
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

tokens

1

Introduction

Contents

1 Introduction 1

2 What are tokens 1

3 Some implementation details 5

4 Other data management 6

5 Macros 7

6 Looking at tokens 7

1 Introduction

Most users don't need to know anything about tokens but it happens that when TEXies

meet in person (users group meetings), or online (support platforms) there always seem

to pop up folks who love token speak. When you try to explain something to a user it

makes sense to talk in terms of characters but then those token speakers can jump in

and start correcting you. In the past I have been puzzled by this because, when one can

write a decent macro that does the job well, it really doesn't matter if one knows about

tokens. Of course one should never make the assumption that token speakers really

know TEX that well or can come up with better solutions than users but that is another

matter.1

That said, because in documents about TEX the word ‘token’ does pop up I will try to

give a little insight here. But for using TEX it's mostly irrelevant. The descriptions below

for sure won't match the proper token speak criteria which is why at a presentation for

the 2020 user meeting I used the title “Tokens as I see them.”

2 What are tokens

Both the words ‘node’ and ‘token’ are quite common in programming and also rather

old which is proven by the fact that they also are used in the TEX source. A node is

a storage container that is part of a linked list. When you input the characters tex

the three characters become part of the current linked list. They become ‘character’

nodes (or in LuaTEX speak ‘glyph’ nodes) with properties like the font and the character

referred to. But before that happens, the three characters in the input t, e and x, are

interpreted as in this case being just that: characters. When you enter \TeX the input

processors first sees a backslash and because that has a special meaning in TEX it will

1 Talking about fashion: it would be more impressive to talk about TEX and friends as a software stack than

calling it a distribution. Today, it's all about marketing.

2

What are tokens

read following characters and when done does a lookup in it's internal hash table to

see what it actually is: a macro that assembled the word TEX in uppercase with special

kerning and a shifted (therefore boxed) ‘E’. When you enter $ TEX will look ahead for a

second one in order to determine display math, push back the found token when there

is no match and then enter inline math mode.

A token is internally just a 32 bit number that encodes what TEX has seen. It is the

assembled token that travels through the system, get stored, interpreted and often

discarded afterwards. So, the character ‘e’ in our example gets tagged as such and

encoded in this number in a way that the intention can be derived later on.

Now, the way TEX looks at these tokens can differ. In some cases it will just look at

this (32 bit) number, for instance when checking for a specific token, which is fast, but

sometimes it needs to know some detail. The mentioned integer actually encodes a

command (opcode) and a so called char code (operand). The second name is somewhat

confusing because in many cases that code is not representing a character but that is

not that relevant here. When you look at the source code of a TEX engine it is enough

to know that a char can also be a sub command.

token = cmd chr

Back to the three characters: these become tokens where the command code indicates

that it is a letter and the char code stores what letter we have at hand and in the case of

LuaTEX and LuaMetaTEX these are Unicode values. Contrary to the traditional 8 bit TEX

engine, in the Unicode engines an utf sequence is read, but these multiple bytes still

become one number that will be encoded in the token number. In order to determine

that something is a letter the engine has to be told (which is what a macro package does

when it sets up the engine). For instance, digits are so called other characters and the

backslash is called escape. Every TEX user knows that curly braces are special and so

are dollar symbols and hashes. If this rings a bell, and you relate this to catcodes, you

can indeed assume that the command codes of these tokens have the same numbers as

the catcodes. Given that Unicode has plenty of characters slots you can imagine that

combining 16 catcode commands with all the possible Unicode values makes a large

repertoire of tokens.

There are more commands than the 16 basic characters related ones, in LuaMetaTEX

we have just over 150 command codes (LuaTEX has a few more but they are also or

ganized differently). Each of these codes can have a sub command, For instance the

primitives \vbox and \hbox are both a make_box_cmd (we use the symbolic name here)

and in LuaMetaTEX the first one has sub command code 9 (vbox_code) and the second

one has code 10 (hbox_code). There are twelve primitives that are in the same category.

3

What are tokens

The many primitives that make up the core of the engine are grouped in a way that per

mits processing similar ones with one function and also makes it possible to distinguish

between the way commands are handled, for instance with respect to expansion.

