterium=.5\textwidth,
leftmargindistance $=-1 \mathrm{~mm}$,
rightmargindistance $=-1 \mathrm{~mm}$,
default=\{cutspace, n ( ${ }^{\text {a }}$ \}]
\placebleedfigure\{\}\{\blackrule[width=. 25 cm ]\}
$\backslash$ placebleedfigure\{\}\{\blackrule[width $=.5 \mathrm{~cm}$ ]\}
\placebleedfigure\{\}\{\blackrule[width=1cm]\}
\placebleedfigure\{\}\{\blackrule[width=2cm]\}
\placebleedfigure\{\}\{\blackrule[width=4cm]\}
\placebleedfigure\{\}\{\blackrule[width=8cm]\}
$\backslash$ lacebleedfigure $\}\{\backslash \mathrm{blackrule}$ [width $=16 \mathrm{~cm}$ ]\}


\setupfloat
[bleedfigure]
[criterium=.5\textwidth,
leftmargindistance $=-1 \mathrm{~mm}$,
rightmargindistance $=-1 \mathrm{~mm}$,
default=\{cutspace, none$\}$ ]
\placebleedfigure\{\}\{\blackrule[width=. 25 cm ]\}
\placebleedfigure\{\}\{\blackrule[width=. 5 cm$]\}$
\placebleedfigure\{\}\{\blackrule[width=1cm]\}
\placebleedfigure\{\}\{\blackrule[width=2cm]\}
\placebleedfigure\{\}\{\blackrule[width=4cm]\}
\placebleedfigure\{\}\{\blackrule[width=8cm]\}
\placebleedfigure\{\}\{\blackrule[width=16cm]\}

At ConT $\mathrm{T}_{\mathrm{E}} \mathrm{Xt}$ and Bacho $\mathrm{T}_{\mathrm{E}} \mathrm{Xm}$ meetings it is now a tradition that Harald König and I spend some time on figuring out what happens with border cases and interfences with user intervention. As it's hard to nail down I decided to add some more tracing and control. So, the remainder of this chapter is dedicated to Harald. We will now demonstrate some features in a way that makes it possible to compare to the simple default case. Options can be passed as keywords:
$-6$
It is important to realize that all that spacing can interfere with additional hard coded corrections at the users end. We don't show the effects of sidespacebefore and sidespaceafter, the two general vertical spacing hooks. These are currently set to big and big respectively. The sidealign parameter is always winning from a keyword doing the same.

The last few examples demonstrate that you can define an instance. Often that's the best way to deal with special cases in a consistent way. For instance:
\definefloat
[LeftTwo]
[figure]
\setupfloat
[LeftTwo]
[default=left, ${ }^{3}$
sidealign=line $\quad$.
sidealign=line]
First we show some keyword variant, next some parameter driven versions.
$\qquad$


Agriculture is a fairly recent human invention, and in many ways it was
one of the great stupid moves of all time. Hunter-gatherers have thou one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma difference is that when humans invented poverty, they came up with a wa ff subjugating the and invention, and in many ways it was one of the great stupid moves of all time Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha all, generating an overwhelming reliance on a few dozen domesticated food sources, making yo extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling hem - stratification of society and the invention of classes. Thus, it allowed for the invention overty. I think that the punch ine of the primate-human diference is that when humans inven

Agriculture is a fairly recent human invention, and in many ways it wa sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo
cust infestation, the next potato blight. Agriculture allowed for stockpiling cust infestation, the next potato blight. Agriculture allowed for stockpiling
of surplus resources and thus, inevitably the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-humar Figure 2 difference is that when humans invented poverty, they came up with a way of subjugating the low
ranking like nothing ever seen before in the primate world. Agriculture is a fairly recent humar ranking like nothing ever seen before in the primate world. Agriculture is a fairly recent human nvention, and in many ways it was one of the great stupid moves of all time. Hunter-gatherers
have thousands of wild sources of food to subsist on. Agriculture changed that all, generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnera tockpiling of surplus resources and thus inevitably ne the potato bigul stockpiling of them - stratifica tion of society and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch line of the primate-human difference is that when humans invented poverty, the came up with a way of subjugating the low-ranking like nothing ever seen before in the primat


Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of the - stratification of society and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch line of the primate-human
Figure 1 difference is that when humans invented poverty, they came up with a w f subjugating the low-ran ane not a fairly recent human invention, and in many ways it was one of the great stupid moves of all time
Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha Ill, generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agr culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling hem - stratification of society and the invention of classes. Thus, it allowed for the invention ooverty. I think that the punch line of the primate-human difference is that when humans invent he primate world.


Figure 2

Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo cust infestation, the next potato vilight Able to the next famine, the next 10 of surplus resources and thus, inevitably, the unequal stockppiling of then - stratification of society and the invention of classes. Thus, it allowed fo -stratification of society and the invention of classes. Thus, ifference is that when humans invented poverty, they came up with a way of subjugating the low ranking like nothing ever seen before in the primate world. Agriculture is a fairly recent humar nvention, and in many ways it was one of the great stupid moves of all time. Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed that all, generating an verwhelming reliance on a few dozen domesticated food sources, making you extremely vulnera
ole to the next famine, the next locust infestation, the next potato blight. Agriculture allowed for tockpiling of surplus resources and thus, inevitably the unequal stockpiling of them - stratific ion of society and the invention of classes. Thus, it allowed for the invention of poverty. I thin hat the punch line of the primate-human difference is that when humans invented poverty, the ame up with a way of subjugating the low-ranking like nothing ever seen before in the primat world.
world.


Figure 1

Agriculture is a fairly recent human invention, and in many ways it was one of the great stupid moves of all time. Hunter-gatherers have thou generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling surplus resources and thus, inevitably, the unequal stockpiling of the - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma difference is that when humans invented poverty, they came up with a wa ff subjugating the low-ranking like nothing ever ses was one of the great stupid moves of all time Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha all, generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling o them - stratification of society and the invention of classes. Thus, it allowed for the invention poverty. they came up with a way of subiugating the low ranking like nothing ever seen before the primate world.


Figure 2

Agriculture is a fairly recent human invention, and in many ways it w one of the great stupid moves of all time. Hunter-gatherers have thou sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated fooc locust infestation, the next potato blight. Agriculture allowed for stock piling of surplus resources and thus, inevitably, the unequal stockpilin of them - stratification of society and the invention of classes. Thus, lowed for the invention of poverty. I think that the punch line of the primate-human difference is hat when humans invented poverty, they came up with a way of subjugating the low-ranking lik hothing ever seen before in the primate world. Agriculture is a fairly recent human invention, an $n$ many ways it was one of the great stupid moves of all time. Hunter-gatherers have thousand of wild sources of food to subsist on. Agriculture changed that all, generating an overwhelming amine, the next locust infestation, the next potato blight. Agriculture allowed for stockpiling o surplus resources and thus, inevitably, the unequal stockpiling of them - stratification of societ and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch ine of the primate-human difference is that when humans invented poverty, they came up with way of subjugating the low-ranking like nothing ever seen before in the primate world.


