Mathematics in ConT_EXt

Hans Hagen & Mikael P. Sundqvist Version: February 28, 2025

Contents

Con	tents	3
Intro	oduction	7
1	Getting started	11
1.1	Two types of formulas	11
1.2	Some simple examples	12
1.3	A small note, with source	15
1.4	A bit more into the details	21
2	Building blocks	23
2.1	Alphabets and styles	23
2.2	Non-alphabetic symbols	25
2.3	Bold math	25
2.4	Mathematical expressions and functions	25
2.5	Fences	29
2.6	Sub- and superscripts	33
2.7	Tensors, multilevel sub- and superscripts	34
2.8	Prime time	36
2.9	Accents/embellishments	37
2.10	Stackers and annotations	40
2.11	Big operators	46
2.12	Radicals	48
2.13	Fractions	50
2.14	Matrices	56
2.15	Factorials	62
2.16	Punctuation	63
2.17	Text	65
3	Keywords	67
3.1	Introduction	67
3.2	Accents	67
3.3	Alignments	69
3.4	Cases	75
3.5	Fences	78

3.6	Formulas	82
3.7	Fractions	90
3.8	Functions	95
3.9	Mathematics	96
3.10	Matrices	100
3.11	Operators	105
3.12	Radicals	106
3.13	Simple alignments	109
3.14	Stackers	113
4	Inline math	119
4.1	Introduction	119
4.2	Breaking paragraphs into lines	119
4.3	What do others say on the breaking of inline formulas?	123
4.4	Tall mathematics in paragraphs	124
4.5	Slashing fractions	125
5	Displayed math	129
5.1	Introduction	129
5.2	Different types of displayed formulas	129
5.3	Simple formulas	129
5.4	Chain formulas	131
5.5	Multiple formulas	133
5.6	Alignments	136
6	Equation labels	139
6.1	Introduction	139
6.2	Numbering a simple formula	139
6.3	One formula running over several lines	139
6.4	Several equations on several lines	140
6.5	Sub-equations	142
6.6	Configuring equation numbers	143
6.7	Troubleshooting	145
7	Enunciations	149
7.1	Introduction	149
7.2	AMS styled theorems, step by step	149
7.3	More AMS styled enunciations	152
7.4	Chicago-styled enunciations	155
7.5	Comments	156

CONTENTS

8	Illustrations	157
8.1	Introduction	157
8.2	Function graphs	157
8.3	Geometry	159
8.4	Diagrams	160
9	Math fonts	165
9.1	Selecting a font	165
9.2	antykwa	167
9.3	antykwa-light	168
9.4	antykwa-cond	169
9.5	bonum	170
9.6	cambria	171
9.7	concrete	172
9.8	dejavu	173
9.9	ebgaramond	174
9.10	erewhon	175
9.11	iwona	176
9.12	iwona-light	177
9.13	koeieletters	178
9.14	kpfonts	179
9.15	kurier	180
9.16	kurier-light	181
9.17	' libertinus	182
9.18	lucida	183
9.19	modern	184
9.20	pagella	185
9.21	schola	186
9.22	stixtwo	187
9.23	5 termes	188
9.24	xcharter	189
10	Meaningful math	191
10.1	Introduction	191
10.2	Accessibility, tagging	191
10.3	Dictionaries	192
10.4	Formulas converted into text	193
10.5	Some difficulties and comments	194
10.6	A few more examples	195
10.7	' A longer example, revisited	197

5

CONTENTS

Inde	x	289
Bibl	iography	287
13.6	Not really math	285
13.5	Building blocks	274
13.4	Subformulas	273
13.3	Inside displayed formulas	272
13.2	Displayed formulas	270
13.1	Mathematics	269
13	Setups	269
12.13	3 Miscellaneous Technical	265
	2 Letterlike Symbols	264
12.1	l Mathematical Alphanumeric Symbols	235
12.10) Supplemental Arrows-B	230
12.9	Supplemental Arrows-A	230
12.8	Miscellaneous Symbols and Arrows	228
12.7	Supplemental Mathematical Operators	222
12.6	Miscellaneous Mathematical Symbols-B	219
12.5	Miscellaneous Mathematical Symbols-A	218
12.4	Mathematical operators	210
12.3	Latin-1 Supplement block	210
12.2	Basic latin block	209
12.1	Introduction	209
12	Unicode symbols	209
11.6	Frames and decorations of formulas	206
11.5	Polynomial long division	204
11.4	Systems of equations	203
11.3	Manipulating matrices	201
11.2	Defining math commands	201
11.1	Introduction	201
11	Miscellaneous	201

Introduction

This document

We discuss how to typeset mathematics with the ConT_EXt (lmtx) typesetting system. Our main purpose is to provide general advice and assistance to ConT_EXt users seeking to create beautiful, structured, and consistent documents with mathematical content (with these three criteria being interdependent). Although the focus will be on ConT_EXt, we will also sometimes explore mathematical typesetting in a broader sense that applies to other systems.

The document contains material suitable both for beginners and for experts; our aim is that it shall cover all aspects of mathematical typesetting with ConT_EXt. The beginner will hopefully not be overwhelmed by all the possible setups and tweaks that we show and discuss. We hope and believe that the default settings work well for most users. At the same time, we dare to claim that ConT_EXt is the most advanced and capable system for typesetting mathematics today, in particular when it comes to Opentype mathematics. This does not mean that it is difficult to typeset mathematics in ConT_EXt.

In Autumn 2021 we began to discuss mathematical typesetting in ConT_EXt, starting on the ConT_EXt mailing list. Given that ConT_EXt is a modern system built upon Donald Knuth's classical typesetting system T_EX, its mathematical typesetting capabilities were by that time already quite good. Mikael had previously used ConT_EXt (mkii) to typeset his doctoral thesis in mathematics in 2008 and had coauthored a math book (first edition published in 2019) using ConT_EXt (mkiv).

However, the situation was not optimal. ConTEXt was by default running on the LuaTEX engine, although the newer luametaTEX engine was also becoming available and mature. Additionally, several Opentype Unicode math fonts had been created. One problem was that the Opentype standard (or lack thereof) meant that formulas could appear quite different depending on the font and engine being used. To illustrate this, we consider the formula

$$\int_{a}^{b} f'(x) \, dx = [f(x)]_{a}^{b}$$

This formula was typeset with TEXGyre Bonum Math without any adjustments. Note that the bracket and the *f* are overlapping, the lower limit of the integral is not positioned correctly (we do not even try to place them correctly, but only raise and lower them according to the font parameters), and the integral sign appears too small (in traditional math fonts there were two sizes of the integral sign, in Opentype math fonts, there can be many, and therefore we just select the base glyph here). Although these weren't the exact issues we encountered (it's difficult to recall after all the changes, but it probably had to do with integrals or primes), the main problem was that adjusting one parameter to improve the appearance of one font often led to issues with another. It took us some time to address these discrepancies and inaccuracies, but we ultimately resolved them, sometimes by extending the luametaTEX engine, sometimes by working at the Lua and TEX end, combined with font-specific setups in "goodie files". If we load the one for TEXGyre Bonum Math, the previous formula is set as

$$\int_{a}^{b} f'(x) \, dx = [f(x)]_{a}^{b}$$

Much better, indeed. The font issues were not the only problem, though. At that point, the math community had not widely adopted ConTEXt, and while there were many excellent examples of usage available, they were often somewhat concealed within the source (one exception was Aditya Mahajan's excellent manual [Mah99] on math alignments). This document shall fill in those gaps, and we hope that it will be useful as a rather complete math guide for all ConTEXt users.

When it comes to the advice on how to set mathematics, we claim no or little originality. Our main inspiration has been the old book [Lan61]. It was written as a typesetting guide for the Swedish publisher *Almqvist & Wiksell*, mainly for their mathematical publications, and particularly for the renowned journal *Acta Mathematica*. What sets this book apart is its explanation of the *why* behind the rules for consistent typesetting, rather than just the *how*. Some of the rules in that book are however outdated; one reason is that we now work digitally rather than with Monotype machines. You can find a lot in the literature about the typesetting of math, in particular in TEX. We mention [CBB54; DH21; Hag16; Hag18; LS17; Mad11; Swa99], but the reader should also look in TUGBoat, MAPS and other places.

Writing and typesetting mathematics

Written mathematics can be very dense and it often contains symbols from different alphabets, set in different styles. Some symbols are raised or lowered. As a result, reading a mathematical text is challenging and time-consuming, and it is therefore important for the writer to make the suffer of the reader as small as possible. If we jump into the middle of a novel, we might be confused, but if we do it with a mathematical text, it might be completely incomprehensible, in particular if we are not acquainted with the notation. Consider the following paragraph, borrowed from Andrew Wiles' famous article where he among other things proves Fermat's last theorem [Wil95].

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to O_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to O_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

The paragraph by Wiles above is not at all poorly written; it just happens to contain many formulas, use a rich set of symbols from various alphabets, and it is aimed at experts in the field. Taken out of its context, it is also difficult to read since we do not know the meaning of the different symbols (the authors of this document do not claim to understand the very advanced mathematics in Wiles' famous paper at all). Even if this document is about typesetting mathematics, perhaps the best advice we can give the writer is to use less math, or at least to think twice before introducing new notation, and not to complicate notation without a good reason.

When typesetting mathematics it is also very important that the spacing around symbols comes out right. Luckily this is something that T_EX usually handles perfectly well. Take a look at the following formula:

$$(\oplus_{\alpha=1}^{\ell}\mathfrak{q}_{\alpha},\mathfrak{p}_{s}) \in C^{*}_{\max}(\Gamma,G)^{+} \cong [C_{0}(\mathbb{R}^{7}) \otimes C_{\iota_{*}}]^{+}.$$

Thanks to the spacing and parentheses we readily recognize two verbs, \in and \cong ; the formula has the main structure

Thus, it says that the object $(\bigoplus_{\alpha=1}^{\ell} \mathfrak{q}_{\alpha}, \mathfrak{p}_{s})$ (whatever that is) belongs to $C_{\max}^{*}(\Gamma, G)^{+}$, which in turn is isomorphic (small questionmark here since we do not know how the symbol \cong is used) to $[C_{0}(\mathbb{R}^{7}) \otimes C_{t_{s}}]^{+}$. One reason that our eyes fell on those two symbols is that the spacing around them is slightly bigger than around the other symbols. If we take a new look at the same formula, but with these spaces removed,

$$(\oplus_{\alpha=1}^{\ell}\mathfrak{q}_{\alpha},\mathfrak{p}_{s})\in C_{\max}^{*}(\Gamma,G)^{+}\cong [C_{0}(\mathbb{R}^{7})\otimes C_{\iota_{s}}]^{+},$$

it is clearly much more difficult to get the structure of the formula. These spaces in formulas are indeed very important. T_EX has classically divided the different symbols in a few atom classes, with spaces between them configured in a way that looks good. One of the new things in the luameta T_EX engine is the possibility to define new classes and to set up the spacing between classes in a more flexible way. Even if there is a lot going on "behind the scene" this will likely go unnoticed to most users, since the default setup is hopefully well working. There will be a minimal amount of manual tweaking with spaces needed (if you find yourself doing lots of manual tweaks, you should suspect that there is a better way of doing what you are doing). At the same time, users have the opportunity to make very different setups, if needed.

Even though this document is about typesetting mathematics and there will be lots of formulas, and suggestions how to typeset them, we would like to stress a bit on the importance of the writing. Use complete sentences. Do not use unnecessarily complex notation, and not more notation than you really need. Do not overuse (displayed) formulas; it is often possible, and helps the reader, if you write a few extra words instead. The following quote from [Knu99] is good to have in mind:

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

A few notes about this document

This document is rather complex, with lots of code snippets and formulas. Almost all examples are done by adding the example code inside \startbuffer and \stopbuffer, and then showing the code with \typebuffer and the result with \getbuffer. Sometimes we have needed to add grouping and some local setup around the examples.

We have kept manual page break optimization at a minimum. This is for several reasons. One of them is that we consider this as a living, unfinished, document. Another is that we generate a screen and a print version from the same source (you are now reading the paper version). Still, we use some of the available mechanisms to obtain as good breaks as possible, such as club and widow penalties, also for code blocks. We flush the pages to the bottom of the text block, but limit the stretch in order to prohibit the stretch from becoming too large on problematic pages. We use a penalty of 5000 before displayed formulas since we prefer that they do not end up at the top of pages.

When it comes to the breaking of paragraphs, we use multiple (four) paragraph passes, where we enable and gradually increase the possible amount of expansion. This is mainly in order to avoid overful lines. We did not optimize line breaks manually. What you see here is essentially what we can do automatically.

Acknowledgements

We would like to thank all the ConT_EXt users who have shared helpful suggestions and thoughts. We in particular thank Wolfgang Schuster for carefully updating the setup files and noticing inconsistencies. We are also thankful to Ton Otten for his careful five times reading and his valuable comments. He also pushed a print version for the ConT_EXt meeting in 2024.

Mikael would also like to thank the nice T_EXies at the T_EX Stack Exchange chat, as well as his colleagues, for valuable input and discussions.

Errors, misprints and questions

We hope that this document will serve the ConT_EXt community well. It surely contains some errors and misprints, and even if we have tried to cover everything in ConT_EXt that could be useful for people writing mathematics, we likely have missed a few things. Please write to us (mickep@gmail.com and j.hagen@xs4all.nl) if you find something that is wrong or that can be explained better, or if you miss something. Questions and discussions that could interest more people can better go to the ConT_EXt mailing list.

1 Getting started

1.1 Two types of formulas

Formulas can either be typeset *inline* as $a^2 + b^2 = c^2$ or *displayed*, as

 $a^2 + b^2 = c^2.$

Traditionally in T_EX single dollars have been used to step into inline math mode, while double dollars enter displayed formulas. In ConT_EXt it is still possible to use single dollars to enter inline math mode, but we suggest instead to use the dedicated macros. One advantage of that is the possibility to add optional settings. The inline formulas can, partly for historical reasons, be entered in several different ways. We can

- Use the macro \im, as in \im{a^2 + b^2 = c^2}. This macro is a bit primitive, like the dollars, and no optional arguments are allowed. It is also accompanied with the \dm macro, that is a quick way to enter inline math, but in display style.
- Use the macro m, as in $m\{a^2 + b^2 = c^2\}$. This macro can be configured and a few optional arguments are allowed. For example, with $m[color=C:3]\{a^2 + b^2 = c^2\}$ we get a colored formula $a^2 + b^2 = c^2$. In fact, m is only a short cut for the slightly longer math and mathematics. Historically there were differences between these, but now they are the same.
- (Not recommended) Use the traditional way and enclose the formula in a pair of dollar signs, as in \$a^2 + b^2 = c^2\$.

Inline formulas are generally brief and should not take up too much vertical space in order to prevent excessive interline spacing; they are not labeled. We will discuss inline formulas to a larger extent in Chapter 4. In particular we will discuss line breaking and how to avoid line spreading due to "tall" formulas.

Displayed formulas are typeset separately from the surrounding text. Typically, they contain more complex formulas or those that are intended to be emphasized. If necessary, they may be labeled in the margin, as in the following example:

$$C_{\alpha}(x) = \left\{ \prod_{i=1}^{k} T_{\alpha_{i}}^{n_{i}} x \mid \alpha_{i} = \alpha, \ k = 1, 2, \dots; \ n_{i} = 0, \pm 1, \pm 2, \dots \right\}.$$
(1.1)

The pairs \startformula and \stopformula give displayed formulas. The double dollars are not supported. The displayed formulas are by default centered horizontally, but it is possible to set them up, in particular to configure both the horizontal and vertical placement, and alignment.

We will discuss displayed math in detail in Chapter 5 and Section 3.6, and the numbering of equations in Chapter 6. Let us sum up with a small example snippet that contains both inline and displayed formulas.

```
The Pythagorean theorem: In a right triangle with legs m{a} and m{b} and python m{c},
```

```
\startformula
    a^2 + b^2 = c^2.
\stopformula
```

There are many proofs of this equality.

This is the way we will show code snippets in this document. Usually we will then show the result of the code directly below. Here comes the result:

The Pythagorean theorem: In a right triangle with legs *a* and *b* and hypotenuse *c*,

 $a^2 + b^2 = c^2.$

There are many proofs of this equality.

1.2 Some simple examples

Now we know how to enter math mode. To better understand how to input mathematical content, before going into more detail, we look next at some simple examples, gathered from various sources. Below each example, we give a few comments. More detailed information will be provided later, in particular in Chapter 2 when it comes to different constructions. In Chapter 12 we list the many Unicode symbols available, including the macros pointing to them.

$$\sin x = x \prod_{n=1}^{+\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right)$$

The fraction is set with \frac. The command takes two arguments, the first for the numerator and the second for the denominator. The \left and \right commands in front of the parentheses are used to automatically size them to fit the expression inside, ensuring that they are large enough to be easily readable.

```
\startformula
f(\sigma_{ij}, \mathbf{F}) = F_{ij} \sigma_i \sigma_j = \bar{\sigma}^2
\stopformula
```

$$f(\sigma_{ij}, \mathbf{F}) = F_{ij}\sigma_i\sigma_j = \bar{\sigma}^2$$

To obtain bold letters, we use the \mathbf command, such as in the example **F**. Greek letters can be typeset using specific macros corresponding to their names. However, it is also possible to directly use the Unicode representation of a Greek letter, as shown with the last character, σ . The \bar command can be used to place a small macron accent (a bar) over its argument. If a wider bar accent is needed, the \widebar command can be used instead. But do read the section on accents before using that bar for complex conjugates.

```
\startformula
  \fenced[bar]{\mu(B) - \nu(B)}
  \leq
  C \fenced[bar][size=big]{\inf_E U^{\mu}}^{\frac{1}{2}}
\stopformula
```

$$|\mu(B) - \nu(B)| \le C |\inf_{E} U^{\mu}|^{\frac{1}{2}}$$

Note that the command \inf produces "inf" in roman letters, with some space added before the *U*. The subscript is positioned below the word "inf". We discuss more constructions like this in Section 2.4, where we will also see how to define our own. Absolute values are typeset using the \fenced command with the option bar. Alternatively, we can use the construction with \left and \right. We discuss delimiters in more detail, including how to define our own, in Section 2.5.

\startformula

```
T_m(f,g)(x) = \inf_{\reals^4} m(xi, \eta) \hat{f}(xi) \hat{g}(\eta) e^{2\pi i x(xi + \eta)} \d \xi \d \eta
```

\stopformula

$$T_m(f,g)(x) = \int_{\mathbb{R}^4} m(\xi,\eta) \,\hat{f}(\xi) \,\hat{g}(\eta) e^{2\pi i x (\xi+\eta)} \,d\xi \,d\eta$$

The \hat places a hat accent on top of its argument. However, it is designed to work best with single characters. For instance, using \hat {fg} to typeset \hat{fg} is not recommended. In such cases, it is better to use the \widehat command, as in \hat{fg} , or construct an appropriate accent with a construction like fourier, such as $(fg)^{\widehat{}}$. More information on accents can be found in Section 2.9.

In the example, note the use of \dd to typeset the differential symbol with suitable spacing around the *d*. As we will see later, we can set it up to be upright instead of italic. Also, \reals is used to indicate the set of real numbers. To obtain other blackboard bold characters, use \mathbb.

```
\startformula
    \pi_1\colon U(\mathfrak{osp}(2p|2q))\to A_{p|q}^{+}
\stopformula
```

$$\pi_1: U(\mathfrak{osp}(2p|2q)) \to A^+_{p|q}$$

The letters osp are written in fraktur style, achieved with the command $\mathsf{mathfrak}\{osp\}$. Additionally, note the difference between using colon and a regular colon in formulas. For example, using $\mathsf{pi_1}\subset\mathsf{olon} U$ yields the output $\pi_1: U$, while using $\mathsf{pi_1}:U$ yields the output $\pi_1: U$.

```
\startformula
  \mathbb{E}_{s\in S} \sum_{i = 1}^r
  g_i(s_1) g_i(s_2) \ldots g_i(s_k) \geq 2^{-(k + 1)} \beta
\stopformula
```

$$\mathbb{E}_{s \in S} \sum_{i=1}^{r} g_i(s_1) g_i(s_2) \dots g_i(s_k) \ge 2^{-(k+1)} \beta$$

The \ldots command indicates that some terms are omitted in the product. Nowadays, it is common to use \cdots instead of \ldots, as in $g_i(s_1) g_i(s_2) \cdots g_i(s_k)$.

\startformula
 \frac{\partial f}{\partial t} + v \scalarproduct \gradient_x f
 = Q(f,f)
 \stopformula

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = Q(f, f)$$

We can use \partial to obtain the stylized ∂ symbol for partial derivatives and \gradient to obtain the gradient symbol ∇ . The centered dot, created by \scalarproduct, is frequently used to indicate a scalar product. It can also be typeset with \cdot.

```
\definemathfunction[Aut]
```

```
\startformula
  \integers_2
  \cong
  \Aut(\complexes) \subseteq \Aut(t_2)
  \cong
  \fenced
   [brace]
   [middle=`|]
   {(g_1,g_2,g_3) \in U(1)^3 \fence g_1g_2g_3=1}
   \times \integers_2
  \stopformula
```

 $\mathbb{Z}_2 \cong \operatorname{Aut}(\mathbb{C}) \subseteq \operatorname{Aut}(t_2) \cong \left\{ (g_1, g_2, g_3) \in U(1)^3 \, \middle| \, g_1 g_2 g_3 = 1 \right\} \times \mathbb{Z}_2$

The \Aut macro is not predefined in ConTEXt, but we defined it just before the formula using \definemathfunction. More about this can be found in Section 2.4. The \fenced construction is used to adjust the size of the braces (indicated by the [brace] option) to the content in between. In this example, the superscript 3 makes them too big, so we have to specify the size. Additionally, we use middle=`| to enable the use of \fence inside the fenced construction to get a vertical bar symbol (|) from the Unicode character set (the back tic needs to be there, to provide middle by the number of the glyph). More information on fences can be found in Section 2.5.

```
\startformula
```

```
\frac{e^{-\lambda^2t}}{\sqrt{4\pi t}}
\left\{ \exp\left[ -\frac{(u-v)^2}{4t} \right]
        -\exp\left[ -\frac{(u+v)^2}{4t} \right] \right\}
\stopformula
```

$$\frac{e^{-\lambda^2 t}}{\sqrt{4\pi t}} \left\{ \exp\left[-\frac{(u-v)^2}{4t}\right] - \exp\left[-\frac{(u+v)^2}{4t}\right] \right\}$$

Here we have used nested delimiters, and we have used \left and \right instead of \fenced. Additionally, it is a good practice to use $\exp(x)$ instead of e^x when the argument x itself is large. Compare $e^{-\frac{(u-v)^2}{4t}}$ with what we have above. If we replace the fraction bar by a slash, $e^{-(u-v)^2/4t}$, we get something more acceptable. This is in particular true for inline formulas, as in this paragraph, where the \frac in the superscript forces some ugly line spread. We come back to that in Chapter 4.

```
\startformula
0
\longrightarrow
E^0 \boxtimes F^0
\mrightarrow{\phi}
E^1 \boxtimes F^0 \oplus E^0 \boxtimes F^1
\stackrel{\psi}{\longrightarrow}
```

```
E^1 \boxtimes F^1
\longrightarrow
0
\stopformula
```

```
0 \longrightarrow E^0 \boxtimes F^0 \xrightarrow{\phi} E^1 \boxtimes F^0 \oplus E^0 \boxtimes F^1 \xrightarrow{\psi} E^1 \boxtimes F^1 \longrightarrow 0
```

We used \mrightarrow to put the ϕ on top of the arrow and \stackrel to place the ψ (see Section 2.10). In Chapter 8 we will see some more examples of diagrams.

```
\startformula
\mathfrak{D}_{\mathcal{A}}
\colonequals
\fenced
[brace]
[middle=`:]
{d \in \naturalnumbers \fence \exists(b,d) = 1
\mtext{ with } \frac{b}{d} \in \mathfrak{R}_{\mathcal{A}}}
\stopformula
```

$$\mathfrak{D}_{\mathcal{A}} := \left\{ d \in \mathbb{N} : \exists (b, d) = 1 \text{ with } \frac{b}{d} \in \mathfrak{R}_{\mathcal{A}} \right\}$$

Note that \mathcal is meant to give a calligraphic A (A), while \mathcal is meant to give a script A (A). In T_EXGyre Pagella Math, as with many other fonts, there is no calligraphic alphabet, and in such cases the same alphabet is used in both cases. The symbol \colonequals is often used to denote a defining equality.

```
\startformula
f(z)
=
\frac{1}{2\pi i}
\aointc_{\partial \Omega}
   \frac{f(\zeta)}{\zeta - z} \dd \zeta
- \frac{1}{\pi}
\iint_{\Omega}
   \frac{\partial f}{\partial \conjugate{\zeta}}(\zeta)
   \frac{1}{\zeta - z} \dd \lambda(\zeta)
\stopformula
```

$$f(z) = \frac{1}{2\pi i} \oint_{\partial\Omega} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{\pi} \iint_{\Omega} \frac{\partial f}{\partial \bar{\zeta}}(\zeta) \frac{1}{\zeta - z} d\lambda(\zeta)$$

There are several different types of integrals to choose from, see Section 2.11. Note also the \conjugate{\zeta}, giving the conjugate bar over the zeta, $\bar{\zeta}$.

