
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

registers



1

Preamble

Contents

1 Preamble 1

2 TEX primitives 1

3 𝜀-TEX primitives 4

4 LuaTEX primitives 4

5 LuaMetaTEX primitives 5

6 Units 6

1 Preamble

Registers are sets of variables that are accessed by index and a such resemble regis

ters in a processing unit. You can store a quantity in a register, retrieve it, and also ma

nipulate it.

There is hardly any need to use them in ConTEXt so we keep it simple.

2 TEX primitives

There are several categories:

• Integers (int): in order to be portable (at the time it surfaced) there are only integers

and no floats. The only place where TEX uses floats internally is when glue gets

effective which happens in the backend.

• Dimensions (dimen): internally these are just integers but when they are entered

they are sliced into two parts so that we have a fractional part. The internal repre

sentation is called a scaled point.

• Glue (skip): these are dimensions with a few additional properties: stretch and

shrink. Being a compound entity they are stored differently and thereby a bit less

efficient than numbers and dimensions.

• Math glue (muskip): this is the same as glue but with a unit that adapts to the current

math style properties. It's best to think about them as being relative measures.

• Token lists (toks): these contain a list of tokens coming from the input or coming

from a place where they already have been converted.

The original TEX engine had 256 entries per set. The first ten of each set are normally

reserved for scratch purposes: the even ones for local use, and the odd ones for global



2

TEX primitives

usage. On top of that macro packages can reserve some for its own use. It was quite

easy to reach the maximum but there were tricks around that. This limitation is no

longer present in the variants in use today.

Let's set a few dimension registers:

\dimen 0 = 10 pt

\dimen2=10pt

\dimen4 10pt

\scratchdimen 10pt

We can serialize them with:

\the \dimen0

\number \dimen2

\meaning\dimen4

\meaning\scratchdimen

The results of these operations are:

10.0pt

655360

\dimen4

constant dimension 10.0pt

The last two is not really useful but it is what you see when tracing options are set. Here

\scratchdimen is a shortcut for a register. This is not a macro but a defined register.

The low level \dimendef is used for this but in a macro package you should not use that

one but the higher level \newdimen macro that uses it.

\newdimen\MyDimenA

\def \MyDimenB{\dimen999}

\dimendef\MyDimenC998

\meaning\MyDimenA

\meaning\MyDimenB

\meaning\MyDimenC

Watch the difference:

\dimen267

macro:\dimen 999

\dimen998



3

TEX primitives

The first definition uses a yet free register so you won't get a clash. The second one is

just a shortcut using a macro and the third one too but again direct shortcut. Try to

imagine how the second line gets interpreted:

\MyDimenA10pt \MyDimenA10.5pt

\MyDimenB10pt \MyDimenB10.5pt

\MyDimenC10pt \MyDimenC10.5pt

Also try to imagine what messing around with \MyDimenC will do when we also have

defined a few hundred extra dimensions with \newdimen.

In the case of dimensions the \number primitive will make the register serialize as scaled

points without unit sp.

Next we see some of the other registers being assigned:

\count 0 = 100

\skip 0 = 10pt plus 3pt minus 2pt

\skip 0 = 10pt plus 1fill

\muskip 0 = 10mu plus 3mu minus 2mu

\muskip 0 = 10mu minus 1 fil

\toks 0 = {hundred}

When a number is expected, you can use for instance this:

\scratchcounter\scratchcounterone

Here we use a few predefined scratch registers. You can also do this:

\scratchcounter\numexpr\scratchcounterone+\scratchcountertwo\relax

There are some quantities that also qualify as number:

\chardef\MyChar=123 % refers to character 123 (if present)

\scratchcounter\MyChar

In the past using \chardef was a way to get around the limited number of registers,

but it still had (in traditional TEX) a limitation: you could not go beyond 255. The

\mathchardef could fo higher as it also encodes a family number and class. This limi

tation has been lifted in LuaTEX.