Figure 1

Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have
sands of wild sources of food to subsist on. Agriculture changed that generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of the - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-humar difference is that when humans invented poverty, they came up with a way f subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture fairly recent human invention, and in many ways it was one of the great stupid moves of all tim all, generating an overwhelming reliance on a few dozen domesticated food sources, making yo extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling o them - stratification of society and the invention of classes. Thus, it allowed for the invention o overty. I think that the punch line of the primate-human difference is that when humans invente
overty they came up with a way of subjugating the low-ranking like nothing ever seen before overty, they came u
he primate world.

ricuture is a fairly recent human invention, and in many ways it was on the great stupid moves of all time. Hunter-gatherers have thousands o sources of food to subsist on. Agriculture changed that all, generaaking you extremely vulnerable to the next famine, the next locust infes ation, the next potato blight. Agriculture allowed for stockpiling of surplu
rces and thus, inevitably, the unequal stockpiling of them - stratife ion of society and the invention of classes. Thus, it allowed for the inve ion of poverty. I think that the punch line of the primate-human difference is that when human nvented poverty, they came up with a way of subjugating the low-ranking like nothing ever seen the in the primate world. Agriculture is a fairly recent human invention, and in many ways food to subsist on. Agriculture changed that all, generating an overwhelming reliance on a fey ozen domesticted Agricuture changed that all, generating an overwheming reliance tha ocust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resource nd thus, inevitably, the unequal stockpiling of them - stratification of society and the inventio of classes. Thus, it allowed for the invention of poverty. I think that the punch line of the primate human difference is that when humans invented poverty, they came up with a way of subjugating the low-ranking like nothing ever seen before in the primate world.


Agriculture is a fairly recent human invention, and in many ways it was
one of the great stupid moves of all time. Hunter-gatherers have thou one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma
difference is that when humans invented poverty, they came up with a wa difference is that when humans invented poverty, they came up with a was
 of subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture is
f fairly recent human invention, and in many ways it was one of the great stupid moves of all time
Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed that ill, generating an overwhelming reliance on a few dozen domesticated food sources, making yo extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri zulture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling hem - stratification of society and the invention of classes. Thus, it allowed for the invention overty. I think that the punch line of the primate-human difference is that when humans invent

Agricuture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou sands of wild sources of food to subsist on. Agriculture changed that al generating an overwhelming reliance on a few dozen domesticated foo locust infestation, the next potato blight Agriculture allowed for stock ing of surplus resources and thus, inevitably the unequal stockpilin them - stratification of society and the invention of classes. Thus, of them - stratification of society and the invention of classes. Thus, that when humans invented poverty, they came up with a way of subjugating the low-ranking lik othing ever seen before in the primate world. Agriculture is a fairly recent human invention, an $n$ many ways it was one of the great stupid moves of all time. Hunter-gatherers have thousand of wild sources of food to subsist on. Agriculture changed that all, generating an overwhelming eliance on a few dozen domesticated food sources, making you extremely vulnerable to the nex
amine, the next locust infestation, the next potato blight. Agriculture allowed for stockpiling o urplus resources and thus, inevitably, the unequal stockpiling of them - stratification of socies
nd the invention of classes. Thus, it allowed for the invention of poverty. I think that the punc ine of the primate-human difference is that when humans invented poverty, they came up with way of subjugating the low-ranking like nothing ever seen before in the primate world.


Figure 1

Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma
difference is that when humans invented poverty, they came up with a wa f subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture i fairly recent human invention, and in many ways it was one of the great stupid moves of all time Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha ill, generating an overwhelming reliance on a few dozen domesticated food sources, making yo xtremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agr ulture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling o hem - stratification of society and the invention of classes. Thus, it allowed for the invention overty. I think that the punch line of the primate-human difference is that when humans invent ooverty they came up wh primate world.
the

Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling
of surplus resources and thus, inevitably, the unequal stockpiling of them - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma lifference is that when humans invented poverty, they came up with a way of subjugating the low anking like nothing ever seen before in the primate world. Agriculture is a fairly recent humar nvention, and in many ways it was one of the great stupid moves of all time. Hunter-gatherer have thousands of wild sources of food to subsist on. Agriculture changed that all, generating an verwhelming reliance on a few dozen domesticated food sources, making you extremely vulnera tockpiling of surplus resources and thus, inevitably, the unequal stockpiling of them - stratific ion of society and the invention of classes. Thus, it allowed for the invention of poverty. I thin hat the punch line of the primate-human difference is that when humans invented poverty, the ame up with a way of subjugating the low-ranking like nothing ever seen before in the primat vorld.


Figure 2

1







## left,halfline

## left,height



Agriculture is a fairly recent human invention, and in many ways it was sands of wild sources of food of subsist on Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma difference is that when humans invented poverty, they came up with a wa
 king like nothing ever seen before in the primate world. Agriculture fairly recent human invention, and in many ways it was one of the great stupid moves of all time Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha all, generating an overwhelming reliance on a few dozen domesticated food sources, making yo extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agn
uilure allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling
them - stratification of society and the invention of classes. Thus, it allowed for the invention o them - stratification of society and the invention of classes. Thus, it allowed for the invention
poverty. I think that the punch line of the primate-human difference is that when humans invente poverty. I think that the punch line of the primate-human difference is that when humans invente
poverty, they came up with a way of subjugating the low-ranking like nothing ever seen before in
griculture is a fairly recent human invention, and in many wass


Figure 1 Agriculture is a fairly recent human invention, and in many ways it was one of the great stupid moves of all time. Hunter-gatherers have tho
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma
difference is that when humans invented poverty they came up with a wa difference is that when humans invented poverty, they came up with a wa)
ranking like nothing ever seen before in the primate world. Agriculture is s subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha ill, generating an overwhelming reliance on a few dozen domesticated food sources, making you xtremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri ulture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling hem - stratification of society and the invention of classes. Thus, it allowed for the invention overty. T think that the punch ay of subjugating the low-ranking like nothing ever seen before