1.3 A small note, with source

The aim of this document is to describe how to typeset mathematics with $ConT_EXt$, not how to use $ConT_EXt$ for general typesetting. Below, however, we show a complete example (the \starttext and \stoptext are commented out, since we use it in this document). We first show the source, and then the typeset example. The enumerations defined for the theorem, lemma and proofs are described in detail in Chapter 7.

```
% language=en
\defineenumeration
  [Theorem]
  [alternative=serried,
   width=fit,
   distance=\emwidth,
   text=Theorem,
   style=italic,
   title=yes,
   titlestyle=normal,
   prefix=yes,
   headcommand=\groupedcommand{}{.}]
\defineenumeration
  [Lemma]
  [Theorem]
  [text=Lemma]
\defineenumeration
  [Proof]
  [alternative=serried,
   width=fit,
   distance=\emwidth,
   text=Proof,
   number=no,
   headstyle=italic,
   headcommand=\groupedcommand{}{.},
   title=yes,
   titlestyle=normal,
   closesymbol=\mathqed]
% \starttext
\startalignment[flushleft,tight]
  \bfb\setupinterlinespace We prove the l'Hospital rule directly from the
```

Lagrange mean value theorem, without using the Cauchy mean value theorem. \stopalignment

\blank[big]

\startlines
Anders Holst
Mikael P. Sundqvist
\stoplines

\blank[big]

\startnarrower[2*middle]

\bold{Abstract.} At our first-year calculus course for engineers we discuss Lagrange's mean value theorem but not Cauchy's mean value theorem, and for this reason we usually give a weak form of l'Hospital's rule on limits. In this note we give a simple proof of the stronger version of l'Hospital's rule, using only Lagrange's mean value theorem and elementary results on limits and derivatives. \stopnarrower

```
\blank[big]
```

We formulate and prove the l'Hospitals rule for one-sided limits. This in fact strengthen the usual formulation slightly.

```
\startTheorem
```

```
[title={l'Hospital's rule},
reference={thm:lHospital}]
Assume that the functions \m {f} and \m {g} are continuous in \m
{\rightopeninterval {a,b}} and differentiable in \m {\openinterval
{a,b}}. Assume further that \m {f(a) = g(a) = 0} and that \m {g'(x) \neq
0} in \m {\openinterval {a,b}}. If \m {f'(x)/g'(x)\tendsto A} as \m {x
\tendsto a^{+}}, then \m {f(x)/g(x) \tendsto A} as \m {x \tendsto
a^{+}}.
```

```
\stopTheorem
```

```
A geometric interpretation of the l'Hospital rule goes as follow. In the \m {uv}-plane, draw the curve parametrized by \m {u = g(x)} and \m {v = f(x)}. Then the direction coefficient \m {f(x)/g(x)} of the secant (dotted in \in{Figure}[fig:lHospital]) connecting \m {(g(x), f(x))} with \m {(g(a), f(a)) = (0,0)} should approach the same value as the direction coefficient \m {f'(x)/g'(x)} of the tangent to the curve at \m {(g(x), f(x))} (dashed in \in {Figure}[fig:lHospital]) as \m {x} approaches \m {a}. Our proof of the theorem uses that we can parametrize this curve locally around the origin as a function graph \m {u = t} and \m {v = f(\inverse{g}\of(t))}.
```

```
\startplacefloat
```

```
[figure]
[reference=fig:lHospital]
\enabledirectives[metapost.text.fasttrack]
\startMPcode[offset=1TS]
numeric u ; u:=7.5ts ;
path p,tangent,sekant ;
p:=(0,0){dir 10}..(1.5,1){dir 50}..(3,2) ;
z0 = point 1 of p ;
tangent:=(((-1,0)--(1,0)) rotated 50) shifted z0 ;
sekant:=origin--z0 ;
```

```
drawarrow ((-0.25,0)--(3,0)) scaled u ;
drawarrow ((0,-0.25)--(0,2)) scaled u ;
pickup pencircle scaled 1 ;
draw p scaled u ;
draw tangent scaled u dashed evenly ;
draw sekant scaled u dashed withdots ;
dotlabel.ulft("\m{(g(x),f(x))}", z0 scaled u) ;
dotlabel.lrt ("\m{(g(a),f(a))}", origin) ;
label.bot("\m{u}", (2.9u,0)) ;
label.lft("\m{v}", (0,1.9u)) ;
\stopMPcode
```

```
\disabledirectives[metapost.text.fasttrack]
\stopplacefloat
```

The only place in our proof where Lagrange's mean value theorem occurs is in this useful property of right-hand side derivatives.

```
\startLemma
```

```
[reference=lemma:rightderivative]
Let \m {c > 0}. Assume that \m {\phi \maps \rightopeninterval {0,c} \to
\reals} is continuous in \m {\rightopeninterval {0,c}} and differentiable
in \m {\openinterval {0,c}}, and that \m {\lim_{t \tendsto 0^^{+}}}
\phi'(t)} exists and equals \m {A}. Then
```

```
\startformula
```

```
\lim_{h \tendsto 0^^{+}} \frac{\phi(0 + h) - \phi(0)}{h} = A.
\stopformula
\stopLemma
```

```
\startProof
```

```
For \m {h \in \openinterval {0,c}} the differential quotient \m {(\phi(0
+ h) - \phi(0))/h} equals \m {\phi'(\xi_h)} for some \m {\xi_h \in
\openinterval {0,h}}, by Lagrange's mean value theorem. As \m {h\tendsto
0^^{+}} we have \m {\xi_h \tendsto 0^^{+}}, and so
```

```
\startformula
```

```
\lim_{h\tendsto 0^^{+}}\frac{\phi(0+h)-\phi(0)}{h}
= \lim_{h\tendsto 0^^{+}}\phi'(\xi_h)
= A.
```

```
\qedhere
```

```
\stopformula
```

```
\stopProof
```

```
\startProof
 [title={of \in{Theorem}[thm:lHospital]}]
 Since \m {g'} is a Darboux function it will not change sign in \m
```

The composite function $\mbox{m} \{\mbox{phi} \mbox{m} apsas t\mbox{m} apsto f(\inverse{g}\of(t))\}, \mbox{m} \{t \ in \rightopeninterval {0,g(b)}\} is continuous at \mbox{m} \{t = 0\} and differentiable for \mbox{m} \{t \ in \openinterval {0, g(b)}\}. By the substitution \mbox{m} \{t = g(x)\} in the given limit, together with the chain rule and the rule of derivatives of inverse functions, we get$

```
\startformula
A = \lim_{x\tendsto a^^{+}} \frac{f'(x)}{g'(x)}
= \lim_{t\tendsto 0^^{+}} \frac{f'(\inverse{g}\of(t))}
{g'(\inverse{g}\of(t))}
= \lim_{t\tendsto 0^^{+}} \frac{\dd}{\dd t}(\inverse{g}\of(t))
= \lim_{t\tendsto 0^^{+}} \phi'(t).
\stopformula
```

```
By \in{Lemma}[lemma:rightderivative], and by substitution <math>m \{t = g(x)\} again, we conclude that
```

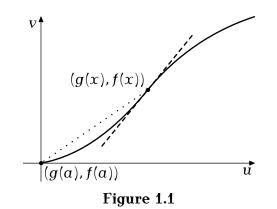
```
\startformula
A = \lim_{t\tendsto 0^^{+}} \frac{\phi(0+t) - \phi(0)}{t}
= \lim_{t\tendsto 0^^{+}} \frac{f(\inverse{g}\of(t))}{t}
= \lim_{x\tendsto a^^{+}} \frac{f(x)}{g(x)}.
\stopformula
```

This completes the proof. \stopProof

% \stoptext

On the next few pages we show the result after compiling this small example. We added a \switchtobodyfont[antykwa], to vary the look a little. More information on the use of fonts, as well as small examples of the available math fonts, can be found in Chapter 9.

We prove the l'Hospital rule directly from the Lagrange mean value theorem, without using the Cauchy mean value theorem.


Anders Holst Mikael P. Sundqvist

> Abstract. At our first-year calculus course for engineers we discuss Lagrange's mean value theorem but not Cauchy's mean value theorem, and for this reason we usually give a weak form of l'Hospital's rule on limits. In this note we give a simple proof of the stronger version of l'Hospital's rule, using only Lagrange's mean value theorem and elementary results on limits and derivatives.

We formulate and prove the l'Hospitals rule for one-sided limits. This in fact strengthen the usual formulation slightly.

Theorem 1.1 (l'Hospital's rule). Assume that the functions f and g are continuous in [a, b) and differentiable in (a, b). Assume further that f(a) = g(a) = 0 and that $g'(x) \neq 0$ in (a, b). If $f'(x)/g'(x) \rightarrow A$ as $x \rightarrow a^+$, then $f(x)/g(x) \rightarrow A$ as $x \rightarrow a^+$.

A geometric interpretation of the l'Hospital rule goes as follow. In the *uv*-plane, draw the curve parametrized by u = g(x) and v = f(x). Then the direction coefficient f(x)/g(x) of the secant (dotted in Figure 1.1) connecting (g(x), f(x)) with (g(a), f(a)) = (0, 0) should approach the same value as the direction coefficient f'(x)/g'(x) of the tangent to the curve at (g(x), f(x)) (dashed in Figure 1.1) as x approaches a. Our proof of the theorem uses that we can parametrize this curve locally around the origin as a function graph u = t and $v = f(g^{-1}(t))$.

The only place in our proof where Lagrange's mean value theorem occurs is in this useful property of right-hand side derivatives.

Lemma 1.2. Let c > 0. Assume that $\phi: [0, c) \to \mathbb{R}$ is continuous in [0, c) and differentiable in (0, c), and that $\lim_{t\to 0^+} \phi'(t)$ exists and equals A. Then

$$\lim_{h \to 0^+} \frac{\phi(0+h) - \phi(0)}{h} = A.$$

Proof. For $h \in (0, c)$ the differential quotient $(\phi(0 + h) - \phi(0))/h$ equals $\phi'(\xi_h)$ for some $\xi_h \in (0, h)$, by Lagrange's mean value theorem. As $h \to 0^+$ we have $\xi_h \to 0^+$, and so

$$\lim_{h \to 0^+} \frac{\phi(0+h) - \phi(0)}{h} = \lim_{h \to 0^+} \phi'(\xi_h) = A.$$

Proof (of Theorem 1.1). Since g' is a Darboux function it will not change sign in (a, b), and for simplicity we assume that g' > 0 in this interval. Lagrange's mean value theorem assures that g is strictly monotone in the interval [a, b) and thus that it has an inverse $g^{-1}: [0, g(b)) \to [a, b)$.

The composite function $\phi: t \mapsto f(g^{-1}(t)), t \in [0, g(b))$ is continuous at t = 0 and differentiable for $t \in (0, g(b))$. By the substitution t = g(x) in the given limit, together with the chain rule and the rule of derivatives of inverse functions, we get

$$A = \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = \lim_{t \to 0^+} \frac{f'(g^{-1}(t))}{g'(g^{-1}(t))} = \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) = \lim_{t \to 0^+} \phi'(t).$$

By Lemma 1.2, and by substitution t = g(x) again, we conclude that

$$A = \lim_{t \to 0^+} \frac{\phi(0+t) - \phi(0)}{t} = \lim_{t \to 0^+} \frac{f(g^{-1}(t))}{t} = \lim_{x \to a^+} \frac{f(x)}{g(x)}.$$

This completes the proof.

1.4 A bit more into the details

This section contains some more details about different math modes available, and since it is a bit technical, one could skip it at a first reading.

In traditional T_EX there is really a difference between the inline formulas (what we end up in between single dollars) and displayed formulas (double dollars). With the recent development of math in ConT_EXt, this difference is now gone. There is really only one math mode (inline), but we can enter it with different styles.

	display	text	script	scriptscript
uncramped	0	2	4	6
cramped	1	3	5	7
	. .			

Intermezzo 1.1

We show below a formula, first set as a displayed formula and then as an inline formula. We use

\def\Styles{(\the\mathmainstyle,\the\mathparentstyle,\the\mathstyle)}

to show in what style we end up in the various positions in the formulas. The \mathmainstyle remembers the main style of the formula, the \mathparentstyle keeps track of the style of the parent and the \mathstyle controls the action at the current location. The user does not need to keep track of this, ConTEXt will automatically use the appropriate style.

We use the input

```
\Styles +
\sum_{\Styles}^{\Styles} \Styles_{\Styles} +
\int_{\Styles}^{\Styles} +
```

```
\frac{\Styles}{\Styles} +
\frac{\frac{\Styles}{\frac{\Styles}} +
\Styles^{\Styles}}
```

First we look at the result when it is set as a displayed formula.

```
\startformula
  \getbuffer[styleformula]
  \stopformula
```

$$(0,0,0) + \sum_{(0,0,5)}^{(0,0,4)} (0,0,0)_{(0,0,5)} + \int_{(0,0,5)}^{(0,0,4)} + \frac{(0,0,1)}{(0,0,1)} + \frac{\frac{(0,1,5)}{(0,1,5)}}{\frac{(0,1,5)}{(0,1,5)}} + (0,0,0)^{(0,0,4)^{(0,4,6)}}$$

Then we see how it comes out when it is set as an inline formula.

\m{\getbuffer[styleformula]}

$$(2,2,2) + \sum_{(2,2,5)}^{(2,2,4)} (2,2,2)_{(2,2,5)} + \int_{(2,2,5)}^{(2,2,4)} + \frac{(2,2,5)}{(2,2,5)} + \frac{(2,5,7)}{(2,5,7)} + (2,2,2)^{(2,2,4)^{(2,4,6)}}$$

The user can enforce a certain style, see the tables below. For the ones that start with trigger only the change imposed by the name is done. So, for example \triggercrampedstyle will enable cramped mode, without altering the display/tex/script/scriptscript style.

	uncramped	cramped
display	\displaystyle	\crampeddisplaystyle
text	\textstyle	\crampedtextstyle
script	\scriptstyle	\crampedscriptstyle
scriptscript	\scriptscriptstyle	\crampedscriptscriptstyle

Intermezzo 1.2

\triggerdisplaystyle	\triggeruncrampedstyle
\triggertextstyle	\triggercrampedstyle
\triggerscriptstyle	
\triggerscriptscriptstyle	

Intermezzo 1.3

\triggersmallstyle	\triggerbigstyle
\triggeruncrampedsmallstyle	\triggeruncrampedbigstyle
\triggercrampedsmallstyle	\triggercrampedbigstyle

Intermezzo 1.4

2 The building blocks of formulas

2.1 Alphabets and styles

By default, when we type Latin letters in math mode, we get italic Latin letters. For example, \m{xyzXYZ} gives *xyzXYZ*. However, in Unicode math, there are slots for several math alphabets with differently styled Latin letters. We show how to access them in Intermezzo 2.1. In fact, Unicode Math does only have a Script alphabet. A few fonts combine Calligraphic as a substitution, but TEXGyre Pagella, that we use here, does not. That is the reason we get the same output for both these alphabets. The macros we show can be used both as a grouped macro and as a macro with an argument. This means that, for example, both {\mathfrak abcABC} and \mathfrak{abcABC} give the same result, abcABC}.

\mathrm	abcABC
\mathss	abcABC
\mathtt	abcABC
\mathcal	abcABC
\mathscr	abcABC
\mathfrak	abcABC
\mathbb	abcABC
	\mathss \mathtt \mathcal \mathscr \mathfrak

Intermezzo 2.1

Some alphabets are available in more than one style, as shown in Intermezzo 2.2. When entering math mode, the default style for the serif alphabet is italic.

Normal	\mathtf	abcABC
Italic	\mathit	abcABC
Bold	\mathbf	abcABC
Bold italic	\mathbi	abcABC

Intermezzo 2.2

When we change to a different alphabet, the font style is set to normal, but changing the font style does not automatically switch back to the default alphabet.

```
\startformula
  \mathss u + v \neq \mathit u + v \neq \mathrm u + v
\stopformula
```

 $\mathsf{u} + \mathsf{v} \neq u + \mathsf{v} \neq \mathsf{u} + \mathsf{v}$

Most fonts lack at least some alphabets. The Lucida Bright Math font, for example, lacks glyphs for the bold fraktur and the lowercase blackboard bold alphabets.

```
\startformula
  \mathbb a + A \neq \mathfrak a + A \neq \mathbf a + A
\stopformula
```

 $a+\mathbb{A}\neq\mathfrak{a}+\mathcal{A}\neq\mathfrak{a}+\mathcal{A}$

The same snippet in T_EXGyre Pagella Math shows like this.

$$a + A \neq a + \mathfrak{A} \neq a + \mathfrak{A}$$

In fact, regarding the calligraphic and script alphabets, only the script has dedicated Unicode slots. Some fonts have a calligraphic alphabet in these slots, and others have script alphabets there. Only a few come with both, and then the other is given as a style alternative. In the configured math fonts, ConT_EXt will give the correct results for \mathcal and \mathcal is both alphabets exist in the font. If only one of them exists, you will get that one in both cases. We show in Chapter 9 how to use the calligraphic and script alphabets (in fact, any alphabet) from a different font.

In addition to the Latin alphabets, the Greek alphabet is often used. Since most keyboards lack the greek letters, they are obtained via macros, such as $im{alphabetagamma}$ for $\alpha\beta\gamma$. Alternatively, if the user's keyboard or input method supports Unicode, they can directly input the Greek letters by typing $im{\alpha\beta\gamma}$. While it is possible to call for the correct Unicode slot for each letter directly, this can be rather cumbersome.

```
\startformula
  \alpha = α = \utfchar{"1D6FC} = \char"1D6FC
\stopformula
```

 $\alpha = \alpha = \alpha = \alpha$

By convention, uppercase Greek letters are set upright while the default style for lowercase Greek letters is italic, and this convention is followed in ConT_EXt. We can use \setupmathematics to alter this default. If we want to enforce an upright or italic style for Greek letters locally, we can use the \mathgreekupright and \mathgreekitalic commands.

```
\startformula
  \alpha\beta\Gamma \neq
  \mathgreekupright
  \alpha\beta\Gamma \neq
  \mathgreekitalic
  \alpha\beta\Gamma
  \stopformula
```

$\alpha\beta\Gamma \neq \alpha\beta\Gamma \neq \alpha\beta\Gamma$

The logic behind the decision on which alphabets have been included in Unicode can sometimes be difficult to understand. For serif Greek, there are four styles available: normal, italic, bold, and bold italic. However, for sans serif Greek, only bold and bold italic alphabets are available, with no normal or italic options.

```
\startformula
  \alpha\beta\Gamma \neq
  \mathbf
  \alpha\beta\Gamma \neq
  \mathss\mathbf
  \alpha\beta\Gamma \neq
  \mathgreekitalic
  \alpha\beta\Gamma \neq
  \mathgreekupright
  \alpha\beta\Gamma
```

\stopformula

 $\alpha\beta\Gamma \neq \alpha\beta\Gamma \neq \alpha\beta\Gamma \neq \alpha\beta\Gamma \neq \alpha\beta\Gamma$

Do not use more styles or weights than you really need.

2.2 Non-alphabetic symbols

Symbols that are not part of the alphabet can be entered directly via the keyboard, such as the plus sign (+), minus sign (-), and equals sign (=). However, some symbols require the use of macros, like the wedge symbol (\wedge) in the example below.

\startformula
 u \wedge v + v \wedge u = 0
\stopformula

 $u \wedge v + v \wedge u = 0$

See Chapter 12 for an extensive list of symbols and the macros connected with them. We will also show how to define new symbols and other constructions, when needed.

2.3 Bold math

The techniques we have covered for changing the style of alphanumeric characters do not apply to non-alphanumeric symbols. Some math fonts include a bold weight that can be activated using the \mb command. As shown in the example below, this not only makes the characters bolder, but also affects the bar, plus, and equal signs, and so on. However, it's worth noting that in the fonts we've tested, the bold families are not complete. For that reason, faking bold is often used instead.

```
\startformula
```

```
abc + 2592 = xyz + 2^5 \times 9^2 \breakhere
\mathbi abc + 2592 = xyz + 2^5 \times 9^2 \breakhere
\mb abc + 2592 = xyz + 2^5 \times 9^2
\stopformula
```

 $abc + 2592 = xyz + 2^5 \times 9^2$ $abc + 2592 = xyz + 2^5 \times 9^2$ $abc + 2592 = xyz + 2^5 \times 9^2$

2.4 Mathematical expressions and functions

Mathematical expressions and functions that have a fixed meaning are typically set in an upright style, with additional space added around them. For example, to typeset the sine function, which is typically written in an upright style, we use the command sin(x) instead of sin(x), which would produce sin(x). In the most common cases, the required commands for these functions are predefined, see Intermezzo 2.3.

These are defined with \definemathfunction, as for example

```
\definemathfunction[cos]
```

We often use subscripts for some of these constructions, which can be placed either in-line or below (or above) the text.

We expect \im{\lim_{x\to+\infty} f(x)} in inline math,

\arccos	$\arccos(x)$	\arcsin	$\arcsin(x)$	\arctan	$\arctan(x)$
\arccosh	$\operatorname{arccosh}(x)$	\arcsinh	$\operatorname{arcsinh}(x)$	\arctanh	$\operatorname{arctanh}(x)$
\acos	$\arccos(x)$	\asin	$\arcsin(x)$	\atan	$\arctan(x)$
\arg	$\arg(x)$	\cos	$\cos(x)$	\cosh	$\cosh(x)$
\cot	$\cot(x)$	\coth	$\operatorname{coth}(x)$	\csc	$\csc(x)$
\deg	deg(x)	\diff	d(x)	\dim	$\dim(x)$
\exp	$\exp(x)$	\hom	hom(x)	\ker	$\ker(x)$
∖lg	lg(x)	\ln	$\ln(x)$	\log	$\log(x)$
\sec	$\sec(x)$	\sin	$\sin(x)$	\sinh	$\sinh(x)$
\tan	$\tan(x)$	\tanh	tanh(x)		

Intermezzo 2.3

but in a displayed math we prefer

```
\startformula
  \lim_{x\to+\infty} f(x).
  \stopformula
```

We expect $\lim_{x \to +\infty} f(x)$ in inline math, but in a displayed math we prefer

$$\lim_{x \to +\infty} f(x).$$

The macro \lim is defined as

```
\definemathfunction
 [lim]
 [mathlimits=auto]
```

and the mathlimits=auto option places the subscripts below in displayed formulas. Below is a list of the math functions defined with this limit behavior (either mathlimits=auto or mathlimits=yes).

\det	det A	\gcd	gcd(m, n)	\inf	$\inf_{x \in \mathbb{R}} f(x)$
\inv	inv A	\injlim	$inj lim(A_i)$	\liminf	$\liminf a_n$
\limsup	lim sup <i>a_n</i>	\lim	$\lim_{x \to 0^+} (1+x)^{1/x}$	\median	median x
\max	$\max(1, 2, 3)$	\min	min(1,2,3)	\mod	<i>a</i> mod <i>b</i>
\projlim	proj lim ⁽ⁱ⁾	\Pr	$\Pr(A \cap B)$	\sup	$\sup_{x\in\Omega}f(x)$

Intermezzo 2.4

We can use \mfunction to typeset a function that is not predefined.

If we plan to use the same function in multiple places, it is recommended to define a new instance with \definemathfunction.

```
\definemathfunction[hav]
```

```
\tartformula \\ \hav(\theta) = \frac{1 - \cos(\theta)}{2} \\ \stopformula \\ 1 - \cos(\theta)
```

$$hav(\theta) = \frac{1 - \cos(\theta)}{2}$$

Although we could have explicitly added mathlimits=no to the definition of \hav, we skipped it since it is already the default behavior.

Some math functions, like \injlim and \projlim, vary with the language. If we typeset $\inf\{(1)\} = \Pr[(1)]$ we get inj $\lim^{(1)} = \operatorname{projlim}^{(1)}$. If we first switch to Spanish and typeset it, we get instead $\lim \operatorname{iny}^{(1)} = \lim \operatorname{proy}^{(1)}$. For the \injlim and \projlim some prefer a variant.

```
\setupmathlabeltext
  [en]
  [varprojlim={\wideunderleftarrow{\lim}}]
\setupmathlabeltext
  [en]
  [varinjlim={\wideunderrightarrow{\lim}}]
\definemathfunction
  [varprojlim]
  [mathlimits=no]
\definemathfunction
  [varinjlim]
  [mathlimits=no]
\startformula
  \operatorname{I}_{n+1}^{(1)} \operatorname{H}_{n+1}^{\mathrm{B}}
  \rightarrow
  \bar{H}_n(\varprojlim C_{\gamma}^{*}; G)
  \rightarrow
  \varinjlim \bar{H}_{n}^{\gamma}
\stopformula
```

```
\varinjlim^{(1)} \bar{H}_{n+1}^{\gamma} \to \bar{H}_n(\varprojlim C_{\gamma^*}^*;G) \to \varinjlim \bar{H}_n^{\gamma}
```

In the same spirit we can define variants of \liminf and \limsup.

```
\setupmathlabeltext
[en]
[varliminf={\underbar{\lim}}]
\setupmathlabeltext
[en]
[varlimsup={\overbar{\lim}}]
\definemathfunction
[varliminf]
[mathlimits=auto]
\definemathfunction
[varlimsup]
[mathlimits=auto]
```

```
\startformula
  \int_{\Omega} \varliminf_{n\to+\infty} f_n \dd\mu
  \leq
  \varliminf_{n\to+\infty} \int_{\Omega} f_n \dd\mu
  \mtp{,}
  \varlimsup_{n\to+\infty} \int_{\Omega} f_n \dd\mu
  \leq
  \int_{\Omega} \varlimsup_{n\to+\infty} f_n \dd\mu
  \stopformula
```

$$\int_{\Omega} \lim_{n \to +\infty} f_n \, d\mu \le \lim_{n \to +\infty} \int_{\Omega} f_n \, d\mu, \quad \lim_{n \to +\infty} \int_{\Omega} f_n \, d\mu \le \int_{\Omega} \lim_{n \to +\infty} f_n \, d\mu$$

There are several ways to customize the style of math functions. For instance, if we want to typeset function names in a colored sans serif font, we can use \setupmathfunctions:

```
\setupmathfunctions
[style=sans,
   color=C:3]
\startformula
   \sin^2\alpha + \cos^2\alpha = 1.
\stopformula
```

$$\sin^2 \alpha + \cos^2 \alpha = 1.$$

```
\setupmathfunctions
[style=\mathtexttf]
\startformula
  \sin^2\alpha + \cos^2\alpha = 1.
\stopformula
```

```
\sin^2 \alpha + \cos^2 \alpha = 1.
```

It is also possible to set the colors one by one when typing the formula. But please be a bit careful. Since for example $\cos[(x + y)(x - y)]$ is a valid formula, we do not want to activate the brackets here. For that reason you need to use the built-in \mfunction to apply the settings at one place.

When setting colors for individual functions, it is important to avoid inadvertently activating any special formatting. For example, the expression $\cos[(x + y)(x - y)]$ contains brackets that should not be considered as brackets for arguments. To ensure this, we use instead the \mfunction command.

```
\startformula
 \mfunction[color=C:3]{cos}[(x + y)(x - y)]
 \neq
 \mfunction[color=C:2][cos][(x + y)(x - y)]
 \neq
 \cos[color=C:1](\alpha)
```

\stopformula

```
\cos[(x+y)(x-y)] \neq \cos[(x+y)(x-y)] \neq \cos[\operatorname{color} = C:1](\alpha)
```

The last example "fails" on purpose.

2.5 Fences

Fences, also known as paired delimiters, are a pair of symbols used to visually group parts of a formula. The most commonly used symbols for fences are parentheses (), brackets [], braces { }, angle brackets $\langle \rangle$, bars ||, and double vertical bars || ||. These paired symbols are often used when nested bracketing is needed, such as $3\{[f(x) + g(x)] + h(x)\}$.