A character itself can also be interpreted as number, in which case it has to be prefixed

with a reverse quote: `, so:



4

𝜀-TEX primitives

\scratchcounter\numexpr`0+5\relax

\char\scratchcounter

produces “5” because the `0 expands into the (ascii and utf8) slot 48 which represents

the character zero. In this case the next makes more sense:

\char\numexpr`0+5\relax

If you want to know more about all these quantities, “TEX By Topic” provides a good

summary of what TEX has to offer, and there is no need to repeat it here.

3 𝜀-TEX primitives

Apart from the ability to use expressions, the contribution to registers that 𝜀-TEX brought

was that suddenly we could use upto 65K of them, which is more than enough. The

extra registers were not as efficient as the first 256 because they were stored in the

hash table, but that was not really a problem. In Omega and later LuaTEX regular ar

rays were used, at the cost of more memory which in the meantime has become cheap.

As ConTEXt moved to 𝜀-TEX rather early its users never had to worry about it.

4 LuaTEX primitives

The LuaTEX engine introduced attributes. These are numeric properties that are bound

to the nodes that are the result of typesetting operations. They are basically like integer

registers but when set their values get bound and when unset they are kind of invisible.

• Attribute (attribute): a numeric property that when set becomes part of the current

attribute list that gets assigned to nodes.

Attributes can be used to communicate properties to Lua callbacks. There are several

functions available for setting them and querying them.

\attribute999 = 123

Using attributes this way is dangerous (of course I can only speak for ConTEXt) because

an attribute value might trigger some action in a callback that gives unwanted side

effects. For convenience ConTEXt provides:

\newattribute\MyAttribute



5

LuaMetaTEX primitives

Which currently defines \MyAttribute as constant integer 1025 and is meant to be

used as:1

\attribute\MyAttribute = 123

Just be aware that defining attributes can have an impact on performance. As you

cannot access them at the TEX end you seldom need them. If you do you can better use

the proper more high level definers (not discussed here).

5 LuaMetaTEX primitives

The fact that scanning stops at a non-number or \relax can be sort of unpredictable

which is why in LuaMetaTEX we also support the following variant:

\scratchdimen\dimexpr 10pt + 3pt \relax

\scratchdimen\dimexpr {10pt + 3pt}

At the cost of one more token braces can be used as boundaries instead of the single

\relax boundary.

An important property of registers is that they can be accessed by a number. This has

big consequences for the implementation: they are part of the big memory store and

consume dedicated ranges. If we had only named access TEX's memory layout could be

a bit leaner. In principle we could make the number of registers smaller because any

limit on the amount at some point can be an obstacle. It is for that reason that we also

have name-only variants:

\dimensiondef \MyDimenA 12pt

\integerdef \MyIntegerA 12

\gluespecdef \MyGlueA 12pt + 3pt minus 4pt

\mugluespecdef\MyMuA 12mu + 3mu minus 4mu

These are as efficient but not accessible by number but they behave like registers which

means that you (can) use \the, \advance, \multiply and \divide with them.2 In case

you wonder why there is no alternative for \toksdef, there actually are multiple: they

are called macros.

todo: expressions

1 The low level \attributedef command is rather useless in the perspective of ConTEXt.
2 There are also the slightly more efficient \advanceby, \multiplyby and \divideby that don't check for the

by keyword.



6

Units

6 Units

The LuaMetaTEX engine supports the following units. The first batch is constant with

hard coded fine tuned values. The second set is related to the current font. The last

group is kind of special, the es is a replacement for the in and has a little sister in ts.

The dk is dedicated to the master and makes a nice offset for so called TEX pages that

we use for demos.

pt 1.0 point

bp 1.00374 big point (aka postscript point)

in 72.26999 inch

cm 28.45274 centimeter

mm 2.84526 milimeter

dd 1.07 didot

cc 12.8401 cicero

pc 12.0 pica

sp 0.00002 scaled points

px 0.00002 pixel

ex 5.70947 ex height

em 11.0 em width

mu 𝟷.𝟶 math unit

ts 7.11317 tove

es 71.13177 edith

eu 71.13177 european unit

dk 6.43985 knuth

The fi[lll] unit is not really a unit but a multiplier for infinite stretch and shrink;

original TEX doesn't have the simple fi.