Agriculture is a fairly recent human invention, and in many ways it wa sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next 10 cust infestation, the next potato blight. Agriculture allowed for stockpiling
of surplus resources and thus, inevitably, the unequal stockpiling of the - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-humar difference is that when humans invented poverty, they came up with a wa f subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture is fairly recent human invention, and in many ways it was one of the great stupid moves of all time Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha xtremely yulnerable to the next famine, the next locust infestation, the next potato blight. Agri ulture allowed for stockpiling of surplus resources and thus, inevitably the unequal stockpiling o hem - stratification of society and the invention of classes. Thus, it allowed for the invention o poverty. I think that the punch line of the primate-human difference is that when humans invented overty, they came up with a way of subjugating the low-ranking like nothing ever seen before in he primate world.
left,grid
ne of the great stupid moves of all time. Hunter-gatherers have thou sands of wild sources of food to subsist on. Agriculture changed that al gheraing an overwhelming reliance on a few dozen domesticated foo cust infestation, the next potato blight. Agriculture allowed for stockpilin of surplus resources and thus, inevitably, the unequal stockpiling of then -stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma difference is that when humans invented poverty, they came up with a way ff subjugating the low-ranking like nothing ever seen before in the prime stupid moves of all time Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri -ulture allowed for stockpiling of surplus resources and thus, inevitably the unequal stockpiling of them - stratification of society and the invention of classes. Thus, it allowed for the invention poverty. I think that the punch line of the primate-human difference is that when humans invente poverty, they came up with a way of subjugating the low-ranking like nothing ever seen before in the primate world.
left, depth

$\square$



Agriculture is a fairly recent human invention, and in many ways it was
one of the great stupid moves of all time. Hunter-gatherers have thou one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma difference is that when humans invented poverty, they came up with a wa f subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture i fairly recent human invention, and in many ways it was one of the great stapicture changed tha
Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture all, generating an overwhelming reliance on a few dozen domesticated food sources, making yo extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agr culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpliing hem - stratification of society and the invention of classes. Thus, it allowed for the invention overty. Ithink that

Agriculture is a fairly recent human invention, and in many ways it w of the great stupid moves of all time. Hunter-gatherers have thou nds of wild sources of food to subsist on. Agriculture changed that an onerating an overwhelming reliance on a few dozen domesticated foo locust infestation, the next potato blight. Agriculture allowed for stock g of surplus resources and thus, inevitably, the unequal stockpilit of them - stratification of society and the invention of classes. Thus, Howed for the invention of poverty. I think that the punch line of the primate-human difference hat when humans invented poverty, they came up with a way of subjugating the low-ranking lik nothing ever seen before in the primate world. Agriculture is a fairly recent human invention, and n many ways it was one of the great stupid moves of all time. Hunter-gatherers have thousan of wild sources of food to subsist on. Agriculture changed that all, generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the nex urplus resources and thus, inevitably, the unequal stockpiling of them - stratification of societ surplus resources and thus, inevitably, the unequal stockppining of them - stratinication of societs
and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch ine of the primate-human difference is that when humans invented poverty, they came up with way of subjugating the low-ranking like nothing ever seen before in the primate world.
one of the great stupid moves of all time. Hunter-gatherers have tho
sands of wild sources of food to subsist on. Agriculture changed that generating an overwhelming reliance on a few dozen domesticated foo locust infestation thou extremely vinerable to the next famine, the ne locust infestation, the next potato blight. Agriculture allowed for sto of them - stratification of society and the invention of classes. Thus, allowed for the invention of poverty. I think that the punch line of the p mate-human difference is that when humans invented poverty, they ca up with a way of subjugating the low-ranking like nothing ever seen be ore in the primate world. Agriculture is a fairly recent human invention, and in many ways was one of the great stupid moves of all time. Hunter-gatherers have thousands of wild source of food to subsist on. Agriculture changed that all, generating an overwhelming reliance on a fe cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resourc and thus, inevitably, the unequal stockpiling of them - stratification of society and the inventio classes. Thus, it allowed for the invention of poverty. I think that the punch line of the primate uman difference is that when humans invented poverty, they came up with a way of subjugating he low-ranking like nothing ever seen before in the primate world.


Figure 1

Agriculture is a fairly recent human invention, and in many ways it $w$ one of the great stupid moves of all time. Hunter-gatherers have thou generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of the - stratification of society and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch line of the primate-humar subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture i fairly recent human invention, and in many ways it was one of the great stupid moves of all time fairly recent human invention, and in many ways it was one of the great stupid moves of all time
funter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed that Ill, generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agr culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling hem - stratification of society and the invention of classes. Thus, it allowed for the invention overty. I think that the punch line of the primate-human difference is that when humans invent
overty, they came up with a way of subjugating the low-ranking like nothing ever seen before he primate world.

Agriculture is a fairly recent human invention, and in many ways it wa
one of the great stupid moves of all time. Hunter-gatherers have th
1 -
 the invention of poverty. I think that the punch line of the primate-humar difference is that when humans invented poverty, they came up with a wa of subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha all, generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling o them - stratification of society and the invention of classes. Thus, it allowed for the invention o poverty. I think that the punch line of the primate-human difference is that when humans invente the primate world.

Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou sands of wild sources of food to subsist on. Agriculture changed that all
sources, making you extremely riance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agriculture allowed for stockpling
of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus it allowe for the invention of poverty. I think that the punch line of the primate human difference is that when humans invented poverty, they came us with a way of subjugating the low-ranking like nothing ever seen befor in the primate world. Agriculture is a fairly recent human invention, and
many ways it was one of the great stupid moves of all time. Hunter-gatherers have thousands
wild sources of food to subsist on. Agriculture changed that all, generating an overwhelming of wild sources of food to subsist on. Agriculture changed that all, generating an overwhelming famine, the next locust infestation, the next potato blight. Agriculture allowed for stockpiling o surplus resources and thus, inevitably, the unequal stockpiling of them - stratification of societs and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch ine of the primate-human difference is that when humans invented poverty, they came up with way of subjugating the low-ranking like nothing ever seen before in the primate world.


Agriculture is a fairly recent human invention, and in many ways it was
one of the great stupid moves of all time. Hunter-gatherers have thou one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of them - stratification of society and the invention of classes. Thus, it allowed for
left,line
left, $1 *$ line


Figure 1

Agriculture is a fairly recent human invention, and in many ways it was one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of them - stratification of society and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch line of the primate-humar difference is that when humans invented poverty, they came up with a way f subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture fairly recent human invention, and in many ways it was one of the great stupid moves of all time all, generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri culture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling o them - stratification of society and the invention of classes. Thus, it allowed for the invention o
poverty. I think that the punch line of the primate-human difference is that when humans invented poverty. I think that the punch line of the primate-human difference is that when humans invente the primate world.

Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all


Figure 2 generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling
of surplus resources and thus, inevitably the unequal stockpiling of the - stratification of society and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch line of the primate-hu man difference is that when humans invented poverty, they came up with a way of subjugating the low-ranking like nothing ever seen before in the primate world. Agriculture is a fairly recent human invention, and in an overwhelming reliance on a few dozen domesticated food sources, making you extremely vul erable to the next famine, the next locust infestation, the next potato blight. Agriculture allowed or stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of them - stratin hat the punch line of the primate-human difference is that when humans invented poverty, thes ame up with a way of subjugating the low-ranking like nothing ever seen before in the primate world.