In Section 1.2, you may have seen two ways to typeset fences: using \fenced or using \left and \right pairs. Let's take a look at a few more examples.

```
\startformula
  \fenced[parenthesis]
                               { 1 + \frac{a}{b} }
                                                              \mbox{mtp}{}
  \fenced[bracket]
                                 { F(x)^2
                                                     }_a^b \mtp{}
  \fenced[bracket][size=big] { F(x)^2
                                                     } a^b \mtp{}
                               { \frac{x}{n} }
  \fenced[brace]
                                                              \mtp{}
                       { f, g
  \fenced[angle]
                                                       }
\stopformula
                     \left(1+\frac{a}{b}\right) \left[F(x)^2\right]_a^b \left[F(x)^2\right]_a^b \left\{\frac{x}{n}\right\} \langle f,g\rangle
```

In the example above, the key size=big is used to specify a particular size for the bracket. The available options are big, Big, bigg, and Bigg, or alternatively, a number can be specified, such as 1, 2, 3, or 4. If you set size=0, the fence will not be scaled at all, and the base character will be used instead.

```
\startformula
    a(b + c)d =
    a\fenced[parenthesis]{b + c}d =
    a\left( b + c \right)d
    \stopformula
```

$$a(b+c)d = a(b+c)d = a(b+c)d$$

If you use the system with \left and \right, you can also enforce different sizes with help of \F. For example, \F1 gives the same as big. Note that these in fact change a state, so you have to group if you do not want them to spill over to the upcoming fences.

```
\startformula
```

\left($1 + \int ac{a}{b}$	∖right)	
\left[F(x)^2	\right]_a^b	
{\F1\left[F(x)^2	\right]_a^b}	
\left\{	\frac{x}{n}	\right\}	
\left\langle	f, g	\right\rangle	
\stopformula			

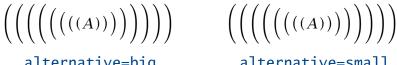
$$\left(1+\frac{a}{b}\right) \quad \left[F(x)^2\right]_a^b \quad \left[F(x)^2\right]_a^b \quad \left\{\frac{x}{n}\right\} \quad \left\langle f,g\right\rangle$$

The size of the fences can be calculated with different methods, and the result depends on the vertical variants that the font supports. Traditionally T_EX provided the base size, four variants and extensibles. The four variants could be accessed with the help of big, Big, bigg, and Bigg. With Opentype math fonts, there can be many more variants. If we do not specify the size to the fence macro, we get the size that fits. We can specify the size explicitly, either with the keywords just mentioned or by using numbers. The variants that are used can be decided via the \setupmathfence. If alternative=big is used (default) the variants specified in the goodie file are used. If alternative=small is used, then for example size=3 really gives the third variant.

```
\im{
```

$$\left(\left(\left(\left(\left(\left(((A))\right)\right)\right)\right)\right)\right)$$

alternative=big


 $\left(\left(\left(\left(\left(((A))\right)\right)\right)\right)\right)$

alternative=small


This is how it looks for Garamond Math.

	4)))))))))))))))))))))))))))))))))))))
alterna	tive=big

This is how it looks for Lucida Bright Math.

alternative=big

alternative=small

And this is how it looks for TEXGyre Bonum Math.

As you can see, the fonts behave differently. Once you are aware of this, you can set the alternative you like best with \setupmathfence.

In formulas where you need no manual size tweaking, you can use \autofences. The result is that identified delimiter pairs will automatically scale to the size that would have been used if \left and \right had been used.

\startformula \autofences

```
( 1 + \frac{a}{b} ) \mtp{}
[ F(x)^2 ]_a^b \mtp{}
\{ \frac{x}{n} \} \mtp{}
\langle f, g \rangle \mtp{}
( \sum_{k=1}^n a_k )
\stopformula
```

$\left(1+\frac{a}{b}\right) \left[F(x)^2\right]$	$\left\{\frac{x}{n}\right\}$	$\langle f,g \rangle$	$\left(\sum_{k=1}^n a_k\right)$
--	------------------------------	-----------------------	---------------------------------

As the parentheses around the sum shows, this might lead to larger sizes than one usually wants.

It is considered good style to define own fences for the ones that you use often. This gives you a consistent document, and it enables you to change all occurrences of a specific construction without touching the other ones. We define a paired delimiter Set intended to be used for sets (there is already set pre-defined for this purpose).

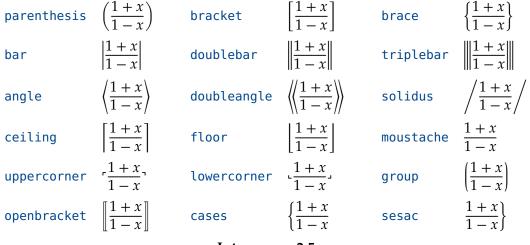
```
\definemathfence
[Set]
[brace]
[define=yes,
middle=`|]
```

We have defined Set as a copy of the brace fence. Thanks to define=yes the definition also creates a macro \Set that can be used instead of \fenced[Set], and we also gave the bar to be used as a separator by using \fence. Note the backtic there to provide a number to the middle key. To prevent the extra creation of the macro, we can add define=no. We look at a few examples where the \Set fence is used.

```
\begin{aligned} \label{eq:startformula} \\ Set{ x\in\reals \fence \frac{x^2}{a^2} < 1 } = \\ Set{ x\in\reals \fence x^2 < a^2 } = \\ Set[size=1]{ x\in\reals \fence x^2 < a^2 } \\ \\ stopformula \\ \\ & \left\{ x \in \mathbb{R} \; \left| \frac{x^2}{a^2} < 1 \right\} = \left\{ x \in \mathbb{R} \; \left| \; x^2 < a^2 \right\} = \left\{ x \in \mathbb{R} \; \left| \; x^2 < a^2 \right\} \right\} \end{aligned}
```

We give one more example, where we use an empty left delimiter.

```
\definemathfence
 [evaluate]
 [define=yes,
  left=none,
  right=`|]
```


We use it like this.

```
\startformula
    \int_1^2 x^2 \dd x
= \evaluate{\frac{x^3}{3}}_1^2
= \frac{2^3}{3} - \frac{1^3}{3}
= \frac{7}{3}
```

\stopformula

$$\int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{2} = \frac{2^{3}}{3} - \frac{1^{3}}{3} = \frac{7}{3}$$

In Intermezzo 2.5 we list some predefined fences (the moustache is not present in T_EXGyre Pagella Math, you have to use your imagination, perhaps you can picture Salvador Dalí). There are some more, you can try for example mirrored versions, as in mirroredfloor.

Intermezzo 2.5

We emphasize again that it is important to clearly define new instances that convey meaning. If you require angular brackets for the inner product and occasionally need a vertical bar in the middle, you can create a fence called IP that possesses the desired properties (again, there is a fence innerproduct pre-defined with these properties).

```
\definemathfence
[IP]
[angle]
[define=yes,
middle=`|]
```

Once defined, you can utilize \IP throughout your document with ease. Additionally, if you ever need to modify the notation for inner products, you can simply update the definition of \IP .

```
\startformula
  \IP{\phi \fence \psi} =
   \int_{\Omega} \conjugate{\phi(x)}\psi(x) \dd \mu(x)
  \stopformula
```

$$\langle \phi \mid \psi \rangle = \int_{\Omega} \overline{\phi(x)} \psi(x) \, d\mu(x)$$

There are a few fences for intervals predefined (see Intermezzo 2.6).

closedinterval	[<i>a</i> , <i>b</i>]		
openinterval	(a,b)	varopeninterval] <i>a</i> , b[
leftopeninterval	(a,b]	varleftopeninterval] <i>a</i> , b]
rightopeninterval	[a,b)	varrightopeninterval	[<i>a</i> , <i>b</i> [

Intermezzo 2.6

In fact, all these intervals are inheriting from the interval fence, so we can setup all of them at once.

```
\setupmathfence
[interval]
[color=C:3,
   symbolcolor=C:2]
\startformula
  \fenced[openinterval]{a,b} = \fenced[varopeninterval]{a,b}
\stopformula
```

```
(a,b) = a,b
```

In a document, just as for the other fences, you typically define your own instances as the relevant copies.

```
\label{eq:constraint} $$ \end{tabular} $$ \end{tabular}
```

```
A = [0, 1[ \cup ]2, 3[
```

There is some bracket matching magic going on in the second line here that makes the spacing around the brackets to be good. In traditional T_EX the input $]0,1[\cup]2,3[$ in math would give very ugly spacing. It is more safe to use the fences mechanism, which automatically assigns the appropriate math atom type to the delimiters, ensuring proper spacing.

2.6 Sub- and superscripts

As we've seen in previous examples, superscripts are created using the caret symbol (^) and subscripts are created using the underscore symbol (_).

\startformula
 a_k = 2^k + 3^k
\stopformula

 $a_k = 2^k + 3^k$

When setting more complicated expressions than single symbols as sub- or superscripts, it is necessary to use grouping.

```
\label{eq:startformula} a_{k + 2} - 5a_{k + 1} + 6a_{k = 0} \\ \
```

```
a_{k+2} - 5a_{k+1} + 6a_k = 0
```

We have in fact so far only mentioned postscripts. It would be more correct to talk about postsubscripts and postsuperscripts. There is also native support for presubscripts and presuperscripts. They are accessed via triple carets or underscores.

\startformula a^2 b + 3F_1___2(a,b;c;z) - X_1^2___3^^4 \stopformula

 $a^{2}b + 3_{2}F_{1}(a, b; c; z) - \frac{4}{3}X_{1}^{2}$

The mechanism of adding sub- and superscripts is slightly different for single characters and for larger constructions like big parentheses, or content put into boxes. We show an example below with a square of size 1cm. To the left it is considered as a single character, and the power two is placed on a certain height, as it would be on any character. To the right it is seen as a box, and the vertical placement of the power two is adapted.

Here we have used the math atom option single to obtain the first case. One place where this is adapted is for functions like \sin, and it is done in order to have the superscripts placed at the same height in formulas like $\cos^2 \alpha + \sin^2 \alpha = 1$.

2.7 Tensors, multilevel sub- and superscripts

In some areas of mathematics and physics it is common to use several sub- and superscripts. We can meet expressions like Γ_{ki}^n but also more complicated constructions like Γ_k^n . The good news is that this can be done pretty simply with the help of multiple sets of sub- and superscripts. By this we mean that it is possible to bound several sub- and superscripts to one atom. We show how the formulas in this paragraph were input, with one additional formula.

```
\startformula
  \Gamma^n_{ki}
  \neq \Gamma^{n} \noscript _{k} \noscript ^{i}
  \neq \Gamma^{n} ^{} __{k} _{k} _{} ^{i}
  \stopformula
```

 $\Gamma_{ki}^{n} \neq \Gamma_{k}^{n}^{i} \neq \Gamma_{k}^{n}^{i}$

The first one has only one level; one subscript and one superscript. The second one has three levels. In the innermost we only have a superscript and in the next only a subscript, and in the third, finally, only a superscript. We have stepped to the next level via \noscript. We can also use empty sub- or superscripts to enforce going to the next level, as in the third expression.

It is possible to tweak a bit where the indices show up vertically by using the alignscripts key of \setupmathematics. Below we see the formula

\Gamma_{\nu}_{\mu}^{\kappa}_{\lambda}^{} + \Gamma_{\lambda}^{}

set with the indicated value of alignscripts, with the following code.

 $\begin{array}{ccc} \Gamma_{\nu\mu\lambda}^{\ \kappa} + \Gamma_{\lambda} & \Gamma_{\nu\mu\lambda}^{\ \kappa} + \Gamma_{\lambda} & \Gamma_{\nu\mu\lambda}^{\ \kappa} + \Gamma_{\lambda} & \Gamma_{\nu\mu\lambda}^{\ \kappa} + \Gamma_{\lambda} \\ \end{array} \\ \begin{array}{c} \text{yes} & \text{always} & \text{empty} & \text{no} \end{array}$

For horizontal spacing, it is a bit more complicated. Traditionally, T_EX adds \scriptspace after sub- and superscripts. One reason is that the glyphs in traditional fonts lie about their widths. It is always added but in some cases it is not wanted. In luametaT_EX we have more control over the inter atom spacing, which means that this space is no longer suitable for our needs.

In Unicode Math there is a font parameter SpaceAfterScript, that is trying to imitate the traditional T_EX approach. We need support for multiscripts and we want to avoid the unwanted spaces, so we need a slightly more advanced model. In fact, the SpaceAfterScript is still listened to, and the space is always added, but we have an extra parameter SpaceBetweenScript that gets added instead between different levels of a multiscript. So, between multiscripts we use SpaceBetweenScript instead.

In fact, what is really added is SpaceBetweenScript multiplied by interscriptfactor. This means that a value of 0 will result in no space added. The default value of interscriptfactor is 1.

```
\Gamma_{\nu}_{\mu}^{\kappa}_{\lambda}^{} +
\Gamma_{\lambda}\noscript^{\mu}^{\kappa}
```

$\Gamma_{\nu\mu\lambda}^{\kappa} \pm \Gamma_{\lambda}^{\mu\kappa}$	$\Gamma_{\nu\mu\lambda}^{\kappa} \pm \Gamma_{\lambda}^{\mu\kappa}$	$\Gamma_{\nu\mu\lambda}^{\kappa} \pm \Gamma_{\lambda}^{\mu\kappa}$	$\Gamma_{\nu\mu\lambda}^{\kappa} \pm \Gamma_{\lambda}^{\mu\kappa}$
Θ	.5	1	2

We give one more example. Since we by default ignore (regarding to vertical spacing) empty braces, we enter them for clarity.

```
\startformula
```

```
h^{\lambda}{}_{\kappa\mu}{}^{\nu}{}_{\phi} \in V \otimes V^* \otimes V^* \otimes V \otimes V^*
```

Multiple prescripts are also possible, but perhaps of less usage. We show only one example. As you see, the ordering of the input is allowed to change.

\startformula
X_{1}^{2}___{a}^^{b}
_{3}^{4}__{c}^^{d}
_{5}^{6}__{e}^^{f}
=
X_{1}__{a}^^{b}^{2}
_{3}__{c}^^{d}^{4}
_{5}__{e}^^{f}^{6}
\stopformula

 ${}^{b}_{a}X^{246}_{135} = {}^{b}_{a}X^{246}_{135}$

We give one nested example, found in some article.

\startformula
 a = a_ {b_{d}___{e}}
 ____{c_{f}___{g}}
\stopformula

$$a = {}_{g^{C}f}a_{eb_{d}}$$

We remind you once more to be nice to your readers regarding the choice of notation.

2.8 Prime time

Primes are a often used, in particular to denote derivatives. They indicate the number of times a function has been differentiated, with a single prime denoting the first derivative, a double prime denoting the second derivative, and so on.

```
\startformula
  f' + f'' + f''''
  =
  f\prime + f\prime\prime + f\prime\prime +
  f\prime\prime\prime
\stopformula
```

$$f' + f'' + f''' + f'''' = f' + f'' + f''' + f''''$$

Primes behave a bit like superscripts, but they are handled in their own way. If you just read the previous section, you know that we can have several levels of sub- and superscripts. This also applies to primes. In each level the primes are collected, and then put *outside* the superscript in that level, if present. If there happens to be a subscript only in the level, the primes are put on top of that. This means that if we want to type something like f'^2 we need to type $f\prime\noscript^{2}$ in order to push the superscript 2 into the next level. If you need to typeset the square of f', it is however likely nicer for the reader if you write $(f')^2$ rather than f'^2 .

Additional primes are not starting new levels of sub/superscripts. Instead they are collected and joined into some multiprime construction. Look closely at the following example. All different terms use one level, only.

```
\startformula
```

```
f_a^b' + f'_a^b + f_a'^b + f_a^b'' + f_a'^b'
\neq
f^b' + f'^b
\neq
f_a' + f'_a
\stopformula
```

$$f_a^{b'} + f_a^{b'} + f_a^{b'} + f_a^{b''} + f_a^{b''} \neq f^{b'} + f^{b'} \neq f_a' + f_a''$$

Compare that with the following examples where we use two levels. Look carefully on where the primes end up.

```
\startformula
  f_a^b'_a' + f'_a^b'^b + f_a^b''^b
\stopformula
```

In the first part of the example the _a^b' make up one level, and then the _a forces the next level, and the prime there will then go above it, since there is no superscript in that level. In the second part of the example, the second prime is not starting a new group (remember, only sub- and superscripts do), but it is joined with the first prime into a double prime. The last ^b starts a new level. The third example is just a more clear way to write the second example. Use \noscript not only to force the next level, but also to make your code more clear.

The way primes are typeset can vary across different math fonts. Therefore, they are configured on a font-by-font basis in the goodie files. By using \mathscriptbelow we can visualize the line where the primes are anchored. (It also shows the lines where the sub-and superscripts are anchored.)

```
\startformula
  \mathscriptbelow
  f' \neq f^2
  \stopformula
```

 $f' \neq f^2$

If several levels are used, we run by default over the different levels and realign the primes so that all of them sit at the same height.

Let us also mention the \primed macro, that can be used to typeset primes in a different way (these types of constructions will be discussed again in Section 2.9 below).

```
\startformula
 (f')^2 = (\primed{f})^2 = \primed{f}^2 = f^{}\prime^2
 \neq
 (f^2)' = \primed{(f^2)} = \primed{f^2}
\stopformula
```

```
(f')^2 = (f')^2 = {f'}^2 = {f'}^2 \neq (f^2)' = (f^2)' = f^{2'}
```

Finally, it is not a good idea to write f^{\pm} or f^{\pm} since that will put the primes in the superscript, and the output will be different (and likely bad in many cases), f'. We end with an example found on the preprint server arXiv, showing a creative use of preand postscripts, as well as primes:

\stopformula

$${}^{C}_{a}\mathbf{D}^{\alpha}_{t}f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} \frac{1}{(t-t')^{\alpha+1-n}} \frac{d^{n}}{dt'^{n}} f(t') dt'$$

2.9 Accents/embellishments

There are several predefined accents to put on characters. The accents below are meant for single characters, and do not stretch horizontally.

\grave	x	\acute	ź	\hat	\hat{x}
\tilde	\widetilde{x}	\bar	\bar{x}	\breve	x
\dot	х ́	\ddot	ÿ	\ring	x
\check	ž	\overleftharpoon	\dot{x}	\overrightharpoon	\vec{x}
\dddot	\ddot{x}	\ddddot	\ddot{x}		

Intermezzo 2.7

To place accents over more than one character, we use the stretching variants available.

\widehat	$\widehat{x+y}$	\widetilde	$\widetilde{x+y}$
\widebar	$\overline{x+y}$	\widecheck	$\widetilde{x+y}$
\wideoverleftharpoon	$\overleftarrow{x+y}$	\wideoverrightharpoon	$\overrightarrow{x+y}$
\wideoverleftarrow	$\overleftarrow{x+y}$	\wideoverrightarrow	$\overrightarrow{x+y}$
\wideoverleftrightarrow	$\overleftarrow{x+y}$	\wideunderbar	x + y
\wideunderleftrightarrow	$\begin{array}{c} x + y \\ \longleftrightarrow \end{array}$	\wideunderrightharpoon	x + y
\wideunderleftharpoon	$\underbrace{x+y}{}$	\wideunderleftarrow	$\underbrace{x+y}{\longleftarrow}$
\wideunderrightarrow	$\xrightarrow{x+y}$		
	_		

The notation \vec{x} (typeset with \vec{x}) is often used to indicate vectors, but some may argue that it is not truly an accent, and that it is not suitable for vector notation. Instead, it might be better to use upright bold symbols such as **x** for vectors. Alternatively, if there is no risk of confusion, you can use ordinary italic letters.

Some math fonts provide several sizes of accents, and some accents have an extensible recipe. When an accent is not extensible, ConTEXt can scale the largest available piece horizontally to create the accent.

 $\widetilde{u} + \widetilde{u} + \widetilde{uv} + \widetilde{uvw} + \widetilde{uvwx} + \overline{abcdefghijklmnopqrstuvwxyz}$

The extremely wide accents can sometimes look strange. A suggestion that we read about in [Swa99] is to enclose the content in parentheses and place the hat or tilde just to the right if the content is too wide. To achieve this, use the marked construction (see also below):

```
\startformula
  \widehat{f \ast g \ast h} =
    \hatmarked{(f \ast g \ast h)} =
    \hat{f} \hat{g} \hat{h}
\stopformula
```

$$\overline{f \ast g \ast h} = (f \ast g \ast h)^{\widehat{}} = \widehat{f}\widehat{g}\widehat{h}$$

There are a few non-accent characters that come as marked versions (we have also seen \primed before). Judge for yourself which one you prefer.

```
\startformula
  \daggermarked{Q}Q = Q^{\\dagger}Q \mtp{,}
  \ddaggermarked{Q}Q = Q^{\\ddagger}Q \mtp{,}
  \starmarked{Q}Q = Q^{\\star}Q \mtp{,}
  \astmarked{Q}Q = Q^{\\star}Q \mtp{,}
  \astmarked{Q}Q = Q^{\\ast}Q
  \stopformula
```

$$Q^{\dagger}Q = Q^{\dagger}Q, \quad Q^{\ddagger}Q = Q^{\ddagger}Q, \quad Q^{*}Q = Q^{*}Q, \quad Q^{*}Q = Q^{*}Q$$

We can put multiple accents on a letter, just by nesting the arguments. In Fourier analysis one might meet a formula like this one.

```
\startformula
    \hat{\hat{\hat{\hat{f}}} =
    \check{\check{f}} = f
    \stopformula
```

$$\hat{\tilde{f}} = \check{f}$$

Instead of building towers, it might then be better to use some other notation, like $\mathcal{F}^4 f = \mathcal{P}^2 f = f$. It is, however, worth to mention that the first accent is placed on the letter according to the anchoring point, and the rest of the accents are placed centered above the first one.

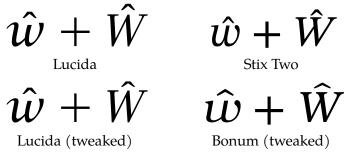
```
\startformula
  \hat{\dot{u}} =
  \dot{\hat{u}}
\stopformula
```

$$\hat{\dot{u}} = \hat{u}$$

There are several possible ways to create a longer bar or rule above an expression. These are sometimes used for closure or complex conjugation.

```
\startformula
\bar{v} + \bar{w} =
\widebar{v} + \widebar{w} =
\widebar {v + w} =
\overbar {v + w} =
\overbar {v + w} =
\overline {v + w} =
(v + w)^*
\stopformula
\bar{v} + \bar{w} = \bar{v} + \bar{w} = \bar{v} + \bar{w} = \bar{v} + \bar{w} = (v + w)^*
```

The differences in output are due to different mechanisms used. The \bar gives a nonstretching macron accent, while the \widebar provides a stretching one. The \overbar is in fact not an accent at all, but a stacker (see below). The \overline does not use the font, but draws a rule on top of the content. In older printing it was difficult (or, rather, it demanded some work) to draw horizontal lines.


In the case of complex conjugation, one shall be a bit careful. In general, when putting accents over *i* the dot is removed, as in $\hat{\imath}$. By using \widebar this is also the case. The instance top:dot of mathaccent is defined with option i=. It prevents the dot from being removed. The predefined accent \conjugate uses this.

```
\label{eq:startformula} $$ \operatorname{cos}(\theta) + \operatorname{ii} \operatorname{sin}(\theta) = \operatorname{cos}(\theta) - \operatorname{ii} \operatorname{sin}(\theta) = \operatorname{cos}(\theta) - \operatorname{isin}(\theta) = \operatorname{cos}(\theta) - i \operatorname{sin}(\theta) = \operatorname{cos}(\theta) + i \operatorname{sin}(\theta) = \operatorname{cos}(\theta
```

```
\overline{\cos(\theta) + i\sin(\theta)} = \cos(\theta) - i\sin(\theta)
```

One could even consider alternative notations for conjugate, for example the asterisk.

Let us also add that a few Opentype fonts come with flattened accents, see the examples in Intermezzo 2.9. Lucida Bright Math does not have flattened accents, so the two hats look the same. Stix Two Math and Cambria Math have flattened accents. The effect is subtle, but the hat on the uppercase W has a slightly smaller height than the one on the lowercase w. This detail can sometimes save us from lines to spread. In fonts where this is not supported, we can fake it with the flattenaccents tweak. This tweak is enabled in TEXGyre Bonum Math.

Intermezzo 2.9

2.10 Stackers and annotations

Stackers and extensibles are often used to add decorative elements above or below other content. Fortunately, a variety of these elements have already been predefined in $ConT_EXt$. We start by discussing a type of stackers where we decorate formula snippets on the top or bottom with some brace, bracket or similar. These are a bit similar to accents, but their purpose is slightly different, and they are often a bit more clumsy. In Intermezzos 2.10, 2.11 and 2.12 we list some examples.

The under and over stackers are defined with mathlimits=yes, which means that we can put text or math above or below them. Thus, we can for example do

\overleftrightarrow	$\overrightarrow{x+y}$
\overleftarrow	$\overleftarrow{x+y}$
\overtwoheadleftarrow	$\frac{x}{x+y}$
\overlefttailarrow	$\overleftarrow{x+y}$
\overlefttailarrow	$\overleftarrow{x+y}$
\overlefthookarrow	$\overleftarrow{x+y}$
\overleftharpoondown	$\overline{x+y}$
\overleftharpoonup	$\overline{x+y}$
\overLeftarrow	$\overleftarrow{x+y}$
\overLeftbararrow	$\overleftarrow{x+y}$
\overLeftrightarrow	$\overleftrightarrow{x+y}$

\overrightarrow	$\overrightarrow{x+y}$
\overtwoheadrightarrow	$\overrightarrow{x+y}$
\overrighttailarrow	$\overrightarrow{x+y}$
\overrighttailarrow	$\overrightarrow{x+y}$
\overrighthookarrow	$\overrightarrow{x+y}$
\overrightharpoondown	$\overrightarrow{x+y}$
\overrightharpoonup	$\overrightarrow{x+y}$
\overRightarrow	$\overrightarrow{x+y}$
\overRightbararrow	$\overrightarrow{x+y}$

Intermezzo 2.10

\underleftrightarrow	$x + y \longleftrightarrow$
\underleftarrow	$\overleftarrow{x+y}$
\undertwoheadleftarrow	x + y
\underlefttailarrow	$\xrightarrow{x+y}$
\underlefttailarrow	x + y
\underlefthookarrow	x + y
\underleftharpoondown	$\underbrace{x+y}{}$
\underleftharpoonup	x + y
\underLeftarrow	$\stackrel{x+y}{\longleftarrow}$
\underLeftbartarrow	x + y
\underLeftrightarrow	$x + y \iff$
	. .