Now, before we move on it is important to know that al these codes are in fact abstract

numbers. Although it is quite likely that engines that are derived from each other have

similar numbers (just more) this is not the case for LuaMetaTEX. Because the internals

have been opened up (even more than in LuaTEX) the command and char codes have

been reorganized in a such a way that exposure is consistent. We could not use some

of the reuse and remap tricks that the other engines use because it would simply be

too confusing (and demand real in depth knowledge of the internals). This is also the

reason why development took some time. You probably won't notice it from the current

source but it was a very stepwise process. We not only had to make sure that all kept

working (ConTEXt LMTX and LuaMetaTEX were pretty useable during the process), but

also had to (re)consider intermediate choices.

So, input is converted into tokens, in most cases one-by-one. When a token is assem

bled, it either gets stored (deliberately or as part of some look ahead scanning), or it

immediately gets (what is called:) expanded. Depending on what the command is, some

action is triggered. For instance, a character gets appended to the node list immedi

ately. An \hbox command will start assembling a box which its own node list that then

gets some treatment: if this primitive was a follow up on \setbox it will get stored,

otherwise it might end up in the current node list as so called hlist node. Commands

that relate to registers have 0xFFFF char codes because that is how many registers we

have per category.

When a token gets stored for later processing it becomes part of a larger data structure,

a so called memory word. These memory words are taken from a large pool of words

and they store a token and additional properties. The info field contains the token value,

the mentioned command and char. When there is no linked list, the link can actually be

used to store a value, something that in LuaMetaTEX we actually do.

1 info link

2 info link

3 info link

n info link

When for instance we say \toks 0 {tex} the scanner sees an escape, followed by 4 let

ters (toks) and the escape triggers a lookup of the primitive (or macro or . . .) with that

name, in this case a primitive assignment command. The found primitive (its property

gets stored in the token) triggers scanning for a number and when that is successful

4

What are tokens

scanning of a brace delimited token list starts. The three characters become three let

ter tokens and these are a linked list of the mentioned memory words. This list then

gets stored in token register zero. The input sequence \the\toks 0 will push back a

copy of this list into the input.

In addition to the token memory pool, there is also a table of equivalents. That one is

part of a larger table of memory words where TEX stores all it needs to store. The 16

groups of character commands are virtual, storing these makes no sense, so the first

real entries are all these registers (count, dimension, skip, box, etc). The rest is taken

up by possible hash entries.

main hash null control sequence

128K hash entries

frozen control sequences

special sequences (undefined)

registers 17 internal & 64K user glues

4 internal & 64K user mu glues

12 internal & 64K user tokens

2 internal & 64K user boxes

116 internal & 64K user integers

0 internal & 64K user attribute

22 internal & 64K user dimensions

specifications 5 internal & 0 user

extra hash additional entries (grows dynamic)

So, a letter token t is just that, a token. A token referring to a register is again just a

number, but its char code points to a slot in the equivalents table. A macro, which we

haven't discussed yet, is actually just a token list. When a name lookup happens the

hash table is consulted and that one runs in parallel to part of the table of equivalents.

When there is a match, the corresponding entry in the equivalents table points to a

token list.

5

Some implementation details

1 string index equivalents or (next > n) index

2 string index equivalents or (next > n) index

n string index equivalents or (next > n) index

n + 1 string index equivalents or (next > n) index

n + 2 string index equivalents or (next > n) index

n + m string index equivalents or (next > n) index

It sounds complex and it actually also is somewhat complex. It is not made easier by

the fact that we also track information related to grouping (saving and restoring), need

reference counts for copies of macros and token lists, sometimes store information di

rectly instead of via links to token lists, etc. And again one cannot compare LuaMetaTEX

with the other engines. Because we did away with some of the limitations of the tradi

tional engine we not only could save some memory but in the end also simplify matters

(we're 32/64 bit after all). On the one hand some traditional speedups were removed

but these have been compensated by improvements elsewhere, so overall processing is

more efficient.

1 level type flag value

2 level type flag value

3 level type flag value

n level type flag value

So, here LuaMetaTEX differs from other engines because it combines two tables, which

is possible because we have at least 32 bits. There are at most 0xFFFF levels but we need

at most 0xFF types. in LuaMetaTEX macros can have extra properties (flags) and these

also need one byte. Contrary to the other engines, \protected macros are native and

have their own command code, but \tolerant macros duplicate that (so we have four

distinct macro commands). All other properties, like the \permanent ones are stored in

the flags.

Because a macro starts with a reference count we have some room in the info field

to store information about it having arguments or not. It is these details that make

LuaMetaTEX a bit more efficient in terms of memory usage and performance than its

ancestor LuaTEX. But as with the other changes, it was a very stepwise process in order

to keep the system compatible and working.