Agriculture is a fairly recent human invention, and in many ways it was
one of the great stupid moves of all time. Hunter-gatherers have thou one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma
difference is that when humans invented poverty they came
difference is that when humans invented poverty, they came up with a wa


Figure 2 of them - stratification of society and the invention of classes. Thus, in
Howed for the invention of poverty. I think that the punch line of the primate-human difference is that when humans invented poverty, they came up with a way of subjugating the low-ranking lik nothing ever seen before in the primate world. Agriculture is a fairly recent human invention, an n many ways it was one of the great stupid moves of all time. Hunter-gatherers have thousand reliance on a few dozen domesticated food sources, making you extremely vulnerable to the nex surplus resources and thus, inevitably, the unequal stockpiling of them - stratification of societ urplus resources and thus, inevitably, the unequal stockpiling of them - stratification of socie
and the invention of classes. Thus, it allowed for the invention of poverty. I think that the punc ine of the primate-human difference is that when humans invented poverty, they came up with way of subjugating the low-ranking like nothing ever seen before in the primate world.


Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-huma
difference is that when humans invented poverty they came up with a wa difference is that when humans invented poverty, they came up with a wa f subjugating the low-ranking like nothing ever seen before in the primate world. Agricuture
fairly recent human invention, and in many ways it was one of the great stupid moves of all time Hunter-gatherers have thousands of wild sources of food to of subsist on. Agriculture changed tha all, generating an overwhelming reliance on a few dozen domesticated food sources, making you xxtremely vulnerable to the next famine, the next locust infestation, the next potato blight. Agri ulture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling hem - stratification of society and the invention of classes. Thus, it allowed for the invention o overty. I think that the punch line of the primate-human difference is that when humans inven the primate world.

Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have hat all
sands of wild sources of food to subsist on. Agriculture changed that
 generating an overwhelming reliance on a few dozen domesticated foo sources, making you extremely vulnerable to the next famine, the next lo
cust infestation, the next potato blight Agriculture allowed for stockpiling cust infestation, the next potato blight. Agriculture allowed for stockpiling
of surplus resources and thus, inevitably, the unequal stockpiling of them - stratification of society and the invention of classes. Thus, it allowe for the invention of poverty. I think that the punch line of the primate human difference is that when humans invented poverty, they came ur with a way of subjugating the low-ranking like nothing ever seen befor
in the primate world. Agriculture is a fairly recent human inver in the primate world. Agriculture is a fairly recent human invention, an many ways it was one of the great stupid moves of all time. Hunter-gatherers have thousand f wild sources of food to subsist on. Agriculture changed that all, generating an overwhelming
eliance on a few dozen domesticated food sources, making you extremely vulnerable to the nex amine, the next locust infestation, the next potato blight. Agriculture allowed for stockpiling urplus resources and thus, inevitably, the unequal stockpiling of them - stratification of societ ind the invention of classes. Thus, it allowed for the invention of poverty. I think that the punch ine of the primate-human difference is that when humans invented poverty, they came up with way of subjugating the low-ranking like nothing ever seen before in the primate world.
$-1$

default=\{left, $2 *$ line $\}$


Agriculture is a fairly recent human invention, and in many ways it was
one of to e great stupid moves of all time Huntergatherers have the one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all sands of wild sources of food to subsist on. Agriculture changed that all
generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling of the - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-human difference is that when humans invented poverty, they came up with a wa
ranking like nothing ever seen before in the primate world. Agriculture is fairly recent human invention, and in many ways it was one of the great stupid moves of all time Hunter-gatherers have thousands of wild sources of food to subsist on. Agriculture changed tha all, generating an overwhelming relance on a few lozen domesticn the next potato blight. Agri xxtremely vulnerable to the next famine, the next locust infestation, the next potato sight. Ag
uulture allowed for stockpiling of surplus resources and thus, inevitably, the unequal stockpiling o ulture allowed for stockpiling of surplus resources and thus, Theviabit, allowed for the invention o
hem - stratification of society and the invention of classes. Thus, it allowe overty. I think that the punch line of the primate-human difference is that when humans invente



Agriculture is a fairly recent human invention, and in many ways it wa one of the great stupid moves of all time. Hunter-gatherers have thou
sands of wild sources of food to subsist on. Agriculture changed that all generating an overwhelming reliance on a few dozen domesticated food sources, making you extremely vulnerable to the next famine, the next lo cust infestation, the next potato blight. Agriculture allowed for stockpiling
of surplus resources and thus, inevitably, the unequal stockpiling of then - stratification of society and the invention of classes. Thus, it allowed fo the invention of poverty. I think that the punch line of the primate-humar difference is that when humans invented poverty, they came up with a was
ranking like nothing ever seen before in the primate world. Agriculture is
Figure 2 f subjugating the low-ranking like nothing ever seen before in the primate word. Ag fairly recent human invention, and in many ways it was one of the great stupid moves of time fairly recent human invention, and in many ways it was one of the great stupid noves of anged tha ill, generating an overwhelming reliance on a few dozen domesticated food sources, making you ulture allowed for stockpiling of surplus resources and thus, inevitably the unequal stockpiling o hem - stratification of society and the invention of classes. Thus, it allowed for the invention o poverty. I think that the punch line of the primate-human difference is that when humans invented poverty, they came up with a way of subjugating the low-ranking like nothing ever seen before in
he primate world. he primate world.

| permate world. |  |
| :--- | :--- | :--- | :--- |

default=left, topoffset=5pt, bottomoffset=5pt

There is some tracing built in but as this mechanism is rather complex it only gives an idea about what is going on. Here is an example:





Figure 5.3 Side float tracing example 2, page 1.
\setupbodyfont
[dejavu]


```
 \setupfloats
 [sidethreshold=.5\strutdp, % default, use "old" for previous
 implementation
 step=small]
 \definemeasure[MyHeight][3cm]
 \definemeasure[MyWidth] [3cm]
 % \setupheadertexts
 % [width=\measure{MyWidth}\quad height=\measure{MyHeight}]
 \unexpanded\def\FakeWords#1%
 {\simulatewords
 [n=#1,m=#1,min=1,max=5, hyphen=no,color=text,line=yes,random=1234]}
 \starttext
 \startbuffer
 \FakeWords{100}\par
 19
 \placefigure
 [left] {oeps}
 {\framed[width=\measure{MyWidth},height=\measure{MyHeight}]{}}
 \FakeWords {2}\par
 \FakeWords {3}\par
 \FakeWords {5}\par
 \FakeWords {4}\par
 \FakeWords{200}\par
 \placefigure
 [left] {oeps}
 {\framed[width=\measure{MyWidth},height=\measure{MyHeight}]{}}
 \FakeWords{200}\par
 \stopbuffer
 \dostepwiserecurse {\number\dimexpr3cm} {\number\dimexpr4cm} {\number\dimexpr0
 {
 \definemeasure[MyWidth][#1sp]
 \dostepwiserecurse {\number\dimexpr3cm} {\number\dimexpr4cm}
{\number\dimexpr0.25cm} {
 \definemeasure[MyHeight][##1sp]
 \start
 \setupwhitespace[none]
 \getbuffer \page
 \stop
 \start
 \setupwhitespace[big]
 \getbuffer \page
 \stop
 }
```

\}
\stoptext
The step parameter controls how we fill up the space when we need to progress
beyond it for instance because another float shows up or because we issue a
\flushsidefloats. Its value can be big, medium or small and defaults to small
which gives of enough precision. The sidethreshold parameter controls the
number of lines that we hang around the float. Here we only show the consequence
of the the threshold. A larger threshold result in mode whitespace below the side
float. You can zoom in to see what happens at the bottom of the float (or run
the examples yourself).