\underrightarrow	$\xrightarrow{x+y}$
\undertwoheadrightarrow	x + y
\underrighttailarrow	$\xrightarrow{x+y}$
\underrighttailarrow	$x + y \longrightarrow$
\underrighthookarrow	$x + y \longrightarrow$
\underrightharpoondown	x + y
\underrightharpoonup	x + y
\underRightarrow	$x + y \implies$
\underRightbararrow	$x + y \longrightarrow$

Intermezzo 2.11

\overbar	$\overline{x+y}$	\underbar	x + y	\doublebar	$\overline{x+y}$
\overbrace	$\widehat{x+y}$	\underbrace	$\underbrace{x+y}$	\doublebrace	$\underbrace{\overline{x+y}}$
\overbracket	$\overline{x+y}$	\underbracket	$\underline{x+y}$	\doublebracket	$\overline{x+y}$
\overparent	$\widehat{x+y}$	\underparent	$\underbrace{x+y}$	\doubleparent	$\underbrace{x+y}$

Intermezzo 2.12

Antykwa Cambria Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Erewhon Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Kepler Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Libertinus Math Stix Two Math

 $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y} \quad \widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ T_FXGyre Bonum $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y} \quad \widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Dejavu Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Garamond Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ Latin Modern Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ TEXGyre Pagella Math $\widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y} \quad \widehat{x} + \widehat{xy} + \widehat{x+y}, \quad \widehat{x} + \widehat{xy} + \widehat{x+y}$ TEXGyre Termes Math

Intermezzo 2.13

```
\startformula
\underbrace{x + x + \ldots + x}_{= mx}
+
\underbrace{y + y + \ldots + y}_{= ny}
= mx + ny
\stopformula
\underbrace{x + x + \dots + x}_{= mx} + \underbrace{y + y + \dots + y}_{= ny} = mx + ny
```

As in many other situations, we can add struts to enforce a consistent vertical placement.

$$\underbrace{\begin{array}{c} x + x + \dots + x \\ = mx \end{array}}_{= my} + \underbrace{\begin{array}{c} y + y + \dots + y \\ = ny \end{array}}_{= my} = mx + r$$

As an alternative, it is possible to use the mathannotation mechanism.

```
\startformula
\mathannotation[bottom={= mx}]{\underbrace{x + x + \ldots + x}}
+
\mathannotation[bottom={= ny}]{\underbrace{y + y + \ldots + y}}
= mx + ny
\stopformula
x + x + ... + x + y + y + ... + y = mx + ny
```

$$\underbrace{x + x + \dots + x}_{= mx} + \underbrace{y + y + \dots + y}_{= ny} = mx + ny$$

These over- and underdecorations are built with a base glyph, variants or an extensible recipe (if it exist), depending on the size of the content. This means that the size jumps in discrete steps, so the width might not fit the content perfectly. Let us look at one example. We locally show the glyphs for more clarity.

```
\startformula\showglyphs
  \overparent[shrink=no]{x} + \overparent[shrink=no]{xy} +
  \overparent[shrink=no]{x + y}\mtp{,}
  \overparent{x} + \overparent{xy} +
  \overparent{x + y}
  \stopformula
```

```
\hat{\mathbf{x}} + \hat{\mathbf{x}} + \hat{\mathbf{x}} + \hat{\mathbf{y}}_{\mathbf{x}} \hat{\mathbf{x}} + \hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{x}} + \hat{\mathbf{y}}
```

Note that the parentheses in the right formula are scaled just slightly. In fact, they are not (yet) scaled if the extensible recipe is active (as it is for the parentheses on top of x + y). In Intermezzo 2.13 we show this example in some of the other fonts.

Be kind to your readers; do not overuse this type of constructions.

\startformula
\underbracket{

```
\underbracket{
      \underbracket{
         \underbracket{
            \underbracket{
               \underbracket{
                  \underbracket{
                     \underbracket{1} 1
                     +1\} {2}
                 +1\} {3}
               -1 {2}
           +1} {3}
         -1 {2}
      -1} {1}
   -1\} \{0\}
\stopformula
                                       1 + 1 + 1 - 1 + 1 - 1 - 1 - 1
                                        \begin{array}{c} 3 \\ 2 \\ 3 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ 1 \\ \hline 1 \\ \hline \end{array}
```

The other type of stackers are decorated arrows and similar symbols, where content might be put on top or below.

```
\startformula
A mrel{1+2}a+b+c
                                                      B \ \{1+2\}\
                                                      D \mrightarrow{1+2}{a+b+c}
C \mleftarrow{1+2}{a+b+c}
E \mleftrightarrow{1+2}{a+b+c}
G \mRightarrow{1+2}{a+b+c}
                                                      F \mLeftarrow{1+2}{a+b+c}
                                                      H \mLeftrightarrow{1+2}{a+b+c}
I \mtwoheadleftarrow{1+2}{a+b+c}
                                                      J \mtwoheadrightarrow{1+2}{a+b+c}
K \mapsto{1+2}{a+b+c}
                                                      L \mhookleftarrow{1+2}{a+b+c}
M \mhookrightarrow{1+2}{a+b+c}
                                                      N \mleftharpoondown{1+2}{a+b+c}
0 \mleftharpoonup{1+2}{a+b+c}
                                                      P \mrightharpoondown{1+2}{a+b+c}
Q \mrightharpoonup{1+2}{a+b+c}
                                                      R \mrightoverleftarrow{1+2}{a+b+c}
S \mleftoverrightarrow{1+2}{a+b+c} T \mleftrightharpoons{1+2}{a+b+c}
U \mrightleftharpoons{1+2}{a+b+c}
                                                      V \mtriplerel{1+2}{a+b+c} W
\stopformula
                 A \xrightarrow{1+2}_{a+b+c} B \xrightarrow{1+2}_{a+b+c} C \xleftarrow{1+2}_{a+b+c} D \xrightarrow{1+2}_{a+b+c} E \xleftarrow{1+2}_{a+b+c} F \xleftarrow{1+2}_{a+b+c} G \xrightarrow{1+2}_{a+b+c}
           H \xleftarrow{1+2}_{a+b+c} I \xleftarrow{1+2}_{a+b+c} J \xrightarrow{1+2}_{a+b+c} K \xleftarrow{1+2}_{a+b+c} L \xleftarrow{1+2}_{a+b+c} M \xleftarrow{1+2}_{a+b+c} N \xleftarrow{1+2}_{a+b+c} O \xleftarrow{1+2}_{a+b+c} O
              P \xrightarrow{1+2}_{a+b+c} Q \xrightarrow{1+2}_{a+b+c} R \xleftarrow{1+2}_{a+b+c} S \xleftarrow{1+2}_{a+b+c} T \xrightarrow{1+2}_{a+b+c} U \xrightarrow{1+2}_{a+b+c} V \xrightarrow{1+2}_{a+b+c} W
```

Some fonts lack some of these. In Stix Two Math we get the following.

$$A \xrightarrow{1+2}_{a+b+c} B \xrightarrow{1+2}_{a+b+c} C \xleftarrow{1+2}_{a+b+c} D \xrightarrow{1+2}_{a+b+c} E \xleftarrow{1+2}_{a+b+c} F \xleftarrow{1+2}_{a+b+c} G \xrightarrow{1+2}_{a+b+c}$$

$$H \xleftarrow{1+2}_{a+b+c} I \xleftarrow{1+2}_{a+b+c} J \xrightarrow{1+2}_{a+b+c} K \xleftarrow{1+2}_{a+b+c} L \xleftarrow{1+2}_{a+b+c} M \xleftarrow{1+2}_{a+b+c} N \xrightarrow{1+2}_{a+b+c}$$

$$Q \xrightarrow{1+2}_{a+b+c} P \xrightarrow{1+2}_{a+b+c} Q \xrightarrow{1+2}_{a+b+c} R \xrightarrow{1+2}_{a+b+c} S \xleftarrow{1+2}_{a+b+c} T \xrightarrow{1+2}_{a+b+c} U \xrightarrow{1+2}_{a+b+c} V \xrightarrow{1+2}_{a+b+c} W$$

Additionally, there are variants that begin with "t" instead of "m", that use text mode for the content above or below the extensible symbol. Below we provide two common ways to indicate that a function is an injection.

\startformula

<pre>f \colon A \trightarrow{injection}</pre>	В	$\t, \\$
f \colon A \hookrightarrow	В	\mtp{,}
<pre>f \colon A \mhookrightarrow[minwidth=2\emwidth]</pre>	В	$\t .}$
\stopformula		

 $f: A \xrightarrow{\text{injection}} B, f: A \hookrightarrow B, f: A \hookrightarrow B.$

These extensible arrows are defined as stackers, but we can create our own as well. For example, we can put a small diamond symbol (\diamond) (Unicode slot $0 \times 022C4$) on top of something by defining a new type of stacker called MyStacker. While the predefined arrows come out as relations with corresponding spacing, our new stacker might not be well-suited for this class. Relations have too much space around them, while the usual spacing around characters might be too small. We can instead make use of the fraction class, which adds some additional spacing around our constructions (though not as much as for the relation class). Note that the choice of math class also might affect the possibility of line breaks.

```
\definemathstackers
[MyStacker]
[both]
[mathclass=fraction]
```

We can now use \mathover to put the diamond on top of something. For spacing comparison, we also add an example that uses the predefined stacker top.

```
\startformula
   A \mathover[MyStacker]{"22C4}{B} C \mathover[top]{"22C4}{D} E
\stopformula
```

```
A È CDE
```

If we want to use this type of construction many times, it is convenient to define an instance.

```
\definemathover
[MyStacker] % stacker
[Diamonded] % name
["22C4] % unicode slot
```

We can now use \Diamonded to put a small diamond on top of something.

\startformula

```
\Diamonded{x} \Diamonded{y} + \Diamonded{A} =
\Diamonded{1 + 11} + \Diamonded{\sum_{k=1}}
\stopformula
```

$$\hat{x}\hat{y} + \hat{A} = 1 + 11 + \sum_{k=1}^{\diamond}$$

Observe that the diamonds we put on the characters do not obey the anchoring that accents use, but are centered. This is more easily seen if we show some bounding boxes.

 $\overset{\diamond}{x}\overset{\diamond}{y} \pm \overset{\diamond}{A} = 1 \pm 11 \pm \sum_{k=1}^{\diamond}$

There is also \definemathunder for stacking below and \definemathdouble to place content both above and below. We give an example of the latter, where we use the small star that sits in Unicode slot $0 \times 022C6$.

\definemathdouble

[MyStacker]	%	stack	ker
[Adorned]	%	name	
["22C4]	%	slot	above
["22C6]	%	slot	below

We can now use \Adorned.

```
\startformula
  \Adorned{x} \Adorned{y} + \Adorned{A} =
  \Adorned{1+11} + \Adorned{\sum_a}
  \stopformula
```

```
 \overset{\diamond}{x} \overset{\diamond}{y} + \overset{\diamond}{A} = 1 \overset{\diamond}{+} 11 + \overset{\diamond}{\sum}_{\star}^{a}
```

2.11 Big operators

There are four groups of big operators defined in ConT_EXt: integrals, summations, products and operators. We start by listing the elements in each group.

\startformula

```
\int \iint \iiint \quad
\oint \oiint \oiiint \intc \ointc \aointc \aodownintc
\rectangularpoleintc \semicirclepoleintc \circlepoleoutsideintc
\circlepoleinsideintc \squareintc \quad
\sumint \barint \doublebarint \slashint \hookleftarrowint
\timesint \capint \cupint \upperint \lowerint
\stopformula
```

∫∬∭∭ ∮∯∰∱∲∳∳

As you see, we do not get all of them in Latin Modern Math. With Stix Two Math we get

\startformula
\sum \blackboardsum \modtwosum
\stopformula

$$\Sigma \Sigma \Sigma$$

\startformula
\prod \coprod
\stopformula

ΠЦ

\startformula

\bigwedge \bigvee \bigcap \bigcup \bigodot \bigoplus \bigotimes \quad \bigudot \biguplus \bigsqcap \bigsqcup \bigtimes \bigdoublewedge \bigdoublevee \quad \leftouterjoin \rightouterjoin \fullouterjoin \bigbottom \bigtop \bigsolidus \bigreversesolidus \stopformula

$\texttt{AVOUO} \oplus \texttt{VUUV} \times \texttt{VUUV} \times \texttt{VUUV}$

These operators can be typeset differently based on the group they belong to. For instance, the integral operator is typeset differently from the other operators by default due to the location of the limits.

```
\im{ \int_0^1 f(x) \dd x \neq \sum_{k=1}^n a_k \neq
    \prod_{k=1}^n a_k \neq \bigoplus_{k=1}^n a_k } \par
\dm{ \int_0^1 f(x) \dd x \neq \sum_{k=1}^n a_k \neq
    \prod_{k=1}^n a_k \neq \bigoplus_{k=1}^n a_k }
```

$$\int_{0}^{1} f(x) dx \neq \sum_{k=1}^{n} a_{k} \neq \prod_{k=1}^{n} a_{k} \neq \bigoplus_{k=1}^{n} a_{k}$$
$$\int_{0}^{1} f(x) dx \neq \sum_{k=1}^{n} a_{k} \neq \prod_{k=1}^{n} a_{k} \neq \bigoplus_{k=1}^{n} a_{k}$$

As you can see, all the big operators have their limits positioned to the right in inline formulas. In displayed formulas, the integral operator remains consistent with this convention, while the other operators have their limits positioned above and below. This layout makes sense since the different operators have similar heights. However, some people prefer to have the limits positioned below and above the integral sign in displayed formulas.

\setupmathoperators [integrals]

[method=auto]

With this setup, the previous example looks like this.

$$\int_0^1 f(x) \, dx \neq \sum_{k=1}^n a_k \neq \prod_{k=1}^n a_k \neq \bigoplus_{k=1}^n a_k$$
$$\int_0^1 f(x) \, dx \neq \sum_{k=1}^n a_k \neq \prod_{k=1}^n a_k \neq \bigoplus_{k=1}^n a_k$$

Some fonts, like T_EXGyre Bonum Math, come with an extensible integral. We can use it by giving the integrand as an argument to \int. Note the placement of the limits.

In the last example we used the keyword driven setup of integrals. (Here C:3 is one of the colors in the color palette we use in this document.)

2.12 Radicals

Square roots are set with \sqrt or by raising to the power one-half. In the pre-digital time a surd sign $\sqrt{}$ was often used, since it was then complicated to set the horizontal bar. To get a *n*th root you either give an extra argument to \sqrt or use \root.

\stopformula

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = \sqrt{(1+x)} = \sqrt{(1+x)}$$
$$\sqrt[n]{1+x} = \sqrt[n]{1+x} = \sqrt[n]{1+x} = (1+x)^{1/n}$$

In Section 4.5, we will address the apparent inconsistency between the exponents $\frac{1}{2}$ and 1/n. When an equation contains multiple radicals, it may be preferable for them to have a consistent appearance. To achieve this, we can work with struts. We will use the following code.

```
\im{ \sqrt{e} + \sqrt{f} + \sqrt{g} + \sqrt{h} }
```

Below we show the output it gives with different struts applied. We do set up the strut with

```
\setupmathradical
 [sqrt]
 [strut=X]
```

where we let X be the value indicated below the formula (except for the first case where the key is not altered). We also use a helper to show the struts.

Another keyword that might come in handy is the depth. Let us look at an example

```
\startformula
   \sqrt{x} + \sqrt{y} + \sqrt{a_k^n}
```

$$\begin{array}{cccc} \sqrt{\Bbbk} + \sqrt{\lg} + \sqrt{\hbar} & \sqrt{\Bbbk} + \sqrt{\lg} + \sqrt{\hbar} & \sqrt{\varrho} + \sqrt{f} + \sqrt{g} + \sqrt{h} \\ & \text{default} & \text{yes} & \text{no} \\ \sqrt{\Bbbk} + \sqrt{f} + \sqrt{g} + \sqrt{h} & \sqrt{\Bbbk} + \sqrt{lf} + \sqrt{g} + \sqrt{h} & \sqrt{\varrho} + \sqrt{f} + \sqrt{g} + \sqrt{h} \\ & \text{math} & \text{height} & \text{depth} \end{array}$$

\stopformula

 $\sqrt{x} + \sqrt{y} + \sqrt{a_k^n}$

Observe how the size of the radical is adjusted based on the depth of the y. Similarly, the same size is applied to a_k^n , but since the k has a greater depth, the radical is shifted downwards. To avoid this, we can explicitly set the depth (0pt is not a valid option, none sets it to 1sp).

```
\startformula
  \sqrt[depth=none]{x} + \sqrt[depth=none]{y} +
  \sqrt[depth=none]{a_k^n} = \sqrt[depth=10pt]{a_k^n}
  \stopformula
```

$$\sqrt{x} + \sqrt{y} + \sqrt{a_k^n} = \sqrt{a_k^n}$$

If we plan on using square roots without any depth in multiple instances, it is a good practice to define a new instance.

```
\definemathradical
[Sqrt]
[depth=none]
```

```
\startformula
  \Sqrt{x} + \Sqrt{y} + \Sqrt{a_k^n}
\stopformula
```

$$\sqrt{x} + \sqrt{y} + \sqrt{a_k^n}$$

Another way to enforce uniform typesetting in formulas with several radicals is to set height=\maxdimen and depth=\maxdimen.

```
\setupmathradical
[sqrt]
[depth=\maxdimen,
height=\maxdimen]
```

```
\startformula
   \sqrt{x} + \sqrt{y} + \sqrt{a_k^n}
\stopformula
```

$$\sqrt{x} + \sqrt{y} + \sqrt{a_k^n}$$

There is also a parameter mindepth that gives the minimum amount of depth for a radical. Compare the left-hand and right-hand sides below, where mindepth is inactive for the lefthand side, while the (default) value .20\exheight is used for the right-hand side.

$$\sqrt{1+x}\sqrt{1-x} \neq \sqrt{1+x}\sqrt{1-x}$$

At a first glance the two versions might look the same. But in the left-hand side the $\sqrt{1-x}$ has no depth, while the plus sign in the $\sqrt{1+x}$ forces some depth, making the radicals differently aligned vertically. In the right-hand side the mindepth prevents this. Its value depends on the font.

Finally, to honor an anonymous Italian user at Stack Exchange, we show how to define a radical with a small hook.

```
\definemathradical
[italiansqrt]
[rule=yes,
   left="221A,
   right=\delimitedrightannuityshortuc,
   rightmargin=.05\emwidth]
\startformula
```

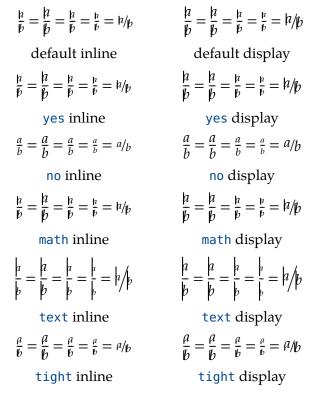
```
\titaliansqrt{1 + x} + \titaliansqrt{\frac{1 + x}{1 - x}} \\stopformula
```

$$\sqrt{1+x} + \sqrt{\frac{1+x}{1-x}}$$

2.13 Fractions

We can typeset fractions with the \frac macro. It takes two arguments, the numerator and the denominator.

```
\startformula
  \frac{1 + \frac{1}{x}}{1 - \frac{1}{x^2}} = \frac{x}{x - 1}
  \stopformula
```


$$\frac{1+\frac{1}{x}}{1-\frac{1}{x^2}} = \frac{x}{x-1}$$

This covers almost everything you need to know about fractions. However, if you want more details, keep reading. You'll likely use \frac most of the time, since it automatically adapts to the appropriate style in both displayed and inline formulas. But there are a few other options available, such as \dfrac, \tfrac, and \sfrac, which enforce display style math, text style math, and script style, respectively. Additionally, there's \vfrac, which can be thought of as a virgule fraction.

Vertical spacing in fractions is partly determined by struts. We'll demonstrate this using the following example, which sets different types of fractions in both display math and inline math.

```
frac{a}{b} = dfrac{a}{b} = tfrac{a}{b} = vfrac{a}{b} = vfrac{a}{b}
```

In Intermezzo 2.14 we show the output with \setupmathfractions[strut=X], where X is indicated below each example. To guide you we show the struts as bars.

Intermezzo 2.14

The usage of struts is mainly for consistency. One can argue that the spacing between the fraction bar and the *g* in the following fraction is too big.

 $\frac{f}{g}$

But then one should also have in mind that there might be other fractions nearby. We show below a formula with one additional fraction, and different settings for the strut, for comparison.

| $\frac{f}{g} = \frac{u}{h}$ |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| default | yes | no | math | text | tight |

It is also possible to configure the strut by giving an optional argument to \frac.

```
\startformula
  \frac[strut=no]{f}{g}
  \stopformula
```

 $\frac{f}{g}$

There are some more options possible to give. Instead of having a tall nested fraction one can use a slash.

```
\startformula
  \dfrac
  [method=line,
     vfactor=0]
```

```
{ \left( 1 + \frac{1}{x} \right) }
{ \left( 1 - \frac{1}{x} \right) }
=
\frac{x + 1}{x - 1}
\stopformula
```

$$\left(1+\frac{1}{x}\right) / \left(1-\frac{1}{x}\right) = \frac{x+1}{x-1}$$

Note here the use of \dfrac instead of \frac. With \frac, the content of the inner fractions would be set in script style. Also compare with what we get if we use \vfrac.

```
\startformula
  \vfrac
    { \left( 1 + \frac{1}{x} \right) }
    { \left( 1 - \frac{1}{x} \right) }
    =
    \frac{x + 1}{x - 1}
\stopformula
```

$$\left(1+\frac{1}{x}\right) / \left(1-\frac{1}{x}\right) = \frac{x+1}{x-1}$$

It is not only the size that is different, the numerator is raised a bit and the denominator is lowered a bit. The vfrac is defined with method=horizontal, and is merely meant to be used for smaller numerical inline fractions, 7/12.

Next, we show how to modify the fraction bar. This should in general not be necessary, but it gives a good example of the flexibility of ConT_EXt.

```
\startformula
  \frac
    [margin=0.25\mathemwidth]
    {1 + \frac{1}{x}}
    {1 - \frac{1}{x}}
    =
    \frac[color=C:3]{x + 1}{x - 1}
  \stopformula
    1 + 1/2
```

$$\frac{1+\frac{1}{x}}{1-\frac{1}{x}} = \frac{x+1}{x-1}$$

If you are to use a different style many times is of course better to define a new instance.

```
\definemathfraction
[widefrac]
[rule=yes,
   rulethickness=2pt,
   symbolcolor=C:2,
   topcolor=C:3,
   bottomcolor=C:1,
   margin=0.5\mathemwidth,
   mathstyle=display]
```

```
\startformula
```

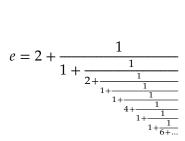
```
\widefrac
   {1 + \frac{1}{x}}
   {1 - \frac{1}{x}}
=
   \frac{x + 1}{x - 1}
\stopformula
```

$$\frac{1+\frac{1}{x}}{1-\frac{1}{x}} = \frac{x+1}{x-1}$$

We have complete control of the math styles used in the numerator and the denominator.

```
\startformula
  \frac{1 + \frac{1}{x}}
    {1 - \frac{1}{x}}
    {1 - \frac{1}{x}}
    =
  \frac[mathstyle=display]
    {1 + \frac{1}{x}}
    {1 - \frac{1}{x}}
    =
  \frac[mathnumeratorstyle=display]
    {1 + \frac{1}{x}}
    {1 - \frac{1}{x}}
    =
  \frac[mathdenominatorstyle=display]
    {1 + \frac{1}{x}}
    {1 - \fra
```

$\frac{1+\frac{1}{x}}{x} =$	$1 + \frac{1}{x}$	$1 + \frac{1}{x}$	$\frac{1+\frac{1}{x}}{1+\frac{1}{x}}$
$1 - \frac{1}{x}$	$-\frac{1}{1-\frac{1}{x}}$	$1 - \frac{1}{x}$	$\frac{1}{1-\frac{1}{x}}$


Let's explore a perhaps unexpected example. The binomial coefficients $\binom{n}{k}$ are actually defined using the fraction mechanism. We will next demonstrate how to use \definemathfraction to define a Christoffel symbol of the second kind. This symbol resembles a binomial coefficient, but it uses curly braces instead of parentheses.

```
\definemathfraction
 [Christoffel]
 [left="7B, % unicode for {
   right="7D, % unicode for }
   rule=no] % no rule
\startformula
 \Christoffel{l}{jk} = \Gamma^{{l}_{jk}(x)
 \stopformula
 (1)
```

$$\begin{cases} l\\ jk \end{cases} = \Gamma^l_{jk}(x)$$

We will next demonstrate several ways to typeset continued fractions. We begin by using the ordinary frac macro.

```
\startformula
e = 2 +
  \frac
     {1}
     \{1 + \ frac
               {1}
               \{2 + \backslash frac\}
                         {1}
                         \{1 + \backslash frac\}
                                  {1}
                                  \{1 + \ frac
                                            {1}
                                            \{4 + \backslash frac\}
                                                      {1}
                                                      \{1 + \backslash frac\}
                                                                {1}
                                                                \{1 + \ frac
                                                                          {1}
                                                                          {6 + \ldots}}}}}
\stopformula
```


There is also a predefined \cfrac that can be used. It will set each piece in display style.

```
\startformula
a_0 + \cfrac
        {1}
        {a_1 + \cfrac
        {1}
        {a_2 + \cfrac
        {1}
        {a_3}}}
```

\stopformula

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3}}}$$

Some like to have the numerators flush right. We can use \setupmathfraction to get that.

```
\setupmathfraction
[cfrac]
[topalign=flushright]
```

The same example as above now looks like this:

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3}}}$$

Some mathematicians prefer to decrease the size of fractions progressively. This can be accomplished by using \setmscale, which scales all math starting from a specific point. By giving it a minus sign as argument, it will use the factor specified in the \mathscalefactor macro, which is set to 0.7 by default.

```
\startformula
```

```
1 + \frac
       {1}
       \{2 + \ frac
               {1}
               \{3 + \ frac
                       {1}
                       \{4 + \backslash frac\}
                               {1}
                               {\setmscale{-}
                                5 + \frac
                                        {1}
                                        {\setmscale{-}
                                         6 + \frac
                                                {1}
                                                {\setmscale{-}
                                                7 + \ldots}}}}
```

\stopformula

$$1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{5 + \frac{1}{1 + \frac{1}{5 + \frac{1}{5$$

Some argue that it's preferable to use an alternative notation for continued fractions, such as [1; 2, 3, 4, 5, 6, 7, ...], for the example above.

If the numerator or denominator of a fraction is lengthy, it's possible to split it using \splitfrac, which is a specific instance of a math fraction without a fraction bar.

```
\startformula
  \frac
    {\splitfrac{a+b+c+d}{+e+f+g}}
    {x+y+z}
=
    \vfrac
    {\splitfrac{(a+b+c+d}{+e+f+g)}}
    {\xi}
    \stopformula
```

$$\frac{a+b+c+d}{+e+f+g} = \frac{(a+b+c+d}{+e+f+g)} / \xi$$

In the right-hand side of the example, we used \vfrac to slash the outer fraction. If we had used \frac, it would have appeared unbalanced due to the very small denominator. It is worth noting that \splitfrac produces slightly skewed fractions. This is achieved with the keys topalign=split:flushleft and bottomalign=split:flushright, which flush the fraction to the left and right, respectively. Additionally, a minimum extra distance can be added to skew the fraction further using the distance key (default is 1em). We demonstrate two extreme usages.

```
\startformula
\frac
{\splitfrac[distance=3em]{a + b + c + d}{+ e + f + g}}
{x + y + z}
=
\frac
{\splitfrac[distance=0em]{a + b + c + d}{+ e + f + g}}
{x + y + z}
\stopformula
\frac{a + b + c + d}{+ e + f + g} = \frac{a + b + c + d}{x + y + z}
```

We now have a good understanding of how to typeset fractions in $ConT_EXt$. Fractions set with a fraction bar tend to be tall. In Section 4.5 we will provide some general advice on how to typeset fractions in inline formulas, to make them blend with the rest of the text.