3 Some implementation details

Sometimes there is a special head token at the start. This makes for easier appending

of extra tokens. In traditional TEX node lists are forward linked, in LuaTEX they are

6

Other data management

double linked2. Token lists are always forward linked. Shared token lists use the head

node for a reference count.

For various reasons original TEX uses global variables temporary lists. This is for in

stance needed when we expand (nested) and need to report issues. But in LuaTEX we

often just serialize lists and using local variables makes more sense. One of the first

things done in LuaMetaTEX was to group all global variables in (still global) structures

but well isolated. That also made it possible to actually get rid of some globals.

Because TEX had to run on machines that we nowadays consider rather limited, it had

to be sparse and efficient. There are quite some optimizations to limit code and memory

consumption. The engine also does its own memory management. Freed token memory

words are collected in a cache and reused but they can get scattered which is not that

bad, apart from maybe cache hits. In LuaMetaTEX we stay as close to original TEX

as possible but there have been some improvements. The Lua interfaces force us to

occasionally divert from the original, and that in fact might lead to some retrofit but the

original documentation still mostly applies. However, keep in mind that in LuaTEX we

store much more in nodes (each has a prev pointer and an attribute list pointer and for

instance glyph nodes have some 20 extra fields compared to traditional TEX character

nodes).

4 Other data management

There is plenty going on in TEX when it processes your input, just to mention a few:

• Grouping is handled by a nesting stack.

• Nested conditionals (\if...) have their own stack.

• The values before assignments are saved on the save stack.

• Also other local changes (housekeeping) ends up in the save stack.

• Token lists and macro aliases have references pointers (reuse).

• Attributes, being linked node lists, have their own management.

In all these subsystems tokens or references to tokens can play a role. Reading a single

character from the input can trigger a lot of action. A curly brace tagged as begin

group command will push the grouping level and from then on registers and some other

quantities that are changed will be stored on the save stack so that after the group ends

they can be restored. When primitives take keywords, and no match happens, tokens

are pushed back into the input which introduces a new input level (also some stack).

2 On the agenda of LuaMetaTEX is to use this property in the underlying code, that doesn't yet profit from

this and therefore keep previous pointers in store.

7

Macros

When numbers are read a token that represents no digit is pushed back too and macro

packages use numbers and dimensions a lot. It is a surprise that TEX is so fast.

5 Macros

There is a distinction between primitives, the build in commands, and macros, the com

mands defined by users. A primitive relates to a command code and char code but

macros are, unless they are made an alias to something else, like a \countdef or \let

does, basically pointers to a token list. There is some additional data stored that makes

it possible to parse and grab arguments.

When we have a control sequence (macro) \controlsequence the name is looked up in

the hash table. When found its value will point to the table of equivalents. Asmentioned,

that table keeps track of the cmd and points to a token list (the meaning). We saw that

this table also stores the current level of grouping and flags.

If we say, in the input, \hbox to 10pt {x\hss}, the box is assembled as we go and when

it is appended to the current node list there are no tokens left. When scanning this, the

engine literally sees a backslash and the four letters hbox. However when we have this:

\def\MyMacro{\hbox to 10pt {x\hss}}

the \hbox has become one memory word which has a token representing the \hbox

primitive plus a link to the next token. The space after a control sequence is gobbled so

the next two tokens, again stored in a linked memory word, are letter tokens, followed

by two other and two letter tokens for the dimensions. Then we have a space, a brace,

a letter, a primitive and a brace. The about 20 characters in the input became a dozen

memory words each two times four bytes, so in terms of memory usage we end up with

quite a bit more. However, when TEX runs over that list it only has to interpret the

token values because the scanning and conversion already happened. So, the space

that a macro takes is more than compensated by efficient reprocessing.

6 Looking at tokens

When you say \tracingall you will see what the engine does: read input, expand

primitives and macros, typesetting etc. You might need to set \tracingonline to get

a bit more output on the console. One way to look at macros is to use the \meaning

command, so if we have:

\permanent\protected\def\MyMacro#1#2{Do #1 or #2!}

we can say this:

8

Looking at tokens

\meaning \MyMacro

\meaningless\MyMacro

\meaningfull\MyMacro

and get:

protected macro:#1#2->Do #1 or #2!

#1#2->Do #1 or #2!

permanent protected macro:#1#2->Do #1 or #2!