The step parameter controls how we fill up the space when we need to progress beyond it for instance because another float shows up or because we issue a \flushsidefloats. Its value can be big, medium or small and defaults to small which gives of enough precision. The sidethreshold parameter controls the number of lines that we hang around the float. Here we only show the consequence of the the threshold. A larger threshold result in mode whitespace below the side float. You can zoom in to see what happens at the bottom of the float (or run
$\qquad$
$\square$
$\square$


Figure 5.5 The working of default step and side threshold (no whitespace.


Figure 5.6 The working of default step and side threshold (whitespace).

$118$

In this chapter we will discuss a few more tricks to control float placement. This control is needed if you want to typeset documents in a semi desk top publishing way.
When you combine technical graphics, you may wish to align the content optically. This can be done with the offset command. We will demonstrate this with a couple of MetaPost graphics:

```
\startreusableMPgraphic{alpha}
 fill fullsquare xyscaled(2cm, 2cm) withcolor \MPcolor{red} ;
 fill unitsquare xyscaled(+.5cm,+.5cm) withcolor \MPcolor{gray} ;
\stopreusableMPgraphic
\startreusableMPgraphic{beta}
 fill fullsquare xyscaled(2cm, 2cm) withcolor \MPcolor{red} ;
 fill unitsquare xyscaled(+.5cm,-.5cm) withcolor \MPcolor{gray} ;
\stopreusableMPgraphic
```

\startreusableMPgraphic\{gamma\}
fill fullsquare xyscaled( $2 \mathrm{~cm}, 2 \mathrm{~cm}$ ) withcolor \MPcolor\{red\} ;
fill unitsquare xyscaled ( $-.5 \mathrm{~cm},-.5 \mathrm{~cm}$ ) withcolor $\backslash$ MPcolor\{gray\} ;
\stopreusableMPgraphic
\startuseMPgraphic\{delta\}
fill fullsquare xyscaled( $2 \mathrm{~cm}, 2 \mathrm{~cm}$ ) withcolor \MPcolor\{red\} ;
fill unitsquare xyscaled ( $-.5 \mathrm{~cm},+.5 \mathrm{~cm}$ ) withcolor $\backslash \mathrm{MPcolor}\{g r a y\}$;
\stopuseMPgraphic
\startcombination[2*2]
\{\reuseMPgraphic\{alpha\}\} \{alpha\}
\{\reuseMPgraphic \{beta\}\} \{beta\}
\{\reuseMPgraphic\{gamma\}\} \{gamma\}
\{\reuseMPgraphic\{delta\}\} \{delta\}
\stopcombination

In figure 6.1 we place these graphics in a $2 * 2$ grid. As you can see, the centers don't align well.
In figure 6.2 the centers of the graphic align well. This is accomplished by adding some space around the graphics.
\startcombination[2*2]
\{\offset[rightoffset=1cm] \{\reuseMPgraphic\{alpha\}\}\} \{alpha\}
\{\offset[bottomoffset $=.5 \mathrm{~cm}]\{\backslash$ reuseMPgraphic \{beta\}\}\} \{beta\}
\{\offset[bottomoffset $=.5 \mathrm{~cm}]\{\backslash$ reuseMPgraphic\{gamma\}\}\} \{gamma\}
\{\offset[leftoffset=1cm] \{\reuseMPgraphic\{delta\}\}\} \{delta\}
\stopcombination


\movesidefloat $[x=-.5 \mathrm{~cm}]$
\placefigure [left, none] \{\} \{\reuseMPgraphic\{gnat $\}\}$

It is possible to shift vertically by setting $y$, but this is often a bad idea and definitely may spoil alignment of graphics to the grid. If you have to revert to this trick, you are probably working in document screw-up mode. This is why in grid mode, we automatically round to an equal number of lines.
If you know what text you're dealing with and also can be sure about the height of a graphic, you can trick $\mathrm{Con}_{\mathrm{E}} \mathrm{Xt}$ to ignore the dimensions of a graphic. Here we use the graphic:
\startreusableMPgraphic\{gnome\}
fill fullsquare xyscaled ( $2 \mathrm{~cm}, 1 \mathrm{~cm}$ )
fill fullsquare xyscaled ( $1 \mathrm{~cm}, .5 \mathrm{~cm}$ ) withcolor $\backslash$ MPcolor\{gray\} ; ${ }^{32}$
\stopreusableMPgraphic
\placefigure[leftmargin, none, reset]\{\}\{\reuseMPgraphic\{gnome\}\}
The graphic is moved into the margin (leftmargin), has no caption (none), and all kind of tricky housekeeping is reset (reset).
Now the next graphic is not influenced by the previous one, so we can
place them close to each other. Use these tricks with care, especially
if your document source is reused and the typeset products are not
carefully checked.
$\quad$ \placefigure [left, none, high, low] \{\}\{\reuseMPgraphic\{gnome\}\}
When ConTEXt tries to determine if a float fits, it makes a couple of assumptions,
for instance that the available room equals the text height minus the height of the text so far. You can slightly influence the way these values are interpreted by setting the calculation method. You can set the methods as follows:

```
 \setupfloats[textmethod=0,sidemethod=1]
```

Method 0 just looks at the raw dimensions, while method 1 lessens the maximum text height by one percent, thereby playing safe. Method 2 takes a window of 1 point. This may lead to better decisions since we may run into rounding errors of several scaled points (which is small but troublesome). Method 2 is well suited when typesetting on a grid, because there everything has to fit in a rounded number of lines, which leaves no room for rounding errors.

grid mode	yes	no
sidemethod	2	1
textmethod	2	0

As you may know by now, we can use the directives high, low, height, depth and line to influence the spacing around a side float. A real tight spacing can be achieved with fit.
\placefigure[left,fit, none]\{\}\{some graphic\}

This kind of placements only make sense in special situations, because normally you don't want the graphic to touch the text. If you think that this is all a user may want, you're wrong. It is not imaginary that graphics have small pieces sticking out and/or lots of white space as part of their design. In that case, the bounding box can be set to a smaller size.