2.14 Matrices

Matrices are defined and manipulated using the mathmatrix system in ConT_EXt. To typeset a matrix without any delimiters, such as parentheses, we can use startmathmatrix and stopmathmatrix.

```
\startformula
  \startmathmatrix
    \NC a \NC b \NR
    \NC c \NC d \NR
    \stopmathmatrix
\stopformula
```

ab cd

New columns can be added to a matrix using \NC and new rows with \NR. To enclose the matrix with delimiters, such as brackets, we can use the fences keyword.

```
\startformula
  \startmathmatrix[fences=bracket]
    \NC a \NC b \NR
    \NC c \NC d \NR
    \stopmathmatrix
```

\stopformula

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

A few instances of mathmatrix are predefined. For example we can get brackets by invoking the matrix:brackets instance. We do that by using the \startnamedmatrix and \stopnamedmatrix pair, or by using its simple command \bmatrix. In the first case we use \NC for new columns and \NR for new rows. In the second, we separate columns by commas and rows by semicolons.

```
\startformula
  \startnamedmatrix[matrix:brackets]
    \NC a \NC b \NR
    \NC c \NC d \NR
  \stopnamedmatrix
  =
    \bmatrix{a,b;c,d}
\stopformula
```

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

We list other pre-defined instances, with their simple commands.

Instance	Simple command
matrix:bars	vmatrix
<pre>matrix:braces</pre>	bracematrix
<pre>matrix:brackets</pre>	bmatrix
<pre>matrix:doublebar</pre>	vvmatrix
<pre>matrix:groups</pre>	gmatrix
<pre>matrix:none</pre>	matrix
<pre>matrix:parentheses</pre>	pmatrix
<pre>matrix:triplebar</pre>	vvvmatrix

We show a small example of each case (here we use TEXGyre Pagella Math that comes with all the different delimiters).

 $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{cases} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \frac{1 & 2}{3 & 4} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$

It is generally considered good style to avoid mixing different matrix types within a single document, unless there is a specific reason to do so. In linear algebra books, the bmatrix or pmatrix environments are often used for matrices, while the vmatrix environment is typically used for determinants.

If needed, we can define new matrix types using \definemathmatrix. The only required argument is the name of the new matrix. Once the matrix type is defined, we can use it either with \startnamedmatrix and \stopnamedmatrix as shown earlier, or directly with the matrix name.

```
\definemathmatrix
[MyMatrix]
```

```
[fences=openbracket,
  simplecommand=MyMatrix]
\startformula
  \startMyMatrix
   \NC -1 \NC 2 \NR
   \NC 4 \NC -5 \NR
   \stopMyMatrix
\stopformula
```

```
\left[\begin{array}{rr} -1 & 2 \\ 4 & -5 \end{array}\right]
```

We use \setupmathmatrix to configure MyMatrix. We can for example align the entries to the right instead of the default middle.

```
\setupmathmatrix
 [MyMatrix]
 [align={all:right}]
```

The {all:right} right-aligns all columns in the matrix. The example from above now looks like this.

$$\left[\begin{array}{rr} -1 & 2\\ 4 & -5 \end{array}\right]$$

You can also specify the alignment of each column individually by using the align key with a comma-separated list of alignments. For instance, align={all:right,1:left} will set all columns right-aligned except the first one, which will be left-aligned. Observe the order.

As another example, suppose we want to define a matrix type for column vectors with comma-separated entries. We can achieve this by adding an action key to the definition, in this case we set it to transpose (another handy one is negate).

```
\definemathmatrix
```

```
[colvec]
[fences=bracket,
  action=transpose,
  simplecommand=colvec]
\startformula
  \colvec{1,2,3} + \colvec{4,5,6} = \colvec{5,7,9}
\stopformula
\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} + \begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix} = \begin{bmatrix} 5\\ 7\\ 9 \end{bmatrix}
```

One could question if that was really necessary. After all, we could have obtained the same output by separating with semicolons. In other cases, the action can save some typing.

```
\startformula
  \pmatrix{1,2;3,4;5,6}^T =
```

\pmatrix[action=transpose]{1,2;3,4;5,6}
\stopformula

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

Note here how we have avoided to retype the entries of the matrix, transposed.

There are different ways to emphasize the structure of a matrix. We can use \HF to indicate omitted rows with dot leaders, as shown in this example of a Vandermonde matrix.

		$\frac{x^{n-1}}{y^{n-1}}$	
1	z^2	 z^{n-1}	

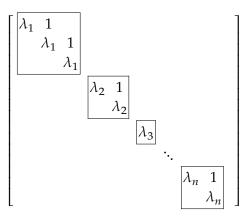
We can add horizontal and vertical lines to indicate the different blocks in a block matrix by using \HL and \VL, or even by \VLT and \VLB that adapt their height and depth a bit better.

```
\startformula
 \startnamedmatrix[matrix:brackets]
    \ A \ NC b \ NR
   \ C \ NC \ O \ NR
 \stopnamedmatrix
 \startnamedmatrix[matrix:brackets]
    NC A VL b NR
   \HL
    \ C \ VL 0 \ NR
 \stopnamedmatrix
  \startnamedmatrix[matrix:brackets]
   \NC A \VLT b \NR
    \HL
   \NC c \VLB 0 \NR
 \stopnamedmatrix
 \startnamedmatrix[matrix:brackets]
   \NC A \VLT[2,C:2] b \NR
    \HL[4,C:3]
    \NC c \VLB 0 \NR
```

\stopnamedmatrix \stopformula

 $\begin{bmatrix} A & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} A & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} A & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} A & b \\ c & 0 \end{bmatrix}$

The \VLT and \VLB are in fact special examples of \GL , "graphics line", that can be used to draw rules to and from arbitrary places. Below the first argument [1] is an identifier, while the second tells where to anchor. So, for example [t] means top of strut, [d] depth of strut and [d, c] means depth of strut and closing the path.


```
\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

The \GL drawing macro is in fact an alias for \graphicline, that can also be used in text, where it works quite well for drawing lines from one point to another, as long as we stay on one page. You can probably guess how this was done in this paragraph, at least if you know that an [x] will align on the exheight. The last one also has an e, so we end with [x,e].

Labels to rows and columns can be added with the column types TT (top), BT (bottom), LT (left) and RT (right).

```
\startformula \startnamedmatrix[matrix:brackets] \NC B \NC C \RT \scriptstyle n - r \NR \NC 0 \NC D \RT \scriptstyle r \NR \BT \scriptstyle n - r \BT \scriptstyle r \NR \Stopnamedmatrix \stopformula <math display="block">\begin{bmatrix} B & C \\ 0 & D \end{bmatrix}^{n-r}_{r}
```

We continue with one more example, with inspiration from the Wikipedia page on Jordan normal form. It is one big matrix consisting of several so-called Jordan blocks. Each block is set inside a rectangle.

Here, one could in principle use HL and VL to build blocks, but instead we used math frames, with the mcframed with matrices inside. Thus, the building blocks were written as

```
\startbuffer[block1]
\mcframed{
 \startmathmatrix
   NC \ 1 MC 1
                               \NC
                                             \NR
   \NC
                 NC \ 1 MC 1
                                             \NR
   \NC
                 \NC
                               \NC \I mbda_1 \NR
 \stopmathmatrix
}
\stopbuffer
\startbuffer[block2]
\mcframed{
 \startmathmatrix
   \NC \lambda 2 \NC 1
                                \NR
   \NC
                 \NC \lambda_2 \NR
 \stopmathmatrix
}
\stopbuffer
\startbuffer[block3]
\mcframed{
 \startmathmatrix
   \NC \lambda 3 \NR
 \stopmathmatrix
}
\stopbuffer
\startbuffer[block4]
\mcframed{
 \startmathmatrix
   NC \ \ln da_n \ 1
                                \NR
   \NC
                 NC \ n \ NR
 \stopmathmatrix
}
```

\stopbuffer

Once this was done, we made the bigger matrix by calling these buffers.

```
\startformula
  \bmatrix{\getbuffer[block1], , , ;
      ,\getbuffer[block2], , ;
      ,,\getbuffer[block3], ;
      ,, ,\ddots, , ;
      ,, ,\getbuffer[block4]}
>stopformula
```

\stopformula

This way of working with buffers is very convenient and it enforces some structure, that leads to improved readability of the code. We show one more example, where the matrices get nested.

```
\startbuffer[rmat]
  \bmatrix{0, 5; 6, 7}
\stopbuffer

\startformula
  \bmatrix{1, 2; 3, 4}
  \otimes
  \getbuffer[rmat]
  =
  \bmatrix
  {
    1 \getbuffer[rmat], 2 \getbuffer[rmat];
    3 \getbuffer[rmat], 4 \getbuffer[rmat]
  }
  \stopformula
  [ [0 5] [
```

[12] _∞ [05]_	$\left[\begin{array}{c} 1 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} \begin{array}{c} 2 \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{array} \right]$	
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 0 & 5 \\ 6 & 7 \end{bmatrix} =$	$\left[3\begin{bmatrix}0&5\\6&7\end{bmatrix}4\begin{bmatrix}0&5\\6&7\end{bmatrix}\right]$	

2.15 Factorials

One usually uses the notation $n! = \prod_{k=1}^{n} k$ (we only type the ! where we want it). If one has a product of two factorials, n!m! the situation can benefit from a small space. On the other hand, for double factorials, n!! one does not want space between the exclamation marks. This is solved by giving the factorial (well, the exclamation mark) its own atom class.

An old notation for *n*-factorial is *n*. Here we typed \oldfactorial{n}, after the definition

```
\definemathradical
[oldfactorial]
[lbannuity]
```

was given.

2.16 Punctuation

While the typesetting of common punctuation marks like periods, colons, semicolons, exclamation marks, and question marks may seem like a simple matter, as they are readily available on the keyboard, there are a few complications to consider. For example, in a vector like (1, 2, 3), the comma is considered part of the mathematical expression, but in a text sentence like " $f(x) = x^2, x \in \mathbb{R}$ ", the comma functions as a punctuation mark. The same is true in a displayed formula.

$$f(x) = x^2, x \in \mathbb{R}$$

Note that the formula above consists of two independent formulas: $f(x) = x^2$ and $x \in \mathbb{R}$. While one might argue that it doesn't matter whether the comma used to separate them comes from text or math, certain combinations of fonts can yield different outcomes. Additionally, if exporting to different formats, the structure may be affected.

Another question to consider is how much space should follow the comma in the displayed formula. Upon examining various T_EX documents, we've observed that the space after the comma is typically either one quad or two quads.

```
\startformula
  f(x) = x^2,\quad x \in \reals \breakhere
  f(x) = x^2,\qquad x \in \reals
  \stopformula
```

$$f(x) = x^2, \quad x \in \mathbb{R}$$
$$f(x) = x^2, \quad x \in \mathbb{R}$$

This is perfectly fine, and the most important thing to have in mind is to be consistent, but one should be aware that the commas in the formulas above are math commas, i.e., set with the math font. In our first displayed formula above we used \mtp{,} (mtp as in math text punctuation) to typeset the comma.

```
\startformula
  f(x) = x^2\mtp{,} x \in \reals
\stopformula
```

The comma is then taken from the text font. Note that we do not add a \quad or \qquad. The $mtp{,}$ will result in a comma that has class textpunctuation, and the space between this class and the ordinary class (that the following *x* belongs to) is configured to be \mathinterwordmuskip, which by default is defined as 18mu, a quad. We quote [Lan61] (translated into English) where the choice of a quad is supported:

"A quad—nothing less, but also nothing more—is set between all independent formulas, independent of their length, height or character."

Instead of using a comma to separate formulas with conditions, some prefer to put the condition in parentheses. It is important to maintain consistency in the spacing between the main formula and the condition. One option is to use $mtp{}$ to add the space, while another is to use quad.

```
\startformula
  f(x) = x^2 \mtp{} (x\in\reals)
\stopformula
```

 $f(x) = x^2 \quad (x \in \mathbb{R})$

Default punctuation varies depending on the context and language. We first show how common punctuation marks look by default in ConT_EXt.

```
\label{eq:linear_startformula} $$ 3.14 \mtp{} 3.14 \mtp{} (a,b) \mtp{} (a;b) \breakhere $$ 3.14 \mtp{} 3, 14 \mtp{} (a, b) \mtp{} (a; b) \stopformula $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ 3, 14 \ (a,b) \ (a;b) $$ 3.14 \ (a,b) \ (a;b) \ (a;b) $$ 3.14 \ (a,b) \ (a;b) \ (a;b
```

As you can see, the spacing in the input did not have any effect. After the period, we get no space, while we get a small space after the comma and the semicolon. Punctuation usage can vary by context and language, with some languages using a comma instead of a period as the decimal separator. There are different ways to configure. We will first show a few different setups using the autopunctuation key, which is the oldest mechanism. The example code is exactly the same as above.

Our second method is to use the autospacing key. The colon is used in different meanings in mathematics, and the spacing around it should be different. When used for proportions there is an equal amount of spacing on each side, 1 : 2. When used in function constructions, the macro \colon is used to get less spacing to the left of the colon, $f: \mathbb{R} \to \mathbb{R}$. We will use the following snippet.

```
\startformula
  f : \reals \to \reals \quad f \colon \reals \to \reals \breakhere
  f: \reals \to \reals \quad f\colon \reals \to \reals
  \stopformula
```

Observe the different spacing around the colons in the code. By default that difference does not have an influence.

```
f: \mathbb{R} \to \mathbb{R} \quad f: \mathbb{R} \to \mathbb{R}f: \mathbb{R} \to \mathbb{R} \quad f: \mathbb{R} \to \mathbb{R}
```

With autospacing set to yes the spacing will change the output.

\setupmathematics

[autospacing=yes]

```
f: \mathbb{R} \to \mathbb{R} \quad f: \mathbb{R} \to \mathbb{R}f: \mathbb{R} \to \mathbb{R} \quad f: \mathbb{R} \to \mathbb{R}
```

Finally, we show different ways to convert decimal periods and decimal commas in numbers with help of the autonumbers key. We use the following snippet.

```
\im{1,222,333.44} \par
\im{1.222.333,44} \par
\im{1, 222, 333.44} \par
\im{11 222} \par
\im{(1.5,1.5)} \par
\im{(1.5, 1.5)} \par
\im{(1,5;1,5)}
```

Take a close look at Intermezzo 2.15 at the different outputs we get, depending on they value of autonumbers.

1, 222, 333.44 1.222.333, 44 1, 222, 333.44 111222 (1.5, 1.5) (1.5, 1.5)	1,222,333.44 1.222.333,44 1,222,333.44 111 222 (1.5,1.5) (1.5,1.5)	1.222.333,44 1,222,333.44 1.222.333,44 111 222 (1,5.1,5) (1,5.1,5)	1 222 333.44 1.222.333 44 1 222 333.44 111 222 (1.5 1.5) (1.5 1.5)				
(1.5, 1.5) $(1.5, 1.5)(1, 5; 1, 5)$ $(1, 5; 1, 5)$		(1.5; 1.5)	(1.5, 1.5)				
autonumbers=no	autonumbers=1	autonumbers=2	autonumbers=3				
	1 222 333,44	1.222.333 44	1,222,333 44				
	1,222,333 44	1 222 333.44	1 222 333,44				
	1 222 333,44	1. 222. 333 44	1,222,333 44				
	111 222	111 222	111 222				
	(1,51,5)	(15.15)	(15,15)				
	(1,5 1,5)	(15.15)	(15,15)				
	(15;15)	(1.5; 1.5)	(1,5;1,5)				
	autonumbers=4	autonumbers=5	autonumbers=6				
L () 0.15							

Intermezzo 2.15

2.17 Text

We have seen earlier that while \mathrm switches to roman (upright) in the math font, one can use \mathtexttf as a style in order to get text from the text font. To use text inside formulas, we use the \mtext macro.

```
\timestartformula \\ timest{Like this: } a^2 + b^2 = c^2 \\ timest{re} \\ n = \underbrace{1 + 1 + \ldots + 1}_{n \timest{ terms}} \\ terms} \\ timestart{terms} \\ timest
```

```
n = \underbrace{1+1+\ldots+1}_{n \text{ terms}}
```

There is also \texthere to add text snippets at certain positions in displayed formulas.

\startformula

```
1 + 2 = 3
\breakhere
\texthere[left]{and}
4 + 5 + 6 = 7 + 8
\stopformula
```

1 + 2 = 34 + 5 + 6 = 7 + 8

and

We show one more example where we have used \mparagraph.

```
\startformula
  \left\{
    \mparagraph
       {Quaternion algebras\par
        over \m {\rationals} up to\par
        isomorphism}
  \right\}
  \alignhere \leftrightarrow
  \left\{
    \mparagraph
       [frame=on,
        background=color,
        backgroundcolor=C:2,
        offset=1dk]
       {Finite subsets of\par
        places of \m {\rationals} of\par
        even cardinality}
  \right\}
\stopformula
                     Quaternion algebras
over Q up to
isomorphism

    ↔ { Finite subsets of places of Q of even cardinality
```

66

3 Keywords

3.1 Introduction

ConTEXt is built around mechanisms and we have in this document already seen many of them, but now it is time to discuss them a bit closer. By a mechanism we mean a general construction that is shared by several macros, so-called instances. It is easy to define new instances and to set them up. We give a fake example, where we work with the non-existing mechanism X. To define a new instance, we use \defineX. Keywords can be given, as in

```
\defineX
[foo]
[a=x,
b=y]
```

Here the instance foo was defined, having the keywords a and b set to x and y, respectively. It is also possible to define a new instance as a copy of an existing one, as

\defineX [foo] [bar]

where the instance foo was defined as a copy of bar.

Once defined, it is possible to set up the instance foo with setupX. Below we set the keyword c to z.

\setupX [foo] [c=z]

If we want to set a keyword at usage, that is also possible. So

```
\startX
[foo]
[c=z]
...
\stopX
```

if it is an environment, or even

\foo[c=z]

if it is a macro, typically works. For reasons of consistency, some keywords are better to set up outside of usage.

To understand the different mathematical mechanisms, we will list the corresponding keywords and give examples of what they do.

Some keys are experimental and are not really meant to be used.

3.2 Accents

\definemathaccent $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \dots \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \dots \\ 0 \\ 0 \\ 0 \end{bmatrix}$

\setupmathaccent
$$[\ldots, 1, \ldots]$$
 $[\ldots, 2, 2, \ldots]$

For details, see math-acc.mklx.

align This one has no effect, it was used for testing. Nested accents are centered.

alignsymbol If set to yes then the accent is centered over the base character if the accent is wider than the base character.

```
\startformula\showglyphs
    \bar[alignsymbol=no]{i}
    = \bar[alignsymbol=yes]{i}
    = \bar[alignsymbol=yes,shrink=yes]{i}
\stopformula
```

 $i = i = \overline{i}$

Note in the example above that when combined with shrink (see below), the centering is no longer active, since after the shrinking the condition is no longer matched.

color/symbolcolor/textcolor Set the color of accents. The color sets the color for the whole construction, symbolcolor sets the color of the accent and textcolor sets the color of the base character or construction.

```
\startformula
    \hat{A}
    = \hat[color=C:3]{A}
    = \hat[symbolcolor=C:3]{A}
    = \hat[textcolor=C:3]{A}
    = \hat[color=C:3,
            symbolcolor=C:1]{A}
    = \hat[color=C:3,
            textcolor=C:1]{A}
    = \hat[color=C:3,
            symbolcolor=C:2,
            textcolor=C:1]{A}
```

 $\hat{A} = \hat{A} = \hat{A} = \hat{A} = \hat{A} = \hat{A} = \hat{A}$

By default no color change is applied.

i If set to auto the dot over i and j that have accent over them will be removed. This will not happen otherwise.

```
\startformula
    \hat{i} = \hat[i=]{i} \neq \bar{j} = \bar[i=]{j}
\stopformula
```

$$\hat{\imath} = \hat{i} \neq \bar{\jmath} = \bar{j}$$

There is a conjugate instance that is like widebar except that is defined with i=, so the dots over i and j are kept.

mathstyle To set the math style of the content.

$$\frac{\hat{1}}{2} + \frac{\hat{1}}{2}$$

mp Used to use MetaPost constructions.

offset If set to auto it moves (wrongly placed) accents up. There is no need to use this, the problem is usually fixed with tweaks.

plugin Can be set to mp to use a MetaPost construction.

scale Can be set to no (no scaling), yes (use base, variants and extensible) and keep (use base, variants and extensible, but keep base).

```
\startformula
    \hat[scale=no] {f + g}
    = \hat[scale=yes] {f + g}
    = \hat[scale=keep]{f + g}
\stopformula
```

$$f + g = f + g = f + g$$

Some accents have this set to yes or keep (typically the wide ones), but default is no.

stretch/shrink It is possible to stretch and shrink accent glyphs. Possible values are yes and no. It depends also on how the scale is set.

```
\label{eq:startformula} $$ \int f = \frac{f + g}{f + g} = \int f + g = \frac{f + g}{f + g} = \int f + g = \frac{f + g}{f + g} = \int f + g = \frac{f + g}{f + g} = \int f + g = \frac{f + g}{f + g} = \int f + g = \frac{f + g}{f + g} = \int f + g = \frac{f + g}{f + g} = \int f + g = \frac{f + g}{f + g} = \frac{f + g}{f + g}
```

The \widehat and its friends have scale set to keep and both stretch and shrink enabled.

3.3 Alignments

```
\setupmathalignment [\ldots, 1, \ldots] [\ldots, \ldots]^2 = \ldots, \ldots]
```

See math-ali.mkxl and strc-mat.mkxl for details. For simple alignments, see the separate section below.

adaptive This key has been used for experimenting with adaption of widths of alignment cells and numbering.

align Setup the alignment of different columns.

```
\startformula
```

\startalign[n=4] $\NC = B$ $\NC + C$ $\NC + D$ \NR \NC A NC A' + 1 NC = B' + 1 NC + C' + 1 NC + D' + 1 NR\stopalign \stopformula \startformula \startalign[n=4,align={all:left,1:right}] NC = B NC + C NC + DNC A \NR NC A' + 1 NC = B' + 1 NC + C' + 1 NC + D' + 1 NR\stopalign \stopformula \startformula \startalign[n=4,align=all:middle] $\NC = B$ NC + C NC + D\NC A \NR NC A' + 1 NC = B' + 1 NC + C' + 1 NC + D' + 1 NR\stopalign \stopformula A = B + C + DA' + 1 = B' + 1 + C' + 1 + D' + 1A = B + C + DA' + 1 = B' + 1 + C' + 1 + D' + 1A = B + C + DA' + 1 = B' + 1 + C' + 1 + D' + 1**distance** Distance between alignment groups. By default set to \emwidth. \startformula \startalign[m=2,n=2] $NC \times NC = 2$ NC y NC = 3 NR\stopalign \stopformula \startformula \startalign[m=2,n=2,distance=2\emwidth] $NC \times NC = 2$ NC y NC = 3 NR\stopalign \stopformula \startformula \startalign[m=2,n=2,distance=0pt plus 1fil] $NC \times NC = 2$ NC y NC = 3 NR\stopalign \stopformula x = 2 y = 3x = 2 y = 3

x = 2

y = 3

fences If location is set to packed, we can use fences to surround the alignment.

```
\startformula
  \startalign[location=packed,fences=brace]
    \NC x \NC = 2 \NR
    \NC y \NC = 3 \NR
    \stopalign
  \stopformula
    (x = 2)
```

```
 \begin{cases} x = 2 \\ y = 3 \end{cases}
```

grid By default set to math. Only applicable if in grid mode.

location Determines where the alignments go. By default it is midaligned, but it can also be set to left, right or packed.

```
\startformula
  \startalign
    NC \times NC = 2 NR
    NC y NC = 3 NR
  \stopalign
\stopformula
\startformula
  \startalign[location=left]
    NC \times NC = 2 NR
    NC y NC = 3 NR
  \stopalign
\stopformula
\startformula
  \startalign[location=right]
    NC \times NC = 2 NR
    NC y NC = 3 NR
  \stopalign
\stopformula
                                   x = 2
                                   y = 3
x = 2
y = 3
```

x = 2y = 3

In the case of packed it can be used as a part of a larger formula

```
\startformula
  \startalign
  [location=packed,
    fences=sesac]
```

```
\NC A \EQ B \NR
\NC C \EQ D \NR
\NC E \EQ F \NR
\stopalign
\implies
\startalign
[location=packed,
fences=cases]
\NC G \EQ H \NR
\NC I \EQ J \NR
\stopalign
\stopformula
```

$$\begin{array}{c} A = B \\ C = D \\ E = F \end{array} \right\} \implies \begin{cases} G = H \\ I = J \end{cases}$$

mathstyle This controls the math style of the alignment.

```
\startformula
  \startalign
   \NC x \NC = \frac{1}{2} \NR
   \NC y \NC = \int_0^1 t \dd t \NR
  \stopalign
\stopformula
  \startformula
  \startalign[mathstyle=text]
    \NC x \NC = \frac{1}{2} \NR
   \NC y \NC = \int_0^1 t \dd t \NR
   \stopalign
}
```

$$x = \frac{1}{2}$$
$$y = \int_0^1 t \, dt$$
$$x = \frac{1}{2}$$
$$y = \int_0^1 t \, dt$$

m/n The m describes the number of alignment blocks and n describes the number of alignment points in each block.

```
\startformula
  \startalign[m=3,n=2]
   \NC x \NC = 2
   \NC y \NC = 3
   \NC z \NC = 1 \NR
  \stopalign
  \stopformula
```

$$x = 2 \quad y = 3 \quad z = 1$$

number If set to auto we get equation numbers automatically for each row.

```
\startplaceformula
\startformula
 \startalign
   NC \times NC = 1 NR
   NC y NC = 2 NR
 \stopalign
\stopformula
\stopplaceformula
\startplaceformula
\startformula
 \startalign[number=auto]
   NC \times NC = 1 NR
   NC y NC = 2 NR
 \stopalign
\stopformula
\stopplaceformula
```

```
x = 1

y = 2

(3.1)

x = 1

(3.2.a)

y = 2

(3.2.b)
```

numberdistance Experimental.

numberthreshold Experimental (for adaptive).

reference Do not use on this level. Set a reference on each \NR or on the whole formula.separator To put text inbetween columns of formulas.

```
\startformula
  \startalign[m=2,n=2,separator=text]
    \NC x \NC = 1
    \NC y \NC = 2 \NR
  \stopalign
  \stopformula
```

x = 1text y = 2

spaceinbetween Space between lines in alignments. By default set to the same value
 as the space between lines in formulas (\setupformula[spaceinbetween=...]). The
 default value is quarterline.

```
\startformula
  \startalign
    \NC x \NC = 2 \NR
    \NC y \NC = 3 \NR
    \stopalign
\stopformula
\startformula
```

```
\startalign[spaceinbetween=\lineheight]
  \NC x \NC = 2 \NR
  \NC y \NC = 3 \NR
  \stopalign
  \stopformula
  x = 2
  y = 3
```

```
y = 3x = 2
```

y = 3

suffix Internal. Not meant to be used.

text To add text to the left margin. With just text all lines will have that text, with text:n only the nth line will get it.