You get less when you ask for themeaning of a primitive, just its name. The \meaningfull

primitive gives the most information. In LuaMetaTEX protected macros are first class

commands: they have their own command code. In the other engines they are just

regular macros with an initial token indicating that they are protected. There are spe

cific command codes for \outer and \long macros but we dropped that in LuaMeta

TEX. Instead we have \tolerant macros but that's another story. The flags that were

mentioned can mark macros in a way that permits overload protection as well as some

special treatment in otherwise tricky cases (like alignments). The overload related flags

permits a rather granular way to prevent users from redefining macros and such. They

are set via prefixes, and add to that repertoire: we have 14 prefixes but only some eight

deal with flags (we can add more if really needed). The probably most wel known prefix

is \global and that one will not become a flag: it has immediate effect.

For the above definition, the \showluatokens command will show a meaning on the

console.

\showluatokens\MyMacro

This gives the next list, where the first column is the address of the token, the second

one the command code, and the third one the char code. When there are arguments

involved, the list of what needs to get matched is shown.

permanent protected control sequence: MyMacro

501263 19 49 match argument 1

501087 19 50 match argument 2

385528 20 0 end match

501090 11 68 letter D (U+00044)

30833 11 111 letter o (U+0006F)

500776 10 32 spacer

385540 21 1 parameter reference

112057 10 32 spacer

9

Looking at tokens

431886 11 111 letter o (U+0006F)

30830 11 114 letter r (U+00072)

30805 10 32 spacer

500787 21 2 parameter reference

213412 12 33 other char ! (U+00021)

In the next subsections I will give some examples. This time we use helper defined in a

module:

\usemodule[system-tokens]

6.1 Example 1: in the input

\luatokentable{1 \bf{2} 3\what {!}}

given token list:

543282 12 49 other char 1 U+00031

32650 10 32 spacer

538531 138 0 protected call bf

32747 1 123 left brace

543108 12 50 other char 2 U+00032

203842 2 125 right brace

542992 10 32 spacer

543165 12 51 other char 3 U+00033

158531 125 0 undefined cs what

542910 1 123 left brace

540378 12 33 other char ! U+00021

540484 2 125 right brace

6.2 Example 2: in the input

\luatokentable{a \the\scratchcounter b \the\parindent \hbox to 10pt{x}}

given token list:

540332 11 97 letter a U+00061

543406 10 32 spacer

542953 135 0 the the

542736 108 123 integer scratchcounter

543123 11 98 letter b U+00062

539153 10 32 spacer

542853 135 0 the the

540401 90 0 internal dimen parindent

543045 30 14 make box hbox

542965 11 116 letter t U+00074

543341 11 111 letter o U+0006F

32716 10 32 spacer

10

Looking at tokens

539282 12 49 other char 1 U+00031

540389 12 48 other char 0 U+00030

32727 11 112 letter p U+00070

226978 11 116 letter t U+00074

211396 1 123 left brace

543301 11 120 letter x U+00078

542868 2 125 right brace

6.3 Example 3: user registers

\scratchtoks{foo \framed{\red 123}456}

\luatokentable\scratchtoks

token register: scratchtoks

560486 11 102 letter f U+00066

542767 11 111 letter o U+0006F

543352 11 111 letter o U+0006F

543224 10 32 spacer

542766 141 0 tolerant protected call framed

32667 1 123 left brace

32668 138 0 protected call red

543054 12 49 other char 1 U+00031

540445 12 50 other char 2 U+00032

211381 12 51 other char 3 U+00033

539352 2 125 right brace

543376 12 52 other char 4 U+00034

543280 12 53 other char 5 U+00035

542745 12 54 other char 6 U+00036

6.4 Example 4: internal variables

\luatokentable\everypar

internal token variable: everypar

540495 138 0 protected call dotagsetparcounter

540346 138 0 protected call page_otr_command_synchronize_side_floats

542916 138 0 protected call checkindentation

119138 137 0 call showparagraphnumber

179407 138 0 protected call restoreinterlinepenalty

543226 137 0 call flushnotes

543231 138 0 protected call registerparoptions

172030 137 0 call flushpostponednodedata

211385 137 0 call typo_delimited_repeat

226971 137 0 call spac_paragraphs_flush_intro

540503 137 0 call typo_initial_handle

542814 137 0 call typo_firstline_handle

11

Looking at tokens

211377 137 0 call spac_paragraph_wrap

540417 138 0 protected call spac_paragraph_freeze

6.5 Example 5: macro definitions

\protected\def\whatever#1[#2](#3)\relax

{oeps #1 and #2 & #3 done ## error}

\luatokentable\whatever

protected control sequence: whatever

32749 19 49 match argument 1

211416 12 91 other char [U+0005B

542821 19 50 match argument 2

542781 12 93 other char] U+0005D

543216 12 40 other char (U+00028

543190 19 51 match argument 3

543402 12 41 other char) U+00029

542699 16 0 relax relax

538403 20 0 end match

542648 11 111 letter o U+0006F

543106 11 101 letter e U+00065

539332 11 112 letter p U+00070

540379 11 115 letter s U+00073

543167 10 32 spacer

539340 21 1 parameter reference

543189 10 32 spacer

32674 11 97 letter a U+00061

32714 11 110 letter n U+0006E

32750 11 100 letter d U+00064

87878 10 32 spacer

540473 21 2 parameter reference

543117 10 32 spacer

542966 12 38 other char & U+00026

543124 10 32 spacer

542717 21 3 parameter reference

542661 10 32 spacer

540293 11 100 letter d U+00064

158532 11 111 letter o U+0006F

543040 11 110 letter n U+0006E

542982 11 101 letter e U+00065

543459 10 32 spacer

543056 6 35 parameter

543111 10 32 spacer

32729 11 101 letter e U+00065

261633 11 114 letter r U+00072

542634 11 114 letter r U+00072

543178 11 111 letter o U+0006F

539356 11 114 letter r U+00072

12

Looking at tokens

6.6 Example 6: commands

\luatokentable\startitemize

\luatokentable\stopitemize

frozen instance protected control sequence: startitemize

543121 141 0 tolerant protected call startitemgroup

543295 12 91 other char [U+0005B

539174 11 105 letter i U+00069

540462 11 116 letter t U+00074

543105 11 101 letter e U+00065

32700 11 109 letter m U+0006D

542619 11 105 letter i U+00069

540372 11 122 letter z U+0007A

542825 11 101 letter e U+00065

543156 12 93 other char] U+0005D

frozen instance protected control sequence: stopitemize

543125 138 0 protected call stopitemgroup

6.7 Example 7: commands

\luatokentable\doifelse

permanent protected control sequence: doifelse

540525 19 49 match argument 1

542700 19 50 match argument 2

540274 20 0 end match

543183 132 26 if test iftok

542605 1 123 left brace

540377 21 1 parameter reference

540211 2 125 right brace

538562 1 123 left brace

543390 21 2 parameter reference

385132 2 125 right brace

32680 126 0 expand after expandafter

543407 137 0 call firstoftwoarguments

543148 132 3 if test else

32701 126 0 expand after expandafter

542822 137 0 call secondoftwoarguments

539266 132 2 if test fi

6.8 Example 8: nothing

\luatokentable\relax

13

Looking at tokens

primitive control sequence: relax

543458 16 0 relax relax

6.9 Example 9: hashes

\edef\foo#1#2{(#1)(\letterhash)(#2)} \luatokentable\foo

control sequence: foo

540529 19 49 match argument 1

539173 19 50 match argument 2

32736 20 0 end match

543323 12 40 other char (U+00028

540545 21 1 parameter reference

540555 12 41 other char) U+00029

542762 12 40 other char (U+00028

543289 12 35 other char # U+00023

543322 12 41 other char) U+00029

542564 12 40 other char (U+00028

542956 21 2 parameter reference

543096 12 41 other char) U+00029

6.10 Example 10: nesting

\def\foo#1{\def\foo##1{(#1)(##1)}} \luatokentable\foo

control sequence: foo

540563 19 49 match argument 1

539374 20 0 end match

542769 121 1 def def

539298 137 0 call foo

540195 6 35 parameter

539296 12 49 other char 1 U+00031

539337 1 123 left brace

543452 12 40 other char (U+00028

540276 21 1 parameter reference

543011 12 41 other char) U+00029

539421 12 40 other char (U+00028

538526 6 35 parameter

32720 12 49 other char 1 U+00031

539215 12 41 other char) U+00029

544591 2 125 right brace

14

Colofon

6.11 Remark

In all these examples the numbers are to be seen as abstractions. Some command codes

and sub command codes might change as the engine evolves. This is why the Lua

MetaTEX engine has lots of Lua functions that provide information about what number

represents what command.

6.11 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net