Now, when handling a side float, ConT $\mathrm{F}_{\mathrm{E}} \mathrm{Xt}$ first places the float, and then starts with typesetting the paragraph, cleverly avoiding the graphic. However, when the graphic is virtually larger than its known size, it may cover part of the preceding paragraph.
How come that the graphic starting this paragraph does not do that? It is because we explicitly moved it to the background. This involves some preparation. At the document level, we define a layer called graphic.


```
[left,fit,none]
{}{\setlayer[graphics]{graphic}}
```

It's now a small step to more advanced movements. Say that you want to move the graphic a little bit to the left. In that case you can tell the layer placement to do so.

$\quad$| Placefigure |
| :--- |
| $\quad[$ left, fit, none] $\}\{$ Ssetlayer[graphics][hoffset=-12pt] \{graphic\} $\}$ |

From this you can deduce that there is also a movement in the vertical direc- 1 tion using voffset. In addition you can anchor the graphic using the location parameter and provide offsets.

As soon as you run into situations where float placement is to be consistently enforced, you will feel the need for dedicate placement macros. For example:

Idefinefloat
[somefloat]
[figure]
\setupfloat
[somefloat]
[sidespaceafter=,
sidespacebefore $=$,
default=\{left,none\}]

    [somefloat]
    [figure]\(-21\)
    Instead of resetting the side spacing, we could have default to high, low, but this way we can overload the default placement and still get zero spacing.
Throughout this manual we discuss features related to overlays and layers. These permit you to move content around in ways that either or not depend on the text flow. We have now come to another trick based on these mechanisms: bleeding.
When printing a document, you need to take into account that when graphics go beyond the page boundary, you need to compensate for inaccuracies in cutting the pages. Such graphics are called bleeding graphics and the amount of bleed is often a few millimeters.
The best way to handle such graphics is to use the correct dimensions and play with the edge widths and distances in combination with backspace and cut space. In a properly set up layout and by using a well designed set of predefined graphic placements, you can handle this quite well. A bleeding figure can be defined as follows:


One of the nice things about $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is that you can fine tune dimensions pretty well. So, instead of the previous placement, which turns out rather ugly, we can come up with a better one:
\setupfloat
[edgefigure]
[default=\{inner, height, high,low, none\}, maxwidth=4cm, margin=\strutdepth]
\defineexternalfigure [edgefigure]
[width=\dimexpr $\backslash$ backspace $+4 \mathrm{~cm}+2 \mathrm{~mm} \backslash$ relax, height=\dimexpr3\lineheight+\strutheight\relax]
This time we take no risk and add 2 mm to the dimensions so that we can be sure that the edge of the graphic falls outside the page boundary.
$\qquad$

The ConTEXt resourse library modules provide means to report back the dimensions of graphics used in a document, so that you can develop (tune) them with
the proper dimensions. In practice a slightly wider than normal graphic (scaling it horizontally a few millimeters more) does not harm the visual appearance that much, so adapting a graphic to this kind of bleeding is not really needed.
In addition to this (rather natural) way of adding bleed to a graphic, you can apply the \bleed macro. In the previously discussed method the figure placement mechanisms work with the real dimensions. The bleed macro is using scaling in a different way: from the perspective of $\mathrm{ConT}_{\mathrm{E}} \mathrm{Xt}$ the graphic remains its original dimensions and the figure placement mechanisms will act accordingly. We will give a couple of examples of using this macro.
Permitted bleeding locations are $1, r, t, b, l r, b l, b r, t l$ and $t r$.
\placesomefloat
[left, none,fit]
\{\}
\{\setupbleeding[offset=5mm]
\bleed[width=5cm,height=1cm,location=1]
\{\externalfigure[mill][bleed]\}\}


The amount of bleeding depends on the postprocessing. In the previous paragraph we used a bleed offset of 5 mm , and here we used 2 mm . Because the graphic is scaled in order to match the bleed, it will be slightly distorted. With small values this will go unnoticed. You can set the offset with:

```
\setupbleeding[offset=5mm]
```

Bleeding itself is accomplished by the \bleed macro as in:
\bleed

39 40 $-41$ $-42$ 43

```
[width=5cm,height=1cm,location=l]
```

\{\externalfigure[mill] [width=\bleedwidth, height=\bleedheight]\}

It is kind of awkward to pass those two dimensions so here is a shorter way of doing the same:

## \bleed

[width $=5 \mathrm{~cm}$, height=1cm,location=1]
\{\externalfigure[mill] [bleed]\}
In fact, this uses the following definition:
\defineexternalfigure[bleed] [width=\bleedwidth,height=\bleedheight]
You can influence the scaling of a graphic by setting the stretch parameters. The location parameter determines the direction of the stretch: l (left), r (right), $t$ (top), b (bottom) or a combination of these. We will now combine the previous example code with this knowledge.
\placefigure
[left]
\{\}
$\{\backslash$ bleed
[stretch=no, voffset=0pt, hoffset=1cm]
\{\externalfigure[detcow] [bleed]\}\}

\placefigure
[left]
\{\}
$\{\backslash$ bleed
[width $=5 \mathrm{~cm}$, height $=3 \mathrm{~cm}$,location=1]
\{\externalfigure[detcow] [bleed]\}\}




You can still specify dimensions and anchors can be combined with bleeding. Of course this kind of mixed usage means that you need to have some feeling for what these mechanisms do.
\placemyfigure
[left, none]
\{\}
\{\anchor
[rightbottom]
[width $=5 \mathrm{~cm}$, height $=3 \mathrm{~cm}$, frame $=o n]$
\{\bleed
[width $=5 \mathrm{~cm}$, height=3cm,location=l]
\{\externalfigure[detcow] [bleed] $\}\}\}$
$-19$ $-20$ $-21$ $-22$ 23 24 25 $-26$ $-27$ $\begin{array}{r}28 \\ 29 \\ \hline\end{array}$

\placemyfjgure
[right, none]
$\left.\begin{array}{c}\text { \{lanchor } \\ \text { [rightbott }\end{array}\right\}$
[rightbottom]
[width $=5 \mathrm{~cm}$, height $=3 \mathrm{~cm}$, frame $=0 \mathrm{n}$ ]

\placemyfigure
[left, none]
\{\}
\{\anchor
[lefttop]
[width=3cm, height=3cm,frame=on]
\{\externalfigure[detcow] [width $=5 \mathrm{~cm}$, frame=on] \}\}

\placemyfigure
[left, none]
\{\}
$\{\backslash a n c h o r$
[lefttop]
[width $=3 \mathrm{~cm}$, height $=3 \mathrm{~cm}$, frame=on]
[offset=. 5 cm ]
\{\externalfigure[detcow] [width $=5 \mathrm{~cm}$, frame=on] \}\}


Todo: parameter specifications of all those macros.