```
\startformula
  \startalign[text=foo]
    NC \times NC = 2 NR
    NC y NC = 3 NR
  \stopalign
\stopformula
\startformula
  \startalign[text:1=foo,text:2=bar]
    NC \times NC = 2 NR
    NC y NC = 3 NR
  \stopalign
\stopformula
                                   x = 2
foo
foo
                                   y = 3
foo
                                   x = 2
                                   y = 3
bar
```

textcolor To change color of the text in margin. As for text, with textcolor the color of all text comments will get the color, while with textcolor:n it will only apply to the one on line n.

```
\startformula \\startalign[text:2=and,textcolor:2=C:2] \\ \NC x \NC = 2 \NR \\ \NC y \NC = 3 \NR \\stopalign \\stopformula \\x = 2 \\and \\y = 3
```

textstyle

\startformula

3.4 Cases

\definemathcases $[\stackrel{1}{\ldots}] \quad [\stackrel{2}{\ldots}] \quad [\dots , \stackrel{3}{=} \dots] \qquad OPT$

\setupmathcases $[\ldots, 1, \ldots]$ $[\ldots, \ldots]^2 = \ldots, \ldots]$

Details are given in math-ali.mkxl

distance Specify the space between the columns.

```
\startformula
f(x) =
  \startcases
  \NC x \NC x \geq 0 \NR
  \NC -x \NC x < 0 \NR
  \stopcases
  \quad
f(x) =
  \startcases
  [distance=2em]
  \NC x \NC x \geq 0 \NR
  \NC -x \NC x < 0 \NR
  \stopcases
  \stopformula</pre>
```

$$f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases} \quad f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

fences To use a different set of fences.

```
\startformula
f(x) =
  \startcases
  [fences=bracket]
  \NC x \NC x \geq 0 \NR
  \NC -x \NC x < 0 \NR
  \stopcases
  \stopformula
</pre>
```

$$f(x) = \begin{bmatrix} x & x \ge 0 \\ -x & x < 0 \end{bmatrix}$$

left/right To set something directly before or after the construction.

```
\startformula
f(x) =
  \startcases
  [left=\mtext{foo},right=\mtext{bar}]
  \NC x \NC x \geq 0 \NR
  \NC -x \NC x < 0 \NR
  \stopcases
  \stopformula</pre>
```

$$f(x) = \text{foo} \begin{cases} x & x \ge 0\\ -x & x < 0 \end{cases} \text{bar}$$

lefttext/righttext To add something in between. Maybe the most relevant use is to set lefttext to a comma or righttext to " if".

```
\startformula
f(x) =
  \startcases
  [lefttext=\mtext{foo},righttext=\mtext{bar}]
  \NC x \NC x \geq 0 \NR
  \NC -x \NC x < 0 \NR
  \stopcases
\stopformula</pre>
```

$$f(x) = \begin{cases} x \text{foo} & \text{bar} x \ge 0\\ -x \text{foo} & \text{bar} x < 0 \end{cases}$$

leftmargin/rightmargin To specify some space around the cases construction.

```
\startformula
f(x) =
  \startcases
  [leftmargin=3em,rightmargin=4em]
  \NC x \NC x \geq 0 \NR
  \NC -x \NC x < 0 \NR
  \stopcases
  + \sin(x)
  \stopformula
  (x x > 0
```

$$f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases} + \sin(x)$$

mathstyle Set the style of the content in the first column. By default it is text.

```
\definemathcases
 [mynewcases]
 [cases]
 [mathstyle=display]
\startformula
 \frac{1}{2} \int f(x) \alignhere =
```

```
\startcases
  \NC \frac{1}{2} \int \NC x \geq 0 \NR
  \NC -\frac{1}{2} \int \NC x < 0 \NR
  \stopcases
  \breakhere =
  \startmynewcases
   \NC \frac{1}{2} \int \NC x \geq 0 \NR
   \NC \frac{1}{2} \int \NC x < 0 \NR
  \stopmynewcases
  \stopformula</pre>
```

$$\frac{1}{2} \int f(x) = \begin{cases} \frac{1}{2} \int x \ge 0\\ -\frac{1}{2} \int x < 0 \end{cases}$$
$$= \begin{cases} \frac{1}{2} \int x \ge 0\\ \frac{1}{2} \int x < 0 \end{cases}$$

numberdistance Experimental for wide formulas.

simplecommand To enable a more compact notation.

```
\definemathcases
 [mynewcases]
 [cases]
 [simplecommand=mynewcases]
 \startformula
```

```
f(x) = \mynewcases{1,x>0;-1,x<0}
\stopformula</pre>
```

$$f(x) = \begin{cases} 1 & x > 0\\ -1 & x < 0 \end{cases}$$

spaceinbetween Specify the space between lines. By default inherited from the same parameter for math alignments, where it is set to quarterline.

```
\startformula
f(x) =
  \startcases
    \NC x \NC x \geq 0 \NR
    \NC -x \NC x < 0 \NR
  \stopcases
  \quad
f(x) =
  \startcases
    [spaceinbetween=1\lineheight]
    \NC x \NC x \geq 0 \NR
    \NC -x \NC x < 0 \NR
    \NC -x \NC x < 0 \NR
    \Stopcases</pre>
```

\stopformula

$$f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases} \quad f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

strut If set to yes (default) struts will be added. If set to no, then not.

```
\startformula\showstruts
f(x) =
 \startcases
 \NC x \NC x \geq 0 \NR
 \NC -x \NC x < 0 \NR
 \stopcases
 \quad
f(x) =
 \startcases
 [strut=no]
 \NC x \NC x \geq 0 \NR
 \NC -x \NC x < 0 \NR
 \stopcases
\stopformula</pre>
```

$$f(x) = \begin{cases} x & k \ge 0 \\ -x & k < 0 \end{cases} \quad f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

3.5 Fences

\definemathfence
$$[\stackrel{1}{\ldots}] \quad [\stackrel{2}{\ldots}] \quad [\stackrel{3}{\ldots} , \stackrel{3}{\ldots}]$$

\setupmathfence $[\ldots, 1, \ldots]$ $[\ldots, \ldots]^2 = \ldots, \ldots]$

Implementation details are given in math-fen.mkxl

- alternative If alternative is set to small, one will step the sizes of the variants by 1. If set to big, the choices from the goodie files are used.
- **bottomspace/topspace** These keywords can be used to fake the size of the contents of fences.

```
\startformula
   \fenced[parenthesis] {1 + x^2}
   = \fenced[parenthesis][bottomspace=-2pt,topspace=-2pt]{1 + x^2}
   = \fenced[parenthesis][bottomspace=5pt, topspace=5pt] {1 + x^2}
\stopformula
```

$$(1+x^2) = (1+x^2) = (1+x^2)$$

color/symbolcolor/middlecolor With these keys we add colors to the fences.

\startformula

```
\innerproduct {u \fence v}
= \innerproduct[color=C:3] {u \fence v}
= \innerproduct[symbolcolor=C:3]{u \fence v}
= \innerproduct[middlecolor=C:3]{u \fence v}
= \innerproduct[leftcolor=C:3] {u \fence v}
= \innerproduct[rightcolor=C:3] {u \fence v}
\stopformula
```

$$\langle u \mid v \rangle = \langle u \mid v \rangle$$

define When defining a new fence instance, one can set this keyword to yes in order to also define a shortcut macro with the name of the fence.

```
\definemathfence
[MySet]
[brace]
[define=yes,
middle=`|]
\startformula
 \fenced[MySet]{x \in \reals \fence x > 0}
= \MySet{x \in \reals \fence x > 0}
\stopformula
```

 $\{x \in \mathbb{R} \mid x > 0\} = \{x \in \mathbb{R} \mid x > 0\}$

displayfactor/inlinefactor A multiplier for penalties inside the fence.

```
\showmakeup[penalty]
\dm {\fenced[parenthesis]{1 + x^2} =
        \fenced[parenthesis][displayfactor=2000]{1 + x^2}}
```

```
\left(1 + \frac{x^2}{1 + \frac{x
```

distance This only applies if text is set to yes.

factor By default auto. It can be none, force (see below), or a numerical value.

```
 \begin{cases} \frac{1+x}{1-x} = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-
```

height/depth Can be used together with factor=force. Note that the fence is not centered on the math axis anymore.

```
\startformula
    \fenced[bracket]
```

```
{\frac{1 + x}{1 - x}}
= \fenced[bracket]
    [factor=force,height=1cm,depth=.5cm]
    {\frac{1 + x}{1 - x}}
= \fenced[bracket]
    [factor=force,height=.5cm,depth=1cm]
    {\frac{1 + x}{1 - x}}
```

\stopformula

$$\left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right]$$

leftstyle/rightstyle To use some style command for the left and right pieces in text fences.

mathclass/leftclass/rightclass/middleclass By default a fencing behaves as an open atom to the left and close atom to the right. This can be altered by setting either mathclass (both left and right) or leftclass and rightclass, independently.

```
\startformula\showmakeup[mathglue]
```

```
x
+ \fenced[brace] {x}
+ \fenced[brace][mathclass=\mathordinarycode] {x}
+ \fenced[brace][leftclass=\mathordinarycode] {x}
+ \fenced[brace][rightclass=\mathordinarycode]{x}
+ x
\stopformula
```

$$x_{\text{perfine}} + \{x_{\text{perfine}}\} + \{x_{\text{perfine}}\} + \{x_{\text{perfine}}\} + \{x_{\text{perfine}}\} + \{x_{\text{perfine}}\} + x_{\text{perfine}}\}$$

It is also possible to set the class of the middle symbol, if used.

```
\startformula\showmakeup[mathglue]
  \fenced[brace]
    [middle=`|]
    {x \in \reals \fence x > 0}
  = \fenced[brace]
    [middle=`|,
    middleclass=\mathordinarycode]
    {x \in \reals \fence x > 0}
\stopformula
```

 $\{x \in \mathbb{R} \mid x > 0\} = \{x \in \mathbb{R} \mid x > 0\}$

mathmeaning This has to do with tagging. Experimental.

mathstyle With this parameter it is possible to enforce a certain style of a fence.

```
\startformula
   \fenced[brace] {x^2}
   + \fenced[brace][mathstyle={scriptscript}] {x^2}
   + \fenced[brace][mathstyle={cramped,scriptscript}]{x^2}
```

\stopformula

$${x^2} + {x^2} + {x^2}$$

- method If we have a left fence the engine is able to correct for a missing right fence. If method is set to auto this is enabled. Meant for automatic workflows.
- mp Use a MetaPost construction.
- left/middle/right The symbols to be used can be specified. This is of course more
 often used when defining a new fence.

```
\startformula
  \fenced[nothing][left="27EE,middle=`:,right="27E7]{x \fence y}
  \stopformula
```

(x:y]

- overflow Engine control for the middle pieces (usually a vertical bar). The default is auto which means that a check is done to make sure that the middle piece is not ridiculous. The other option is no, and then no check is done.
- plugin To use for example the MetaPost constructions, at runtime.
- size Used to set the size of the fences manually. We can either set them by number

```
\startformula
```

\fenced[bracket]	${\int {x}^{1 + x}{1 - x}}$
<pre>= \fenced[bracket][size=0]</pre>	${\int {x}^{1 + x}{1 - x}}$
<pre>= \fenced[bracket][size=1]</pre>	${\int {x}^{1 + x}{1 - x}}$
<pre>= \fenced[bracket][size=2]</pre>	${\int {x}^{1 + x}{1 - x}}$
<pre>= \fenced[bracket][size=3]</pre>	{\frac{1 + x}{1 - x}}
<pre>= \fenced[bracket][size=4]</pre>	{\frac{1 + x}{1 - x}}
\stopformula	

$$\left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right]$$

or by keyword

\startformula
 \fenced[bracket] {\frac{1 + x}{1 - x}}
 = \fenced[bracket][size=big] {\frac{1 + x}{1 - x}}

- = \fenced[bracket][size=Big] {\frac{1 + x}{1 x}}
- = \fenced[bracket][size=bigg]{\frac{1 + x}{1 x}}

```
= \fenced[bracket][size=Bigg]{\frac{1 + x}{1 - x}}
```

\stopformula

$$\left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right] = \left[\frac{1+x}{1-x}\right]$$

source/leftsource/rightsource/middlesource Can be used to decorate fences. We show one example.

```
\defineboxanchor[left]
\defineboxanchor[right]
```

\setboxanchor

```
[left]
[corner={left,bottom},location=height,xoffset=.5em,yoffset=-.25ex]
\hbox to \zeropoint{\hss\mathindexfont open\hss}
```

```
\setboxanchor
```

```
[right]
[corner={right,bottom},location=height,xoffset=-.5em,yoffset=-.25ex]
\hbox to \zeropoint{\hss\mathindexfont close\hss}
```

```
\startformula
  \fenced
    [parenthesis]
    [leftsource=left,rightsource=right]
    {1 + \frac{x}{n}^{n}
}
```

$$\left(1+\frac{x}{n}\right)^n$$

```
snap About moving (snapping) exponents. By default set to no. With
```

```
 \det\{ \frac{1}{(1+x^2)^2} + \frac{1}{(1+x^2)^2} + \frac{1}{(1+x^2)^2} \right\}  we get \frac{1}{(1+x^2)^2} + \frac{1}{(1+x^2)^2}. If set to yes we get \frac{1}{(1+x^2)^2} + \frac{1}{(1+x^2)^2}.
```

setups Can be used to configure \suchthat, \where and \and. Still experimental, meant to bring meaning to set constructions. You can play with this:

```
\definemathfence[Set][set][define=yes,setups=math:fence:set:bar] %
:colon
```

- state This is like the method key, but uses lua instead of the engine.
- text If set to yes (not default) then we get a special kind of fences. One such instance is \tuparrow. Alan can give more details.

3.6 Formulas

```
\defineformula [.1, ...] [..., ...] = .....]
```

```
\setupformula [\ldots, 1, \ldots] [\ldots, 2^2, \ldots]
```

align This controls the alignment of the formula. By default formulas are centered on the line, but they can also be flushleft, flushright or slanted. The last option means that the first line is flush left, the last flush right, and the rest centered.

```
\startformula
  1\breakhere
  1+2\breakhere
  1+2+3\breakhere
  1+2+3+4
```

```
\stopformula
\startformula
  [align=flushleft]
  1\breakhere
  1+2\breakhere
  1+2+3\breakhere
  1+2+3+4
\stopformula
\startformula
  [align=flushright]
  1\breakhere
  1+2\breakhere
  1+2+3\breakhere
  1+2+3+4
\stopformula
\startformula
  [align=middle]
  1\breakhere
  1+2\breakhere
  1+2+3\breakhere
  1+2+3+4
\stopformula
\startformula
  [align=slanted]
  1\breakhere
  1+2\breakhere
  1+2+3\breakhere
  1+2+3+4
\stopformula
                                     1
                                   1 + 2
                                  1 + 2 + 3
                                1 + 2 + 3 + 4
1
1 + 2
1 + 2 + 3
```

1 + 2 + 3 + 4

1 + 2 + 3

1 + 2 + 3 + 4

```
1 \\ 1+2 \\ 1+2+3 \\ 1+2+3+4 \\ 1+2 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+2+3 \\ 1+
```

1 + 2 + 3 + 4

alternative Can be default, single or multi. Has to do with grid typesetting. See the details manual. Use on your own risk.

bodyfont Can be used to switch font for the formula. Inherits \setupbodyfont.

color Sets the color of formulas.

```
\startformula
 [color=C:2]
 1 + 1 = 2
\stopformula
```

1 + 1 = 2

expansion By default disabled. Only active if expansion is enabled in the paragraph.

- functioncolor/functionstyle This applies to function, and here we set it at the formula level, but it can also be done at the function level.
- grid Has to do with grid typesetting. Do not use it with complex math.
- indentnext Wether or not to indent the paragraph following the formula. Can be yes, no and auto, where auto indents if there is an extra line in the source after the formula, and otherwise not. Note that indenting has to be enabled for this to apply.
- **interlinespace** This sets the space *between* the baselines (but if too small they will of course not clash). By default set to 1.125\lineheight. It makes sense to have it slightly larger than the interline space.

```
\startformula
  A \breakhere B
\stopformula
\startformula[interlinespace=0pt]
  A \breakhere B
\stopformula
\startformula[interlinespace=2\lineheight]
  A \breakhere B
```

1

\stopformula

L	<i>A</i>
L	В
L	.A
L	В
۱	<i>A</i>
L	В

left/right To set up what goes around the equation number.

```
\startplaceformula
  \startformula
  A = B
  \stopformula
  \stopplaceformula
  \startplaceformula
  \startformula[left={[},right={]}]
  A = B
  \stopformula
  \stopplaceformula
```

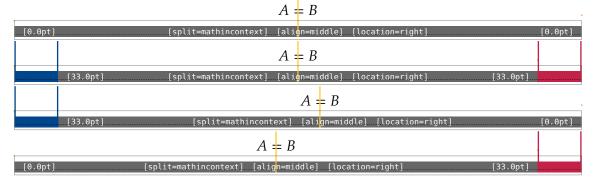
$$A = B \tag{3.3}$$

$$A = B$$
 [3.4]

location This specifies where to put the formula number. By default (and most safe to use) is to the right. Other options are left, inner and outer.

mathematics With this key we can use different instances of the mathematics. Below we show an example where we define a new one and use it. To use a different mathematics inline, we need to use \m rather than \im or \dm.

```
\definemathematics
  [mymath]
  [lcgreek=normal,
   default=normal]
\m {x + \alpha}
\m [mymath] {x + \alpha}
\startformula
  x + \alpha
\stopformula
\startformula
  [mathematics=mymath]
  x + \alpha
\stopformula
```


 $x + \alpha x + \alpha$

 $x + \alpha$ $x + \alpha$

margin/leftmargin/rightmargin Set up margins for the formula. In the example below it looks a bit asymmetric due to the fact that we are in an environment with a positive left margin.

```
\enabletrackers[math.showmargins.less]
\startformula
  A = B
\stopformula
\startformula[margin=3\emwidth]
  A = B
\stopformula
\startformula[leftmargin=3\emwidth]
  A = B
\stopformula
\startformula[rightmargin=3\emwidth]
  A = B
\stopformula
\disabletrackers[math.showmargins.less]
                                         A = B
                       [split=mathincontext] [align=middle] [location=right]
[16.5pt]
                                                                                  [0.0pt]
                                         A = B
                       [split=mathincontext] [align=middle] [location=right]
        [49.5pt]
                                                                          [33.0pt
                                             A = B
                           [split=mathincontext] [align=middle] [location=right]
                                                                                  [0.0pt]
                                      A = B
                   [split=mathincontext] [align=middle] [location=right]
[16.5pt]
                                                                          [33.0pt
```

This is how it shows outside that environment.

margindistance/leftmargindistance/rightmargindistance A bit like the margin keys, but see page 148.

numbercommand A one argument macro that is applied to the formula number.

numbercolor To set up the color of the formula number.

numberconversionset Specify format for equation numbers. See page 144 for an example.

numberdistance The minimum space between formulas and equation numbers. See the discussion in Section 6.7.

numberlocation If split is set to line then setting numberlocation to overlay ensures that the number is not pushing the formula off-center.

```
\startplaceformula[eq:linea]
  \startformula[split=line]
    m(b-a)\leq\int_a^b f(x)\dd x\leq M(b-a).
    \stopformula
  \stopplaceformula
```

```
\startplaceformula[eq:lineb]
  \startformula[split=line,numberlocation=overlay]
    m(b-a)\leq\int_a^b f(x)\dd x\leq M(b-a).
    \stopformula
  \stopplaceformula
```

$$m(b-a) \le \int_{a}^{b} f(x) \, dx \le M(b-a)$$
. (3.5)

$$m(b-a) \le \int_{a}^{b} f(x) \, dx \le M(b-a).$$
 (3.6)

numbermethod Experimental. Numbering formulas can easily go wrong. You can try down. numberstrut If yes then use a strut for the equation number, if no then don't. The default

is yes; always adds a strut even if there is no number.

numberstyle To set the style of the formula number.

- **numberthreshold** Threshold for moving the equation number down (if at the right margin) in alignments.
- order If set to reverse then the vertical placements of the formula and the formula number are switched. Experimental.

option For grid typesetting. Experimental.

penalties To set up penalties in formulas. For example there is

```
\startsetups[math:penalties:page]
  \shapingpenaltiesmode \zerocount
  \widowpenalties \plusthree \plustenthousand \plustenthousand \zerocount
  \clubpenalties \plusthree \plustenthousand \plustenthousand \zerocount
  \stopsetups
```

and the default is indeed this if split is set to yes (default).

referenceprefix To set a namespace for the reference.

- **setups** To set up all kind of details. It is hooked in early, so better use the available keywords, if possible.
- snap/snapstep This is meant for typesetting with the grid. With snap set to yes high or low formulas will typically not cause spreading of lines. The snapstep can be small, medium or big, and medium is the default.
- spacebefore/spaceafter Used to setup the space before and after formulas. By default
 it is big (not in this document).

```
\samplefile{knuthmath}
\startformula
    A = B
\stopformula
\samplefile{knuthmath}
\startformula[spacebefore=big,spaceafter=big]
    A = B
\stopformula
\samplefile{knuthmath}
```

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

A = B

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

A = B

Many readers will skim over formulas on their first reading of your exposition. Therefore, your sentences should flow smoothly when all but the simplest formulas are replaced by "blah" or some other grunting noise.

In this manual we wanted to prevent page breaks just before displayed formulas. For that reason we did

```
\definevspacing[mathtoppenalty][penalty:4000]
```

and then

```
\setupformula
[spacebefore={medium,mathtoppenalty},
    spaceafter=medium]
```

spaceinbetween This sets the extra space *between* the lines.

```
\startformula
  A \breakhere B
\stopformula
\startformula[spaceinbetween=0pt]
  A \breakhere B
\stopformula
\startformula[spaceinbetween=1\lineheight]
  A \breakhere B
\stopformula
\startformula[spaceinbetween=2\lineheight]
  A \breakhere B
```

\stopformula

LA	
<i>A</i>	
ц <i>В</i>	
ц <i>В</i>	
LA	

В	

split Set up how the formula can be split. If set to line then the formula does not break over lines at all. If no then the formula is split over lines, but penalties are set to prohibit a page break. The default is yes, which means that formulas both break over lines and over pages. For this manual we did the following setup:

```
\startsetups[math:penalties:mathincontext]
  \shapingpenaltiesmode \zerocount
  \widowpenalties 3 5000 250 100
  \clubpenalties 3 5000 250 100
  \stopsetups
```

and then

L___

\setupformula
 [split=mathincontext]

- splitmethod Used to control page breaks in multiline formulas. If set to first, then a high penalty is inserted between the first and second line. If last, then between the final two lines, and with both we get both. If empty (default), we get the normal club and widow penalties. See also the split key.
- **strut** Use a strut for consistency. Set to **yes** by default. Some constructs have their own strut commands (with slightly different values).
- textdistance/textmargin These are used to layout long formulas. See page 132 for a discussion and examples.

width This sets the width of the text block (think \hsize)

\stopformula
\stopplaceformula
\disabletrackers[math.showmargins.less]
$A \coloneqq B \tag{3.7}$
 [16.5pt] [split=mathincontext] [align=middle] [location=right] [0.0pt]
$A = B \qquad (3.8)$
 <pre>[16.5pt] [split=mathincontext] [align=middle] [location=right] [0.0pt]</pre>

3.7 Fractions

\definemathfraction $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \dots \\ 0 \\ 0 \end{bmatrix}$

\setupmathfraction $[\ldots, 1, \ldots]$ $[\ldots, 2, \ldots]$

Details are given in math-frc.mkxl

alternative Can be set to inner, outer or both, and it will reflect the style of the fraction. Here inner means that we listen to mathnumeratorstyle and mathdenominatorstyle (and these are by default set to the value of mathstyle). On the other hand, outer means that we listen to the mathstyle, but not the the mathnumeratorstyle or mathdenominatorstyle. Finally, both means that we listen to all parameters. We show some silly examples. Note that when we work in outer or both we might loose the vertical alignment with the math axis.

\startformula

- \frac[alternative=inner,mathnumeratorstyle=script] {a}{b}
 = \frac[alternative=inner,mathdenominatorstyle=scriptscript]{a}{b}
 = \frac[alternative=inner,mathstyle=script] {a}{b}
 = \frac[alternative=outer,mathnumeratorstyle=script] {a}{b}
 = \frac[alternative=outer,mathdenominatorstyle=script]{a}{b}
 = \frac[alternative=outer,mathstyle=script] {a}{b}
 = \frac[alternative=outer,mathstyle=script] {a}{b}
 = \frac[alternative=both, mathnumeratorstyle=script] {a}{b}
- = \frac[alternative=both, mathdenominatorstyle=scriptscript]{a}{b}

= \frac[alternative=both, mathstyle=script] {a}{b}
\stopformula

$$\frac{a}{b} = \frac{a}{b} = \frac{a}{b}$$

The third fraction above might look wrong, but it is not, since mathnumeratorstyle and mathdenominatorstyle inherit from mathstyle.

bottomalign/topalign To set the alignment on the numerator and denominator, mainly used for a split fraction and sometimes for continued fractions.

color It is possible to set the color of the fraction, the numerator, and the denominator independently.

\startformula \frac {a}{b}

```
= {\color[C:3] {\frac{a}{b}}}
= \frac[color=C:3] {a}{b}
= \frac[topcolor=C:3] {a}{b}
= \frac[bottomcolor=C:3]{a}{b}
= \frac[textcolor=C:3] {a}{b}
= \frac[symbolcolor=C:3]{a}{b}
<stopformula</pre>
```

$$\frac{a}{b} = \frac{a}{b} = \frac{a}{b} = \frac{a}{b} = \frac{a}{b} = \frac{a}{b} = \frac{a}{b}$$

By default the fraction is set in the current color.

distance/bottomdistance/topdistance To set the distance between the fraction bar and the numerator and/or denominator. It is currently only done at the outer setting, since it should probably be the same for the whole document.