In addition to these we can have many more. In principle a user can define additional

ones but there's always a danger of clashing. For users we reserve the units starting

with an u. Here is how you define your own, we show three variants:

\newdimension \FooA \FooA 1.23pt

\newdimen \FooB \FooB 12.3pt

\protected\def\FooC {\the\dimexpr\FooA +\FooB\relax}

\pushoverloadmode % just in case

\newuserunit\FooA ua

\newuserunit\FooB ub

\newuserunit\FooC uc



7

Units

\popoverloadmode

And this is how they show up:

2.45999pt 24.6pt 27.06pt

with

\the\dimexpr 2 ua \relax\quad

\the\dimexpr 2 ub \relax\quad

\the\dimexpr 2 uc \relax

The following additional units are predefined (reserved). The values are in points and

some depend on the current layout and document font.

pi 3.14159 π for Mikael

ft 867.23999 foot for Alan

fs 11.0 (global body) font size

tw 483.69687 (layout) text width

th 645.88272 (layout) text height

hs 483.69687 (current) hsize

vs 645.88272 (current) vsize

cd 0.0 (when set) column distance

cw 483.69687 (when set) column width

cx 236.34843 combination cell width

uu 28.45274 user unit (MetaFun)

fw 0.0 framed width

fh 0.0 framed height

fo 0.0 framed offset

lw 0.4 line width

sh 11.51031 strut height

sd 4.47621 strut depth

st 15.98653 strut total

ch 6.99854 width of zero (css)

fa 8.35742 font ascender

fd 2.64258 font descender

fc 0.0 font cap height

Here is an example of usage:



8

Units

a b c d e f g h i j k l m n o p q r s t u v w x y z

a

b bp

c cc cd ch cm cw cx

d dd dk

e em es eu ex

f fa fc fd fh fi fo fs ft fw

g

h hs

i in

j

k

l lw

m mm mu

n

o

p pc pi pt px

q

r

s sd sh sp st

t th ts tw

u ua ub uc uu

v vs

w

x

y

z

Figure 1 A map of available units

\startcombination[nx=4,ny=1]

{\ruledhbox to 1cx{\strut one}} {1}

{\ruledhbox to 1cx{\strut two}} {2}

{\ruledhbox to 1cx{\strut three}} {3}

{\ruledhbox to 1cx{\strut four}} {4}

\stopcombination

one two three four

1 2 3 4

The uu can be set by users using the \uunit dimension variable. The default valu sis

1cm. Its current value is also known at the MetaPost end, as demonstrated in figure 2.

\startcombination[nx=2,ny=1]

\startcontent

\uunit=1cm

\framed[offset=1uu]

\bgroup

\startMPcode



9

Units

fill fullcircle scaled 3uu withcolor "darkred" ;

fill fullcircle scaled 2cm withcolor "darkgreen" ;

\stopMPcode

\egroup

\stopcontent

\startcaption

\type {\uunit = 1cm}

\stopcaption

\startcontent

\uunit=1cx

\framed[offset=.1uu]

\bgroup

\startMPcode

fill fullcircle scaled .5uu withcolor "darkblue" ;

fill fullcircle scaled 2cm withcolor "darkyellow" ;

\stopMPcode

\egroup

\stopcontent

\startcaption

\type {\uunit = 1cx}

\stopcaption

\stopcombination

There is one catch here. If you use your own uu as numeric, you might need this:

save uu ; numeric uu ; uu := 1cm ;

That is: make sure the meaning is restored afterwards and explicitly declare the vari

able. But this is good practice anyway when you generate multiple graphics using the

same MetaPost instance.



10

Units

\uunit = 1cm \uunit = 1cx

Figure 2 Shared user units in TEX and MetaFun.



11

Colofon

6 Colofon

Author Hans Hagen

ConTEXt 2023.08.16 19:31

LuaMetaTEX 211.0

Support www.pragma-ade.com

contextgarden.net