## Ornaments everywhere

The background mechanisms present in $\mathrm{ConT}_{\mathrm{E}} \mathrm{Xt}$ have evolved over time and with computers becoming faster, you can expect new functionality to show up and existing functionality to start using this technology. A simple background consist of a colored area. Many commands accept settings like:


You can construct overlays by using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ boxing primitives or commands like \framed. Alternatively you can use another mechanism: layers. Layers collect content and flush that when asked, for instance when an overlay is constructed. Layers can be independent of a page, or bound to a specific page number, left or right hand pages. Here we look at independent layers.
All these mechanisms are fine tuned for cooperating with the output routine (the part of $T_{\mathrm{E}} \mathrm{X}$ that deals with composing pages) and are well interact quite well with MetaPost graphics. Details of usage and tricks are revealed in this manual as well as in styles that come with $\mathrm{ConT}_{\mathrm{E}} \mathrm{Xt}$. In this chapter we will apply layers to graphics. For this we need a few setups, like:

```
\setupbackgrounds
 [page]
 [background=pagegraphics]
```

Here we have set up the page background to use an overlay called pagegraphics. However, instead of an overlay, we will use a layer. This layer will collect content

32 333435

[^0] 3839

$y=-2 \mathrm{~mm}$, width=\paperwidth, height=\paperheight]

When you fill a layer with content, you can influence the placement with the x and y parameters as well as hoffset and voffset, whichever you prefer. The reference point and alignment are set with corner and location.
Live can be made easier by using presets, especially for our intended usage. The following presets are predefined.
\definelayerpreset
[lefttop] [corner=\{left,top\}, location=\{right,bottom $\}$
\definelayerpreset
[righttop] [corner=\{right,top\}, location=\{left,bottom\}] 8 \definelayerpreset
[leftbottom] [corner=\{left,bottom\}, location=\{right,top\}] \definelayerpreset
[rightbottom] [corner=\{right,bottom\},location=\{left,top\}]
Because for this layer we have also preset the x and y , those corners are laying a few millimeters outside the page area. We have preset the size as well, otherwise all corners would end up in the top left corner.
We will now fill this layer. Because the layer is hooked into the page, it will be flushed when the page is constructed. After the page is written to the output file, the layer is emptied, unless its state is set to repeat.

\setlayer [ext	[preset=righttop]	\{\externalfigure[hacker]\}
\setlayer [ext	[preset=leftbottom]	\{\externalfigure[hacker]\}
setlayer [ex	[preset=rightbotto	\{\externalfigure[h

Once you got the picture of layering, you will start using this mechanism for all kind of tasks. Instead of putting layers in a background, you can also directly place them, by using one of the two (equivalent) commands:

## \composedlayer\{identifier\} <br> \placelayer[identifier]



Layer are quite convenient for defining title pages, colophons, and speciáa section heads, especially in combination with \framed.
On top of the layer mechanism we have build a few more mechanisms, tike ornaments. You can use ornaments to annotate graphics in such a way that the







In addition to the parameters shown here, you can also provide additional ones:


[chapter]
[header]
[\setups\{chapter\}]
[]
The setups are just series of typesetting instructions. For the sake of readability, we have split them up.
\startsetups chapter
\setups[chapter:title]
\setups[chapter:number]
\setups[chapter:finish]
\stopsetups
The setups will use a dedicated layer for the chapter title:
\definelayer
[chapter]
[width=\dimexpr\makeupwidth+\cutspace\relax,
height=\headerheight]
The following code uses a macro \setlayerframed. This is a combination between \setlayer and \framed. We use two placement macros to typeset the title and number. When doing so, we need to take care of both numbered chapters and unnumbered titles.
\startsetups chapter:title
\setlayerframed
[chapter]
[ $\mathrm{x}=\backslash$ dimexpr $\backslash$ makeupwidth + \cutspace\relax,location=\{left, bottom\}]
[height=\headerheight,
foregroundcolor=white,
background=color,
backgroundcolor=blue,
frame=off,
offset=none,
align=\{right,lohi\}]
$\{\backslash$ hbox spread . $5 \backslash$ cutspace
$\{\backslash \mathrm{hss}$
\doiftextelse\{\placeheadtext[chapter]\}\%
\{\placeheadtext[chapter]\}\%
\{\placeheadtext[title]\}\%
\hss\}\space
\vskip. 5 cm \}
\stopsetups







5
The setups are just series of typesetting instructions. For the sake of readability, we have split them up.
\startsetups chapter
8
\setups [chapter:title]
\setups [chapter:number]
\setups[chapter:finish]
\stopsetups
The setups will use a dedicated layer for the chapter title:
\definelayer
[chapter]
[width=\dimexpr\makeupwidth $+\backslash$ cutspace $\backslash r e l a x$, 19 height=\headerheight] $\square$


$144$

In this manual we pay quite some words on ways to snap your content on a grid. When dealing with grids, we often run into conflicting situations where we have to make the best of it. Let's again deal with an aspect of graphics.
One of the strong points of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is that it can deal with graphics automatically, which means that you seldom have to tweak dimensions or placements unless ... you're dealing with grids. In that case you need to make sure that the height of graphics consistently match the height of lines (or multiples of lines). It is for this purpose that the graphic inclusion macro has a grid entry.
We will illustrate its usage using a dedicated figure class where we have set the space between figure and caption to zero.
\definefloat[tightfigure] [tightfigures][figure]
\setupcaption[tightfigure] [inbetween=]
The grid parameter controls rounding of the height of a graphic in the following way:
yes safe rounding to an equal number of lines
fit tight rounding to an equal number of lines ${ }_{2}$
height same as yes but incremented by linedepth
On the next pages we demonstrate the effects of these settings. At the bottom of a page we show the placement commands. On the last pages we've hidden the captions with:
\setupfloat[tightfigure] [default=\{here, none\}]
As you will notice, the height option is handy when the caption is positioned directly under the graphic. $\square$
$\square$



state: unknown
Figure 8.6


Figure 8.9

state: unknown
Figure 8.10

\placetightfigure\{\}\{\externalfigure[dummy][lines=1.3,grid=fit]\} \placetightfigure\{\}\{\externalfigure[dummy][lines=1.4,grid=fit]\} \placetightfigure\{\}\{\externalfigure[dummy][lines=1.5,grid=fit]\}
\placetightfigure\{\}\{\externalfigure[dummy][lines=1.6,grid=fit]\}
\placetightfigure\{\}\{\externalfigure[dummy][lines=1.7,grid=fit]\}



Figure 8.12

state: unknown
Figure 8.14

\placetightfigure\{\}\{\externalfigure[dummy][lines=1.3,grid=height]\} \placetightfigure\{\}\{\externalfigure[dummy][lines=1.4,grid=height]\}
\placetightfigure\{\}\{\externalfigure[dummy][lines=1.5,grid=height]\}
\placetightfigure\{\}\{\externalfigure[dummy][lines=1.6,grid=height]\}
\placetightfigure\{\}\{\externalfigure[dummy][lines=1.7,grid=height]\}



\placetightfigure\{\}\{\externalfigure[dummy][lines=1.3,grid=yes]\} \placetightfigure\{\}\{\externalfigure[dummy][lines=1.4,grid=yes]\} \placetightfigure\{\}\{\externalfigure[dummy][lines=1.5,grid=yes]\}
\placetightfigure\{\}\{\externalfigure[dummy][lines=1.6,grid=yes]\} \placetightfigure\{\}\{\externalfigure[dummy][lines=1.7,grid=yes]\}




It's hard to predict what kind of caption placements users want. The amount of variation if large and thereby any system of specifying them will look complex So, examples are the best way to show them.