```
\setupmathfractions
  [distance=bottom,
   bottomdistance=2ex]
\dm { \frac{a}{b} }
\setupmathfractions
  [distance=top,
   topdistance=2ex]
\dm { \frac{a}{b} }
\setupmathfractions
  [distance=both,
   topdistance=2ex,
   bottomdistance=2ex]
dm { frac{a}{b} }
\setupmathfractions
  [distance=none]
\dm { \frac{a}{b} }
 a a
\frac{a}{b} - \frac{a}{b}
b b
```

fences Used for constructions like the binomial coefficients.

hfactor/vfactor These parameters are only active in skewed fractions (that is, if method is set to horizontal or line). There are two font parameters in the Opentype specification, SkewedFractionHorizontalGap and SkewedFractionVerticalGap, that are meant to control skewed fractions. They do not make sense (for us) so we do not use them.

The hfactor/1000 is the fraction of the width of the slash glyph that the numerator and denominator are moved closer to each other horizontally.

The vfactor/1000 is the fraction of the math axis used to move numerator and denominator apart. Note that if method is set to horizontal, then there is also a compensation for the math axis.

\startformula\showglyphs

\frac[hfactor=0, method=horizontal]{a}{b}
= \frac[hfactor=250, method=horizontal]{a}{b}
= \frac[hfactor=500, method=horizontal]{a}{b}
= \frac[hfactor=1000, method=horizontal]{a}{b}
= \frac[hfactor=-1000, method=horizontal]{a}{b}

\stopformula

$$a/b = a/b = a/b = a/b = a/b$$

\startformula\showglyphs

\frac[vfactor=0, method=horizontal]{a}{b}
= \frac[vfactor=250, method=horizontal]{a}{b}
= \frac[vfactor=500, method=horizontal]{a}{b}
= \frac[vfactor=1000, method=horizontal]{a}{b}
= \frac[vfactor=-1000,method=horizontal]{a}{b}
\stopformula

$$a/b = a/b = a/b = a/b = a/b$$

\startformula\showglyphs

\frac[vfactor=0, method=line]{a}{b}
= \frac[vfactor=250, method=line]{a}{b}
= \frac[vfactor=500, method=line]{a}{b}
= \frac[vfactor=1000, method=line]{a}{b}
= \frac[vfactor=-1000, method=line]{a}{b}
\stopformula

$$a/b = a/b = a/b = a/b = a/b$$

left/right The values should be numbers, typically corresponding to delimiters; see the example with the Christoffel symbol on page 53.

margin Can be used to insert margins around numerator and denominator.

$$\frac{a+b}{c} = \frac{a+b}{c}$$

The default margin is Opt.

mathclass By default a fraction has the mathfraction class. But this can be changed if a fraction is used as something different. One could perhaps argue that the Christoffel symbol on page 53 is not really a fraction when it comes to spacing.

\startformula\showmakeup[mathglue]

1 + \frac{a}{b}
= \frac[mathclass=\mathordinarycode]{a}{b} + 1
\stopformula

$$1_{|i_{\text{fighin}}|} = \frac{a}{b}_{\text{frarel}} = \frac{a}{b}_{\text{frarel}} + 1$$

mathdenominatorstyle The style of the denominator. See the alternative key for an example. mathnumeratorstyle The style of the numerator. See the alternative key for an example.
mathmeaning Used for accessibility. Still experimental.

mathstyle The style of the fraction. See the **alternative** key for an example.

```
\definemathfraction
 [Ifrac]
 [method=line,hfactor=0,vfactor=0,mathstyle=identity]
\definemathfraction
 [Nfrac]
 [method=line,hfactor=0,vfactor=0,mathstyle=normal]
\definemathfraction
 [Lfrac]
 [method=line,hfactor=0,vfactor=0]
```

```
\m {1 + \Ifrac{2}{3} + \Nfrac{4}{5} + \Lfrac{6}{7} + \frac{8}{9}}.
```

 $1 + 2/3 + 4/5 + 6/7 + \frac{8}{9}$

method Possible values are vertical (default), horizontal, and line. The vertical uses
 \Uatop, \Uatopwithdelims, \Uabove, \Uabovewithdelims, \Uover, \Uoverwith delims, \Ustretched or \Ustretchedwithdelims, depending on other parameters.
 The horizontal and line use \Uskewed or \Uskewedwithdelims.

With vertical we get the usual fractions with a horizontal fraction bar.

With line, the numerator and denominator start at the base line, and are then shifted up and down by half of vfactor/1000, multiplied by the size of the math axis font parameter.

The font parameters SkewedFractionHorizontalGap and SkewedFractionVerticalGap are not used, since they do not make sense for the model we use.

With horizontal, we get, in addition to the shifting in line, also a shift up and down with half the height of the math axis for the numerator and denominator, respectively.

$$\frac{a}{b} = \frac{a}{b} = a/b = a/b$$

middle A number describing the unicode slot of the fraction bar. Default is "2F. This does not have any effect if method is vertical.

$$5/8 = 5/8 = 5/8 = 5/8 = 5/8$$

mp Used for MetaPost constructions.

plugin Used for general constructions, for example MetaPost.

rule This is by default set to symbol which means that some symbol in the font is used repeatedly. This symbol is set by the symbol key, that by default is \fractionbarextenderuc, pointing to a private Unicode slot. If set to no then there will be no rule, as in binomial coefficients. If set to yes, a rule will be used. Then rulethickness can be used to set the width of the rule.

rulethickness To set the width of the rule if rule=yes is used.

source One can use **source** to decorate formulas, probably mainly for educational purposes. See anch-box.mkxl for examples on how to define and setup your own.

```
\setupboxanchorcontent
[top,left]
[rulecolor=C:2]
```

\startformula

```
\connectboxanchors[top][top]{one}{two}
```

```
x + \frac[source=\namedboxanchor{one}]{1+x}{2-x} =
```

```
z + \frac{1}{2-x^3}
```

```
\stopformula
```

$$x + \frac{1+x}{2-x} = z + \frac{1+x^2}{2-x^3}$$

strut By default we have this key set to yes, which inserts struts in both the numerator and denominator. With no we get no struts.

symbol To set which symbol to use as a fraction bar if not using a rule. See the rule key.

threshold/displaythreshold/inlinethreshold Used for sizing delimiters around (skewed) fractions. The inlinethreshold is by default 1.2, the displaythreshold is by default auto (engine logic) and threshold is .25ex. Use with care.

```
\setupmathfractions[threshold=0ex]\im {\vfrac{1}{\frac{1}{2}}}
\setupmathfractions[threshold=1ex]\im {\vfrac{1}{\frac{1}{2}}}
\setupmathfractions[threshold=2ex]\im {\vfrac{1}{\frac{1}{2}}}
\setupmathfractions[inlinethreshold=auto]\im {\binom{1}{\frac{1}{2}}}
\setupmathfractions[inlinethreshold=1] \im {\binom{1}{\frac{1}{2}}}
\setupmathfractions[inlinethreshold=1.4] \im {\binom{1}{\frac{1}{2}}}
```

```
1 / \frac{1}{2} 1 / \frac{1}{2} 1 / \frac{1}{2} \left( \begin{array}{c} 1 \\ \frac{1}{2} \end{array} \right) \left( \begin{array}{c} 1 \\ \frac{1}{2} \end{array} \right) \left( \begin{array}{c} 1 \\ \frac{1}{2} \end{array} \right) \left( \begin{array}{c} 1 \\ \frac{1}{2} \end{array} \right)
```

3.8 Functions

\definemathfunction $[\begin{array}{c} 1 \\ \cdots \end{array}] \begin{bmatrix} 2 \\ \cdots \end{array}] \begin{bmatrix} 1 \\ \cdots \end{array}] \begin{bmatrix} 2 \\ \cdots \end{array}] \begin{bmatrix} 1 \\ \cdots \end{array}] \begin{bmatrix} 2 \\ \cdots \end{array}] \begin{bmatrix} 1 \\ \cdots \end{array}] \begin{bmatrix} 2 \\ \cdots \end{array}] \begin{bmatrix} 1 \\ \cdots \end{array}] \begin{bmatrix} 2 \\ \cdots \end{array}] \begin{bmatrix} 1 \\ \cdots \end{array}] \begin{bmatrix} 1 \\ \cdots \\ \cdots \\ \cdots \end{bmatrix} \begin{bmatrix} 1 \\ \cdots \\ \end{array}]$

```
\setupmathfunction [\ldots, 1, \ldots] [\ldots, \ldots]^2 = \ldots, \ldots]
```

class Abuse a different (than function) class. It relates to spacing.

```
color Color functions.
```

```
\startformula
        \cos(x)
        \quad \mfunction{cos}(x)
        \quad \mfunction[color=C:3]{cos}(x)
        \stopformula
```

 $\cos(x) \quad \cos(x) \quad \cos(x)$

Note that we cannot use cos[color=C:3](x) since we want to be able to use brackets as delimiters for the argument of functions.

command One can use a command instead of some text. For example

```
\definemathfunction [median]
\definemathfunction [cs:median] [command=\widetilde]
```

will give a tilde instead of the word, when the main language is Czech.

left/right These are used for flexible function definitions, partly for accessibility. The symbols are defined in char-def.lua.

```
\definemathfunction[Starred][right=\adjointsymbol]
\startformula
   \Starred{C} \neq C^{*}
\stopformula
```

 $C^* \neq C^*$

- mathlimits If yes then the limits will go below (and on top), if no, then they will go to the side. If auto, we go below (above) in displayed formulas and to the side of inline formulas. Note that despite the placement, they are formally not sub/superscripts. (Compare but do not confuse it with the ^^ and __ constructions.)
- method For tagging, with method set to limits, the function get interpreted as a limit, and not as a function (like sine), and they read differently.

style Specify the style of functions.

```
\startformula
        \cos(x)
        \quad \mfunction {cos}(x)
        \quad \mfunction[style=bold] {cos}(x)
        \quad \mfunction[style=\mathfrak]{cos}(x)
        \stopformula
```

 $\cos(x) \quad \cos(x) \quad \cos(x) \quad \cos(x)$

3.9 Mathematics

```
\definemathematics \begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \cdots \\ \cdots \end{bmatrix}
```

```
\setupmathematics [\dots, 1, \dots] [\dots, 2^2, \dots]
```

autofencing/autointervals Experimental. They will look for typical fencing symbols, and treat them differently if they are surrounded by spaces in the input.

autonumbers/autopunctuation/autospacing See Section 2.16 for an example.

- align By default l2r (lefttoright). Can be set to r2l (righttoleft) to get right to left formulas.
- alignscripts A keyword for aligning scripts. See Section 2.7 for an example.
- **collapsing** This key can be used to collapse certain combinations of characters into ligature type constructions. The lists have been described elsewhere.

```
 \begin{array}{ll} & \{1 \ -> \ 2\} \\ \text{math} & \{1 \ -> \ 2\} \\ & 1 \ -> \ 2 \\ & 1 \ \rightarrow \ 2 \end{array}
```

color To color formulas.

\math $\{1 + 2 + 3 = 6\}\par$ \math[color=C:3] $\{1 + 2 + 3 = 6\}$ 1 + 2 + 3 = 61 + 2 + 3 = 6

compact This is an internal key, that can save some memory.

default By default the mathematics is done in italics. We can use this key to change it to upright.

```
\math {a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup>}\par
\math[default=normal]{a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup>}
a^2 + b^2 = c^2
a^2 + b^2 = c^2
```

mathconstants/differentiald/exponentiale/imaginaryi/imaginaryj/constantpi

By default these famous constants are set in italic, just as any other symbol. We can set up all to be upright with mathconstants=upright, or set them independently.

 $e^{i\pi} + 1 = 0$

 $e^{i\pi} + 1 = 0$

This has been extended a bit, so now we can define our own constants.

```
\definemathconstant[ddelta][\delta]
\definemathconstant[EulerC][\gamma]
\definemathconstant[JJ][][]
\definemathconstant[myJJ][\char"1D409][\char"1D471]
```

```
\m {\getbuffer[constantexample]}
```

```
\m[lcgreek=normal,
    constantpi=upright,
    constantJJ=upright,
    constantmyJJ=upright,
    constantddelta=upright,
    constantEulerC=upright]
    {\getbuffer[constantexample]}
```

\m[mathconstants=upright] {\getbuffer[constantexample]}

```
\m {\getbuffer[constantexample]}
```

```
\setupmathematics
[mathconstants=upright]
```

```
\m {\getbuffer[constantexample]}
```

```
\alpha + \pi + \pi + \delta + \gamma + J + J

\alpha + \pi + \pi + \delta + \gamma + J + J

\alpha + \pi + \pi + \delta + \gamma + J + J

\alpha + \pi + \pi + \delta + \gamma + J + J

\alpha + \pi + \pi + \delta + \gamma + J + J
```

domain Experimental for accessibility. Can be used to use different setups for different domains.

functioncolor

 $\cos^2(x) + \sin^2(x) = 1$

 $\cos^2(x) + \sin^2(x) = 1$

hz If set to yes expansion is enabled in formulas, if expansion is enabled at all.

integral To set the limits properties for integral type operators. This can also be done
with \setupmathoperator.

interscriptfactor To control space between scripts. See the example in Section 2.7.

italics If set to yes, some italic correction is handled between inline math and surrounding text.

```
\startlines
  \setupmathematics[italics=no]
  A function \im{f} is a function \im{f}. A variable \im{x} is a
variable \im{x}.
  \setupmathematics[italics=yes]
  A function \im{f} is a function \im{f}. A variable \im{x} is a
variable \im{x}.
  \stoplines
```

A function *f* is a function *f*. A variable *x* is a variable *x*. A function *f* is a function *f*. A variable *x* is a variable *x*.

kernpairs Experimental.

lcgreek/sygreek/ucgreek With these keys you can set up your preferred Greek.

```
\label{eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_line
```

limitstretch With this we can limit the stretch. By default in T_EX stretch can grow too large (beyond specification).

mathstyle To set the overall mathstyle.

openup This was used for aligning (vertically) inline formulas in column mode in itemizations, but now we have a more robust approach. Use this key with care.

\defineitemgroup[abc]
\setupitemgroup[abc][each][a,three]

setups To change for example math spacing (see math-ini.mkxl for some example setups).

```
\math {a + b = c}\par
\math[setups=math:spacing:tight]{a + b = c}
a + b = c
a + b = c
```

snap Meant for grid typesetting.

stylealternative Can be used to select specific stylistic alternates in the fonts. For the
 names, see the goodie files. Some are now defined in math-ini.mkxl. For example
 \mathdotless is defined to be \setmathfontalternate{dotless}. For the fonts having
 both calligraphic and script, this is already taken care of by remapping and using
 \mathcal and \mathscr.

symbolset This can be used to switch certain sets of symbols.

```
\math {\reals \nsubset \complexes}\par
\math[symbolset=blackboard-to-bold]{\reals \nsubset \complexes}
```

 $\mathbb{R} \not\subset \mathbb{C}$

```
\mathbf{R} \not\subset \mathbf{C}
```

textcolor Can be used to set the color of \mtext.

textdistance Not meant to be used in inline mode.

X\math {1 + \mtext{nn} = 2}Y\par X\math[textdistance=2em]{1 + \mtext{nn} = 2}Y X1 + nn = 2Y $X \quad 1 + nn = 2 \qquad Y$

textstyle Set the style of text in formulas.

```
 \{1 + \det\{nn\} = 2\} 

 \{1 + \det\{nn\} = 2\} 

 1 + nn = 2 

 1 + nn = 2
```

threshold It is possible to box small formulas not to break over lines. This key can be used to set the threshold. By default it is off. You can set it to a glue or to a predefined keyword, like medium (see math-ali.mkxl).

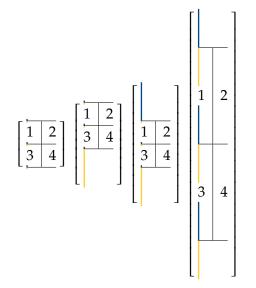
3.10 Matrices

\definemathmatrix $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \dots \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \dots \\ 0 \\ 0 \\ 0 \end{bmatrix}$

\setupmathmatrix $[\ldots, 1, \ldots, 1]$ $[\ldots, 2, \ldots]$

The T_EX code behind the matrix mechanism can be found in math-ali.mkxl.

align To align the columns. By default they are centered. The all:right will flush all columns to the right. Note that by adding 3:left and 2:middle the all:right is overwritten for these columns.


```
\startformula
   \startmathmatrix
     NC 1 NC 2 NC -3 NC 4 NR
     \NC -5 \NC -6 \NC 7 \NC 8 \NR
   \stopmathmatrix
   \qquad
   \startmathmatrix
     [align={all:right}]
     NC 1 NC 2 NC -3 NC 4 NR
     \NC -5 \NC -6 \NC 7 \NC 8 \NR
   \stopmathmatrix
   \qquad
   \startmathmatrix
     [align={all:right,3:left,2:middle}]
     \NC 1 \NC 2 \NC -3 \NC 4 \NR
     NC - 5 NC - 6 NC 7 NC 8 NR
   \stopmathmatrix
\stopformula
              1 2 -3 4 1 2 -3 4 1 2 -3 4
             -5 -6 7 8 -5 -6 7 8 -5 -6 7 8
```

boffset/moffset/toffset Offset in matrices. In the examples below, the matrixoffset
 buffer is given by

```
\dm {
  \startmathmatrix
  [fences=bracket]
  \HL
  \NC 1 \VL 2 \NR
  \HL
  \NC 3 \VL 4 \NR
  \HL
  \stopmathmatrix
}
```

We then use the following code, note that we first add a bottom offset with boffset, then a top offset with toffset and finally also a middle offset with moffset.

```
\enabletrackers[math.matrices.hl]
\getbuffer[matrixoffset]
\setupmathmatrix[boffset=2\lineheight]
\getbuffer[matrixoffset]
\getbuffer[matrix[toffset=2\lineheight]
\getbuffer[matrix[moffset=2\lineheight]
\getbuffer[matrixoffset]
```


distance Control the distance between columns.

```
\startformula
  \startmathmatrix
    \NC 1 \NC 2 \NR
    \NC 3 \NC 4 \NR
  \stopmathmatrix
    \quad
  \startmathmatrix
    [distance=4\emwidth]
    \NC 1 \NC 2 \NR
    \NC 3 \NC 4 \NR
    \stopmathmatrix
```

\stopformula

 $\begin{array}{cccccccc} 1 & 2 & 1 & 2 \\ 3 & 4 & 3 & 4 \end{array}$

fences Specify a set of fences to use.

```
\startformula
   \startmathmatrix
    \NC 1 \NC 2 \NR
    \NC 3 \NC 4 \NR
   \stopmathmatrix
   \quad
   \startmathmatrix
    [fences=bracket]
    \NC 1 \NC 2 \NR
    \NC 3 \NC 4 \NR
   \stopmathmatrix
}
```

1 2	[1	2]
3 4	3	4

left/right Set up something to the left and right of a matrix.

```
\startformula
    \startmathmatrix
      [left=\left(,right=\right)]
      \ 1 \ NC \ 2 \ NR
      \NC 3 \NC 4 \NR
    \stopmathmatrix
    \quad
    \startmathmatrix
      [fences=parenthesis]
      \NC 1 \NC 2 \NR
      \ NC 3 \ NC 4 \ NR
    \stopmathmatrix
    \quad
    \startmathmatrix
      [left=\left(,right=\right),fences=bracket]
      \NC 1 \NC 2 \NR
      NC 3 NC 4 NR
    \stopmathmatrix
\stopformula
```

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right)$$

The left and right content goes outside of the fences, if both are present.

leftedge/rightedge To add content to the edges.

\dontleavehmode
\ruledhbox {\im {

```
\startmatrix[left=\left(,right=\right)]
    \LT \ttx 1 \NC a \NC \dots \NC aa \RT \ttx 1 \NR
    \LT \ttx 2 \NC b \NC \dots \NC bb \RT \ttx 2 \NR
    \LT \ttx 3 \NC c \NC \dots \NC cc \RT \ttx 3 \NR
  \stopmatrix
}}\qquad
\ruledhbox {\im {
  \startmatrix[left=\left(,right=\right),rightedge=none,leftedge=none]
    \LT \ttx 1 \NC a \NC \dots \NC aa \RT \ttx 1 \NR
    LT \quad ttx 2 \quad NC \quad b \quad NC \quad b \quad RT \quad ttx 2 \quad NR
    \LT \ttx 3 \NC c \NC \dots \NC cc \RT \ttx 3 \NR
  \stopmatrix
}}\qquad
\ruledhbox {\im {
  \startmatrix[left=\left(,right=\right),rightedge=1em,leftedge=1em]
    \LT \ttx 1 \NC a \NC \dots \NC aa \RT \ttx 1 \NR
    LT \quad ttx 2 \quad NC \quad b \quad NC \quad b \quad RT \quad ttx 2 \quad NR
    \LT \ttx 3 \NC c \NC \dots \NC cc \RT \ttx 3 \NR
  \stopmatrix
}}
               1/a \dots aa 1
 ′a ... aa ∖1
                                1(a ... aa)_1
               b ... bb <sub>2</sub>
  c \dots cc /_{3}
```

leftmargin/rightmargin Add space between the content and the fences.

```
\startformula
   x +
   \startmathmatrix
     [fences=bracket,
      leftmargin=1\emwidth]
     NC 1 NC 2 NR
     \NC 3 \NC 4 \NR
   \stopmathmatrix
   +
   \startmathmatrix
     [fences=bracket,
      rightmargin=1\emwidth]
     NC 1 NC 2 NR
     NC 3 NC 4 NR
   \stopmathmatrix
   + X
\stopformula
```

 $x + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + x$

location Anchor the matrix vertically.

```
\startformula
\startmatrix
```

```
\NC 1 \NC 2 \NR
\NC 3 \NC 4 \NR
\stopmatrix
=
\startmatrix[location=top]
\NC 1 \NC 2 \NR
\NC 3 \NC 4 \NR
\stopmatrix
=
\startmatrix[location=bottom]
\NC 1 \NC 2 \NR
\NC 3 \NC 4 \NR
\stopmatrix
\stopmatrix
\stopformula
```

$$\begin{array}{c} 1 & 2 \\ 3 & 4 \\ 3 & 4 \end{array} = \begin{array}{c} 1 & 2 \\ 3 & 4 \\ 3 & 4 \end{array} = \begin{array}{c} 3 & 4 \\ 3 & 4 \end{array}$$

mathstyle Set the math style of each matrix entry.

rulecolor Setup the color of a possible rule.

```
\startformula
   \startmathmatrix
    [rulecolor=C:3]
   \NC 1 \VL 2 \NR
   \HL
   \NC 3 \VL 4 \NR
   \stopmathmatrix
  \stopformula
```

```
\begin{array}{c|c}
1 & 2\\
\hline
3 & 4
\end{array}
```

rulethickness Setup the width of a possible rule.

```
\startformula
   \startmathmatrix
    [rulethickness=6\linewidth]
    \NC 1 \VL 2 \NR
    \HL
    \NC 3 \VL 4 \NR
   \stopmathmatrix
\stopformula
```

simplecommand This is only used when defining new instances of matrices. See page 58.

strut To use a strut or to not use a strut. The brave one tries to set it to a number.

3.11 Operators

\definemathoperator
$$[\begin{array}{c} 1 \\ \cdot 1 \end{array}] \begin{bmatrix} 2 \\ \cdot 2 \end{array}] \begin{bmatrix} 1 \\ \cdot 2 \end{array}] \begin{bmatrix} 2 \\ - 2 \\ \begin{bmatrix} 2 \\ - 2 \end{array}] \begin{bmatrix} 2 \\ - 2 \\ \begin{bmatrix} 2 \\ - 2 \end{array}] \begin{bmatrix} 2 \\ -$$

\setupmathoperator $[\ldots, 1, \ldots]$ $[\ldots, 2, \ldots]$

Details are given in math-lop.mkxl.

bottom/top Just another way to specify limits on big operators.

```
\startformula
\int_a^b f(x) \ dd x
\quad \int[bottom=a,top=b]{f(x) \dd x}
\stopformula
\int_{a}^{b} f(x) \, dx \quad \int_{a}^{b} f(x) \, dx
```

color/symbolcolor/bottomcolor/topcolor/textcolor/numbercolor Color operators
 and their limits. Note that we need to use the bottom and top keys to place the limits.

$$\int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx$$

left Gives the actual symbol that is used.

```
\startformula
    \int {f(x) \dd x}_a^b
    \quad \int[left="2211]{f(x) \dd x}_a^b
    \stopformula
```

$$\int_{a}^{b} f(x) \, dx \quad \sum_{a}^{b} f(x) \, dx$$

mathclass The default class is \mathoperatorcode for general operators, but \mathintegralcode for integral type operators.

105

$$3 \lim_{a} \int_{a}^{b} |f_{xx}(x)| dx_{brief} = 3 \lim_{a \to a} \int_{a}^{b} |f_{x}(x)| dx_{brief}$$

method Different ways to place the limits. Here horizontal (and nolimits) put the limits beside (default for integral type operators), vertical (and limits) put them on top and below, while auto (default for other big operators) depend on the math style.

$$\int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx \quad \int_{a}^{b} f(x) dx$$

\startformula

\sum {a_k}_{1}^{+\infty} \quad \sum[method=auto] {a_k}_{1}^{+\infty} \quad \sum[method=horizontal]{a_k}_{1}^{+\infty} \quad \sum[method=vertical] {a_k}_{1}^{+\infty} \breakhere\textstyle \sum {a_k}_{1}^{+\infty} \quad \sum[method=auto] {a_k}_{1}^{+\infty} \quad \sum[method=horizontal]{a_k}_{1}^{+\infty} \quad \sum[method=vertical] {a_k}_{1}^{+\infty} \stopformula

$$\sum_{1}^{+\infty} a_k \qquad \sum_{1}^{+\infty} a_k \qquad \sum_{1}^{+\infty} a_k \qquad \sum_{1}^{+\infty} a_k$$
$$\sum_{1}^{+\infty} a_k \qquad \sum_{1}^{+\infty} a_k \qquad \sum_{1}^{+\infty} a_k \qquad \sum_{1}^{+\infty} a_k$$

size Some fonts come with extensible integrals. See the example on page 47.

3.12 Radicals

\definemathradical $[\stackrel{1}{\ldots}] \quad [\stackrel{2}{\ldots}] \quad [\dots , \stackrel{3}{=} \dots]$

\setupmathradical $[\ldots, 1, \ldots, 1]$ $[\ldots, \ldots, 2]$

See math-rad.mkxl for the implementation.

These keywords can either be used directly on a radical, or with \setupmathradical on a predefined or on your own radical instance. If you want to look into the source then start with the file math-rad.mklx.

```
color/symbolcolor/textcolor/numbercolor Color radicals.
```

```
\startformula
    \root[n=3] {1 + x}
    \quad \root[n=3,color=C:3] {1 + x}
    \quad \root[n=3,symbolcolor=C:3]{1 + x}
    \quad \root[n=3,textcolor=C:3] {1 + x}
    \quad \root[n=3,numbercolor=C:3]{1 + x}
    \stopformula
```

$$\sqrt[3]{1+x}$$
 $\sqrt[3]{1+x}$ $\sqrt[3]{1+x}$ $\sqrt[3]{1+x}$ $\sqrt[3]{1+x}$

depth/height Set the depth and height explicitly.