In this document we typeset on a grid. For more complex cases and when a document is processed without any user intervention, this is often a bad idea because the snapper can decide to make sure that there is enough space above and below an element. You can however influence the snapper explicitly:
\setupcaption
$\quad$ [figure]
$\quad$ [location=top]
\placefigure

[^1] 41 42 $-43$


Normally a side float plus caption has a normalized (strut) depth while also top skip gets applied. When one of the grid related options height, line, depth, grid or halfline is given the top skip correction is removed. The grid option removes the depth too. The grid option removes the depth while the height and depth options adds an extra amount of strut depth. The depth option also adds a line and halfline removes a line but adds strut height. Indeed this sounds complicated so best play with it a bit.
Keep in mind that the snapper plays safe and therefore tends to add more space when needed. You can set a grid parameter that controls it:
\setupfloats [grid=tolerant]
Currently this only applies to side floats but in the future we might support it for regular floats too.

\placefigure
$\quad$ [left]
\{\}\{\externalfigure[dummy] [lines=2, width=4cm]\}
$\backslash$ fakewords 660$\}\{80\}$ par

\setupcaption
[figure]
[width=4cm, align=flushleft,location=\{high,righthanging\}]
$\backslash$ placefigure
[right]
$\}\{\backslash$ externalfigure [dummy] [lines $=2$,width $=4 \mathrm{~cm}$ ]\}
$\backslash$ fakewords\{60\}\{80\} \par


Figure 9.6


\setupcaption
[figure]
[width $=4 \mathrm{~cm}$, align=flushleft,location=\{high,rightmargin\}]
\placefigure
[right]
$\}\{\backslash$ externalfigure [dummy] [lines=2,width $=4 \mathrm{~cm}$ ]\}
$\backslash$ fakewords\{60\}\{80\} \par


Figure 9.7

```
leftmargin, rightmargin, lefthanging or righthanging.
The next series of examples shows the regular (non-side) floats.
\setupcaption
 [figure]
 [location={high,left}]
\placefigure
 {}{\externalfigure[dummy][lines=2,width=4cm]}
Figure 9.8
```



```
\setupcaption
 [figure]
 [width=4cm,align=flushright,location={high,left}]
 \placefigure
 {}{\externalfigure[dummy][lines=2,width=4cm]}
 Figure 9.9
```



```
 \setupcaption
 [figure]
 [width=4cm,align=flushright,location={middle,left}]
 \placefigure
 {}{\externalfigure[dummy][lines=2,width=4cm]}
 Figure 9.10
```



```
 \setupfloat
 [figure]
 [location=right]
 \setupcaption
 [figure]
 [width=4cm,align=flushright,location=high]
 \placefigure
 {}{\externalfigure[dummy][lines=2,width=4cm]}
 Figure 9.11
 state: unknown
 \setupfloat
 [figure]
```

[location=right]	
\setupcaption	
[figure]	
[width=4cm, align=flushright,location=\{high,left $\}$	
$\backslash$ placefigure	
\{\} $\{\backslash$ externalfigure [dummy] [lines $=2$, width $=4 \mathrm{~cm}]\}$	
\setupfloat	
[figure]	
[location=left]	
\setupcaption	11
[figure]	12
[width=4cm,align=flushleft, location=\{high,left $\}$ ]	13
$\backslash$ placefigure	14
\{\} \{ \externalfigure[dummy] [lines=2,width $=4 \mathrm{~cm}]\}$	15
Figure 9.12	
-	
Figure 9.13 state: unknown	
Figure 9.13 state: unkown	
\setupfloat	-25
[figure]	26
[location=middle]	
\setupcaption	
[figure]	
[width $=4 \mathrm{~cm}$, align=flushright, location=\{high,lefthanging $\}$ ]	${ }^{36}$
$\backslash$ placefigure	-31
\{\}\{\externalfigure[dummy] [lines=2,width=4cm]\}	32
	${ }^{33}$
	34
Figure 9.14 state: unknown	35
	-36
	${ }^{37}$
\setupfloat	38
[figure]	39
[location=middle]	
\setupcaption	
[figure]	42
[width=4cm, align=flushleft, location=\{high,righthanging\}]	43
$\backslash \mathrm{placefigure}$	44
\{\} \{ \externalfigure [dummy] [lines=2,width $=4 \mathrm{~cm}$ ]\}	45
	46
	4

Figure 9.18

state: unknown
\setupfloat
[figure]
[location=middle]
Isetupcaption
[figure]
[width=4cm,align=flushright,location=\{high,outermargin\}]
(placefigure
\{\}\{\externalfigure[dummy][lines=2,width=4cm]\}

[figure] ${ }_{19}$
[location=left]
Isetupcaption
[figure]
[width $=4 \mathrm{~cm}$, align=flushright,location=\{high,leftmargin\}]
\placefigure
$\}\{\backslash$ externalfigure [dummy] [lines $=2$, width $=4 \mathrm{~cm}]\}$
Figure 9.17
21


$160$

## About this document

This document is typeset in ConTEXt using Lua $T_{E} X$ with MetaPost. We use only one font: the Computer Modern Typewriter. The verbatim portions of the text are typeset in its mono spaced variant. One of the reasons that I chose this font is that we need a mono spaced font to typeset the example code, and the Computer Modern Typewriter is one the best there is. This font combines well with many other typefaces, but the sometimes excessive use of different fonts (and sizes) in the styles that I have to implement made me long for simplicity. And so I decided to stick to one font. A careful reader will notice that this document has character protruding enabled (resulting in hanging punctuation).
We use a couple of colors. Again, I went for simplicity and use rather primary colors, although I do use them in transparent variants as well.
There is not much more to say, apart from that I want to thank our customers as well as ConTEXt users for asking me to implement dtp competing styles and features. Their demands drive ConTEXt in directions we could not have foreseen when we started its development.
We use a (transparent) gray background behind the text so that we have an indication where the text area is positioned relative to the page. It also enables us to comfortably turn on the grid.
Some features shown here are relatively new and therefore they occasionally are improved. As a result some aspects of their functionality may change.
2

$162$

# CONTEXT <br> October 15, 2017 


[^0]:    37

[^1]:    39 40