```
\startformula
    \sqrt {\frac{a}{b}}
= \sqrt[height=4\exheight]{\frac{a}{b}}
= \sqrt[depth=4\exheight] {\frac{a}{b}}
\stopformula
```

$$\sqrt{\frac{a}{b}} = \sqrt{\frac{a}{b}} = \sqrt{\frac{a}{b}}$$

Both are by default set to 0pt and adapted to the actual content. See also the mindepth key and the discussion starting on page 48.

left/right Change radical symbol for something else.

$$\sqrt{a+b} = \{\overline{a+b} = \overline{a+b}\}$$

A more natural example might be $(f + g)^{\widehat{}}$.

leftmargin/rightmargin Margins for the content of the radical. By default these are set to Opt. For a few fonts we set up a small leftmargin in the typescript.

$$\sqrt{\frac{a}{b}} = \sqrt{-\frac{a}{b}} = \sqrt{\frac{a}{b}}$$

mathstyle Specifies the mathstyle of the content of the radical. By default it is cramped.

\startformula
 \sqrt {x^2}
+ A^{\sqrt {x^2}}
= \sqrt[mathstyle=uncramped]{x^2}
+ A^{\sqrt[mathstyle=uncramped]{x^2}}
\stopformula

$$\sqrt{x^2} + A^{\sqrt{x^2}} = \sqrt{x^2} + A^{\sqrt{x^2}}$$

mindepth This enforces a minimal depth of the expression. It is currently set to .2\exheight, but it might be needed to set by font. Compare with depth and height that enforces a certain depth and height.

mp Use a MetaPost construction instead.

n Sets the degree of the radical.

```
\startformula
   \root[n=5]{x}
   \stopformula
```

 $\sqrt[5]{x}$

plugin By default unset. If set to mp then the radical symbol is drawn with MetaFun.

\startformula
 \sqrt{1 + x}
 = \sqrt[plugin=mp]{1 + x}
 = \sqrt[plugin=mp,symbolcolor=C:2]{1 + x}
\stopformula

$$\sqrt{1+x} = \sqrt{1+x} = \sqrt{1+x}$$

rule With rule set to yes, a rule is used instead of a symbol.

source Can be used to anchor material.

```
= \root [3]{b}
\stopformula
```

$$\sqrt[3]{b} = \sqrt[3]{b}$$

strut By default set to height, which means that a strut with some height but no depth is added inside the radical. See the examples on page 48.

top If rule is set to symbol, one shall set top to the used extensible symbol. We use a suitable (minus like) symbol by default.

3.13 Simple alignments

```
\setupmathsimplealign [\dots, \stackrel{1}{\dots}, \dots] = [\dots, \dots]^{2} = \dots
```

See math-ali.mkxl for details. We use the SA one below as an example.

```
\definemathsimplealign
[SA]
```

align Specify the alignment of each column. The syntax is the same as the one for math alignments and matrices.

```
\startformula\showmakeup[mathglue]
            \startSA
                        \ \ NC = B + B' \ \ NR
                         \ \ C + C' \ \ NC = D \ \ \ NR
            \stopSA
            \quad
            \startSA[align=all:right]
                        \ \ NC A \ \ \ NC = B + B' \ \ NR
                         NC C + C' NC = D
                                                                                                                                                      \NR
            \stopSA
            \quad
            \startSA[align={1:right,2:left}]
                         NC A = B + B' NR
                         NC C + C' NC = D
             \stopSA
\stopformula
                                                                                    \begin{array}{c|c} A & = B + B' & A = B + B' & A_{\text{partial partial part
```

From this example, we see that by default all columns are aligned to the middle. We change that so that the first one is flush right, the second flush left.

```
\setupmathsimplealign
[SA]
[align={1:right,2:left}]
```

- alternative Usually unset. But if set to equationsystem we get the systems of equations, discussed in Section 11.4.
- distance Determines the horizontal distance between the two columns. By default it is set to math, which means that it will use the proper interatom spacing.

```
\startformula\showmakeup[mathglue]
```

```
\startSA
          \NC = B + B' \NR
   \NC A
   \ \ C + C' \ \ NC = D \ \ \ NR
 \stopSA
 \quad
 \startSA[distance=math]
   \ \ NC A \ \ \ NC = B + B' \ \ NR
   NC C + C' NC = D
 \stopSA
 \quad
 \startSA[distance=0pt]
   \ \ NC = B + B' \ \ NR
   \ \ C + C' \ \ NC = D \ \ \ NR
 \stopSA
\stopformula
```

$$\begin{array}{c} A_{\text{perel}} = B_{\text{perel}} + B' \\ C_{\text{perel}} = D \\ \mu_{\text{area}} = D \\ \mu_{\text{perel}} + C'_{\text{perel}} = D \\ \mu_{\text{pe$$

fences We can set fences around the simplealign constructions.

```
\startformula
  \startSA
  [fences=doublebar]
  \NC A \NC = B \NR
  \NC C \NC = D \NR
  \stopSA
  \stopformula
```

$$\begin{vmatrix} A = B \\ C = D \end{vmatrix}$$

left/right Add content, typically fences, around the simple align.

```
\startformula
 \startSA
   \ A \ B \ NR
   \ \ C \ \ D \ \ NR
 \stopSA
 \quad
 \startSA
   [left=\startmathfenced[cases],
    right=\stopmathfenced]
   \ A \ B \ NR
   \ \ C \ \ D \ \ NR
 \stopSA
 \quad
 \startSA
   [left=\left.,
    right=\right\rbracket]
   NC A NC = B NR
```

\NC C \NC = D \NR \stopSA \stopformula

$$\begin{array}{l} A = B \\ C = D \end{array} \left\{ \begin{array}{l} A = B \\ C = D \end{array} \right. A = B \\ C = D \end{array} \right\}$$

The period in \left. represents an empty slot and is needed for pairing.

leftmargin/rightmargin Set extra space before or after the simple align.

```
\startformula
 f(x) +
 \startSA
   [left=\startmathfenced[doublebar],
    right=\stopmathfenced]
   \ A \ B \ NR
   \ \ C \ \ D \ \ NR
 \stopSA
 + g(x)
 \quad
 f(x) +
 \startSA
   [left=\startmathfenced[doublebar],
    right=\stopmathfenced,
    leftmargin=\emwidth,
    rightmargin=\emwidth]
   NC A NC = B NR
   \ \ C \ \ D \ \ NR
 \stopSA
 + g(x)
\stopformula
```

$$f(x) + \begin{vmatrix} A = B \\ C = D \end{vmatrix} + g(x) \quad f(x) + \begin{vmatrix} A = B \\ C = D \end{vmatrix} + g(x)$$

location Anchor the construction in different places.

```
\startformula
\mathaxisbelow
\startSA
    \NC A \NC = B \NR
    \NC C \NC = D \NR
    \stopSA
    \quad
    \startSA[location=top]
        \NC A \NC = B \NR
        \NC C \NC = D \NR
        \stopSA
    \quad
    \startSA[location=bottom]
```

\NC A \NC = B \NR
\NC C \NC = D \NR
\stopSA
\stopformula

$$A = B$$

$$A = B$$

$$C = D$$

$$C = D$$

$$C = D$$

simplecommand Specify a command to use. Then commas are used to separate columns and semicolons to separate lines. This is only meant to be used with systems of equations.

spaceinbetween Specify the space between rows.

```
\startformula
  \startSA
   \NC A \NC = B \NR
   \NC C \NC = D \NR
  \stopSA
  \quad
  \startSA[spaceinbetween=2\lineheight]
   \NC A \NC = B \NR
   \NC C \NC = D \NR
   \stopSA
  \stopformula
```

$$A = B$$
$$A = B$$
$$C = D$$
$$C = D$$

strut With strut set to yes (default) we get a strut on each line. They can be disabled with strut set to no.

```
\startformula\showstruts\showboxes
\startSA
    \NC a \NC = c \NR
    \NC e \NC = i \NR
    \stopSA
    \qquad
    \startSA[strut=no]
        \NC a \NC = c \NR
        \NC e \NC = i \NR
        \StopSA
    \stopformula
```

∎.a. =. C	a = c
e = i	$\frac{e}{e} = i$

text/textdistance Add text comments to the simple align.

```
\startformula
```

```
\startSA[text=foo]
	\NC A \NC = B \NR
	\NC C \NC = D \NR
	\stopSA
	\qquad
	\startSA[text=foo,textdistance=2\emwidth]
	\NC A \NC = B \NR
	\NC C \NC = D \NR
	\stopSA
\stopformula
```

$$A = B A = B foo C = D foo$$

3.14 Stackers

\definemathstackers $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \dots \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \dots \\ 0 \\ 0 \\ 0 \end{bmatrix}$

\setupmathstackers $[\ldots, 1, \ldots]$ $[\ldots, 2^2, \ldots]$

Implementation details are given in math-stc.mkxl.

alternative It is possible to use alternative symbols for some stackers, with the mat library (see below how it is loaded). These are drawn in MetaPost.

$$\overrightarrow{A+B}$$
 $\overrightarrow{A+B}$ $\overrightarrow{A+B}$

bottomcommand/middlecommand/topcommand To add commands to certain places. Below we show an example where we add a frame, and then we need to use \groupedcommand.

$$A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\to} B \qquad A \stackrel{[a]}{\to} B$$

In this particular case, the spacing is not optimal, some extra space between the framed content and the arrow can be inserted with help of the voffset key. You might notice that the middlecommand is not doing anything. That depends on the type of stacker. Below is an example where it has an effect.

\startformula
 \overbraceunderbrace {1 + 2 + 3}
 \quad \overbraceunderbrace[middlecommand=\inmframed]{1 + 2 + 3}
\stopformula

 $\underbrace{1+2+3} \quad 1+2+3$

color/bottomcolor/middlecolor/topcolor/symbolcolor Change the color of the stacked pieces.

\startformula

 $A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\to} B \qquad$

Note that middlecolor does not do anything in the example above. Below is another example where it does.

 $\underbrace{1+2+3}_{abc} \underbrace{1+2+3}_{abc} \underbrace{1+2+3}_{abc} \underbrace{1+2+3}_{1+2+3} \underbrace{1+2+3}_{1+2+3}$

distance Set distance for top/bottom extensibles.

```
\startformula
```

```
\overbraceunderbrace {1 + 2 + 3}
\quad \overbraceunderbrace[distance=1\exheight]{1 + 2 + 3}
\stopformula
```

$$\underbrace{\overline{1+2+3}} 1+2+3$$

hoffset/voffset Set horizontal and vertical offsets.

 \stopformula

$$A \xrightarrow{a}_{b} B \quad A \hookrightarrow B \quad A \xrightarrow{a}_{b} B$$

lb/lt/rb/rt Corner offsets. By default set to 0pt.

```
\startformula
         \overbraceunderbrace
                                             \{1 + 2 + 3\}
  \quad \overbraceunderbrace[lb=1em]{1 + 2 + 3}
  \quad \overbraceunderbrace[rb=1em]{1 + 2 + 3}
  \quad \overbraceunderbrace[rt=1em]{1 + 2 + 3}
  \quad \doublebrace[rt=3.4em,
                          lb=3.4em,
                          top=six,
                          topstyle=\tfx,
                          topalign=middle,
                          bottom=twelve,
                          bottomstyle=\tfx,
                          bottomalign=middle]
                         \{1 + 2 + 3 + 4 + 5\}
\stopformula
      \underbrace{\overbrace{1+2+3}}_{1+2+3} \quad \underbrace{1+2+3}_{1+2+3} \quad \underbrace{1+2+3}_{1+2+3} \quad \underbrace{\overbrace{1+2+3}}_{1+2+3} \quad \underbrace{\underset{1+2+3}{\text{six}}}_{1+2+3+4+5}
```

left/right It is possible to put content directly to the left or right of a top/bottom stacker.

```
\startformula
```

```
\overbraceunderbrace {1 + 2 + 3}
\quad \overbraceunderbrace[left=A] {1 + 2 + 3}
\quad \overbraceunderbrace[right=B]{1 + 2 + 3}
\stopformula
```

$$\underbrace{\overline{1+2+3}}_{A\overline{1+2+3}} A\overline{\overline{1+2+3}} B$$

location When using a stacker consisting of a middle symbol, it is by default resting on the base line. That corresponds to **location** set to top. The other possible values move the symbol down, at a step of 25%.

\stopformula

$$A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\to} B \qquad$$

mathclass The atom class of the stacker can be set explicitly.

\startformula\showmakeup[mathglue]

```
A \mhookrightarrow {a}{b} B
```

\quad A \mhookrightarrow[mathclass=\mathbinarycode]{a}{b} B
\stopformula

$$A_{|arrej} \overset{a}{\underset{b}{\overset{}{\mapsto}}} B A_{|arrej} \overset{a}{\underset{b}{\overset{}{\mapsto}}} B$$

mathlimits Determine the behavior of limits. Can be yes or no.

```
\definemathstackers
[myvfenced]
[vfenced]
[mathlimits=no]
```

```
\definemathunderextensible
[myvfenced]
[myunderbar]
["203E]
```

\startformula
 \underbar{a + b}_c = \myunderbar{a + b}_c
\stopformula

$$\underline{a+b}_{c} = \underline{a+b}_{c}$$

mindepth/minheight/minwidth These will guarantee some minimal lengths.

\startformula

A \mhookrightarrow {a}{b} B \quad A \mhookrightarrow[mindepth=2\exheight] {a}{b} B \quad A \mhookrightarrow[minheight=3\exheight]{a}{b} B \quad A \mhookrightarrow[minwidth=2\emwidth] {a}{b} B \stopformula

offset You can try min, max or normal, and then there is a challenge to explain what they do!

\startformula
 \overbraceunderbrace {1 + 2 + 3}\quad
 \overbraceunderbrace[offset=normal]{1 + 2 + 3}\quad

\overbraceunderbrace[offset=min] $\{1 + 2 + 3\}$ \quad \overbraceunderbrace[offset=max] $\{1 + 2 + 3\}$ \quad \breakhere \overbraceunderbrace[offset=normal,hoffset=3TS] $\{1 + 2 + 3\}$ \quad \overbraceunderbrace[offset=min,hoffset=3TS] $\{1 + 2 + 3\}$ \quad \overbraceunderbrace[offset=max,hoffset=3TS] $\{1 + 2 + 3\}$ \quad \stopformula

1 + 2 + 3		$\underbrace{1+2+3}$	
$\underbrace{1+2+3}$	1+	-2+3	$\underbrace{1+2+3}$

order Due to different conventions it might be good to be able to swap the argument that goes above with the one that goes below. The order key can be normal (first argument above, second below) and reverse (first argument below, second above).

\startformula

A \mhookrightarrow {a}{b} B \quad A \mhookrightarrow[order=normal] {a}{b} B \quad A \mhookrightarrow[order=reverse]{a}{b} B \stopformula

$$A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{b}{\hookrightarrow} B \qquad A \stackrel{b}{\hookrightarrow} B$$

plugin To use a MetaPost (when set to mp) plugin.

- sample To use a character as a model for a group. Used for example for implications, where the ⇔ is used. See math-stc.mkxl for details.
- shrink/stretch Stretch or shrink extensible stackers. Typically applies for variants of the glyph. We show one example where the brace is shrinked, the default behavior.

\startformula
 \overbrace {12}
 \quad \overbrace[shrink=yes]{12}
 \quad \overbrace[shrink=no] {12}
 \stopformula

 $\widehat{12}$ $\widehat{12}$ $\widehat{12}$ $\widehat{12}$

strut By default struts are used for consistency.

\startformula\showstruts		
A \mhookrightarrow	{a}{b}	В
A \mhookrightarrow[strut=yes]	{a}{b}	В
A \mhookrightarrow[strut=no]	{a}{b}	В
\stopformula		

$$A \stackrel{h}{\hookrightarrow} B \qquad A \stackrel{h}{\hookrightarrow} B \qquad A \stackrel{h}{\hookrightarrow} B \qquad A \stackrel{a}{\hookrightarrow} B$$

style/bottomstyle/middlestyle/topstyle These are used to change the style of pieces. Note that it depends a bit on the type of the stacker if they are applicable or not.

\startformula	
A \mhookrightarrow	{a}{b} B

```
\quad A \mhookrightarrow[style=bold] {a}{b} B
\quad A \mhookrightarrow[bottomstyle=bold]{a}{b} B
\quad A \mhookrightarrow[middlestyle=bold]{a}{b} B
\quad A \mhookrightarrow[topstyle=bold] {a}{b} B
\stopformula
```

$$A \stackrel{a}{\hookrightarrow} B \qquad A \stackrel{a}{\to} B \qquad$$

Just as for the command keys, the middlestyle is not doing anything in the example above.

```
\startformula
```

\doublebrace	{1	+	2	+	3}
 <pre>\doublebrace[bottomstyle=bold;</pre>	,				
<pre>bottom=abc]</pre>	{1	+	2	+	3}
 <pre>\doublebrace[middlestyle=bold]</pre>	{1	+	2	+	3}
 <pre>\doublebrace[topstyle=bold,</pre>					
top=abc]	{1	+	2	+	3}

\stopformula

			abc
1 + 2 + 3	1 + 2 + 3	1 + 2 + 3	1 + 2 + 3
	abc		

bottomalign/topalign Align the text above or below.

```
\startformula
```

```
\quad \doublebrace[bottom=abc]
                                    \{1 + 2 + 3\}
\quad \doublebrace[bottomalign=middle,
                   bottom=abc]
                                   \{1 + 2 + 3\}
\quad \doublebrace[bottomalign=flushright,
                   bottom=abc]
                                   \{1 + 2 + 3\}
\quad \doublebrace[top=abc]
                                    \{1 + 2 + 3\}
\quad \doublebrace[topalign=middle,
                   top=abc]
                                    \{1 + 2 + 3\}
\quad \doublebrace[topalign=flushright,
                   top=abc]
                                   \{1 + 2 + 3\}
```

\stopformula

 $\underbrace{\overbrace{1+2+3}}_{abc} \underbrace{\overbrace{1+2+3}}_{abc} \underbrace{\overbrace{1+2+3}}_{abc} \underbrace{\overbrace{1+2+3}}_{abc} \underbrace{\overbrace{1+2+3}}_{abc} \underbrace{\overbrace{1+2+3}}_{abc} \underbrace{\overbrace{1+2+3}}_{abc}$

topoffset Can be used as a poor man's italic correction. By default set to 0.4em.

```
\dostepwiserecurse{-10}{10}{1}{
  \setupmathstackers
  [symbol]
  [topoffset=\numexpr\recurselevel/10\emwidth]
  \im {\interiorset {A}}
}
```

4 Inline math

4.1 Introduction

In the previous chapters we have discussed how to enter the different math modes and how to access various symbols, alphabets and other constructions. Now it is time to discuss typesetting of inline formulas in more detail. We will focus on how these formulas interplay with the surrounding text and paragraphs and how we can configure that, as well as some things to think about when typing inline formulas. This material covered in this chapter is complex, and the normal user can skip it (but Section 4.5 includes some general suggestions on setting inline fractions) and still be fine, since the default setups should work well.

We first discuss line breaking. The problem here is that for the rather advanced paragraph builder of T_EX to succeed to typeset nice paragraphs when math is involved, we sometimes need to break these formulas. It is impossible to make a general set up that will always lead to good line breaks, the user should expect some rewriting or manual juggling. Line breaks in mathematics can be controlled via penalties, and we will show several possible ways to do so.

To prevent lines from spreading, one usually needs to prevent inline formulas from being too tall. We will present the profiling mechanism in ConTEXt that sometimes can prevent lines from spreading, even though the formulas are slightly too tall, without a bad outcome. The user can also work to prevent the lines from spreading. One way to do so is to slash the fractions. This does not really have to do so much with ConTEXt but is rather some general advice.

4.2 Breaking paragraphs into lines

The algorithm used by T_EX to break paragraphs into lines, the Knuth–Plass algorithm, is rather complex. We will not discuss it in detail here, but if we want to understand the math configurations that we will discuss below, it will be good to understand some aspects of it, in particular the ones that have to do with mathematics. We start, however, with a paragraph borrowed from [CBB54], without any mathematics. The vertical bars indicate all possible break points.

The art of presenting printed mathematics has much in common with those of display advertising and window-dressing. Crowding is to be avoided; contrast can be used whether of formula against formula or of words against symbols; essential information ought not too often to be hidden away in the small type of inferiors and superiors.

Note that some of the possible breaking points are inside words, leading to hyphenation (disc) while others are before spaces (glue). Most of the breaks in the paragraph above will never happen; it would for example lead to a very underful first line if we broke after the first word, with a lot of empty space. TEX calculates badness of possible breakpoints and deactivate them 'on-the-fly' if they are too bad. We end up with a tree of possible breakpoints. With a normal set up (not as above) this tree is not so big, and from it the optimal choice (least demerits) can be found. For completeness we show below the actual values for the example paragraph above. In order of appearance, the columns stand for

the line, the index of the possible breaking point, the parent index in the tree, the demerit values, the classification (that in $ConT_EXt$ (lmtx) can be set up to be more granular) and finally the type of breaking point.

1	2	1	0	73	11889	loose	glue	5 431		
2		2	1	61	16930	loose	glue	6 431		
	1	3	1	44	27305	tight	glue			
3	2	4	3	23	28394	almosttight	glue	pass :	: 4	demerits : 43818
4		5	4	8	43718	barelyloose	penalty	subpass :	: 1	looseness : 0
		6	4	86	9037610	tight	penalty	subpasses :	5	

The above paragraph was set with an infinite tolerance, which means that possible breakpoints are not discarded. Most of the possible breaking points indeed come with a very high demerits value. With the actual settings in this document, there are only a few breaking points left for the same paragraph:

The art of presenting printed mathematics has much in common with those of display advertising and window-dressing. Crowding is to be avoided; contrast can be used whether of formula against formula or of words against symbols; essential information ought not too often to be hidden away in the small type of inferiors and superiors.

This leads in the end to a smaller tree to use for selecting the best solution.

1	2	1	0	73	11889	loose	glue	5 431		
2		2	1	61	16930	loose	glue	6 431		
	1	3	1	44	27305	tight	glue			
3	2	4	3	23	28394	almosttight	glue	pass	: 0	demerits : 43818
4		5	4	8	43718	barelyloose	penalty	subpass	: 1	looseness : 0
		6	4	86	9037610	tight	penalty	subpasses	: 5	

The example above does not involve any mathematics. Let us now consider one example (borrowed from the excellent book [Wei80]) that does.

If $\mbox{m} \{z \in T\}$ is injective and $\mbox{m} \{R(z,T)\}$ is continuous. If $\mbox{m} \{z - T\}$ is injective and $\mbox{m} \{R(z,T)\}$ is continuous, then $\mbox{m} \{z \in T\}$ and thus by Theorem 5.23(b) the set $\mbox{m} \{D(R(z,T)) = R(z-T)\}$ is dense in $\mbox{m} \{H\}$; as $\mbox{m} \{R(z,T)\}$ is closed, we have $\mbox{m} \{R(z - T) = D(R(z,T)) = H\}$. If $\mbox{m} \{R(z,T) = H\}$ and $\mbox{m} \{z \in T\}$, then $\mbox{m} \{R(z,T)\} = D(R(z,T)) = R(z - T)^{1} = R($

The output with the settings in this document is given below.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - 1) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$ then $N(z - 1) = N(z^* - 1) = R(z - 1)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \notin \rho(T)$. If $Imz \neq 0$ then $z \notin \rho(T)$ by Theorem 5.23(a).

1	2	1	0	289	96901	veryloose	math	3		15	7	369	361606	veryloose	math	1	29	19	60	596361	loose	penalty
	2	2	0	133	27949	veryloose	glue		2	16	7	248	247206	veryloose	glue	2	30	18	60	600271	decent	penalty
		3	0	37	67209	almostloose	disc		2	17	9	95	45863	loose	glue		31	19	259	1789686	decent	penalty
		4	0	6	62756	barelyloose	disc		3	18	9	374	37627	barelyloose	glue		32	18	259	1803888	tight	penalty
	3	5	0	0	100	decent	glue		3	19	10	240	28961	loose	glue	4	33	19	23	543342	tight	penalty
	1	6	0	0	100	decent	glue			20	9	240	39938	decent	glue	2	34	23	0	2613567	decent	penalty
2	2	7	1	232	217965	veryloose	disc			21	13	77	2336694	loose	penalty 5		35	24	232	1486111	veryloose	glue
		8	1	364	182202	veryloose	disc			22	12	77	2326338	barelyloose	penalty		36	25	261	395691	veryloose	disc
	3	9	2	190	34838	loose	glue		1	23	14	1	722842	decent	penalty		37	25	113	337379	veryloose	disc
	1	10	5	125	25825	veryloose	glue	4	1	24	16	269	1427547	veryloose	penalty		38	26	204	135759	veryloose	glue
		11	2	125	35593	decent	glue		2	25	16	102	259750	veryloose	glue		39	26	34	94399	almostloose	glue
	1	12	5	165	389	barelyloose	glue		4	26	17	200	89963	veryloose	glue		40	26	88	1200063	decent	penalty
	1	13	6	20	3500	almostloose	glue			27	18	350	2221528	loose	penalty		41	26	97	100363	barelytight	glue
	1	14	5	20	221	decent	glue			28	17	350	2224388	barelyloose	penalty		42	29	355	597261	almostloose	glue

	43 44 45 46 47 48 49 50	30 33 30 33 33 33 34 34	352 185 185 230 50 1 0 38	1702871 596367 600415 554018 1650942 546166 2623667 2740871	decent veryloose decent almostloose decent barelytight decent almosttight	penalty glue glue penalty math penalty disc	38 39 40 41 42	26 17 9 2 26 17 9 2
35 36	50 24 16 25 16	71	38	2740871	almosttight	disc	44 45 46 47	33 19 10 5 30 18 9 2 33 19 10 5 33 19 10 5

49 34 23 14 5 50 34 23 14 5 : 4 demerits : 96999 subpass : 2 looseness : 0 subpasses : 5

48 33 19 10 5

We see a new type of line break, inside formulas (penalty). Automatic line breaks inside formulas have in TEX always been restricted to after relation and binary operator atoms; in contrast with text, line breaks in math are not permitted at glue. The penalties (\relpenalty and \binoppenalty) have usually been set to 500 and 700, respectively; a small preference for breaking after relations. Note that we do not only have a few possible breaks inside math, some of them are in fact realized, in spite of the added penalty. (Hyphenation breaks also come with a penalty, but we will not discuss that here.)

If we do not allow any breaks in mathematics (by setting the corresponding penalties to 10000), then TFX will in this example paragraph not find any good solution. This results in an overful hbox, with one of the longer formulas sticking out in the margin.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \in \rho(T)$. If Im $z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

That looks bad; line breaking inside formulas is a "necessary evil". The way to set it up is to use penalties. We will use the same paragraph to discuss and show a few settings we can do in ConTEXt. First we show the paragraph with the penalties attached, with the longstanding "default" setting of only allowing breaks after relations (with penalty 500) and binary operators (penalty 700).

- If $z \in \rho(T)$ then z T is injective and R(z, T) is continuous. If z T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem
- 5.23(b) the set D(R(z, T)) = R(z T) is dense in H; as R(z, T) is closed,
- we have R(z T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z T) = N(z^* T^*) = R(z T)^{\perp} = \{0\}$; therefore z T is bijective, i.e.,
- $z \in \rho(T)$. If Im $z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

The gray boxes show the penalties that are relevant for us (the other ones are connected with widows and orphans). We see that it is by default always a 0 penalty before and after a formula, and indeed a penalty of 500 after relations and 700 after binary operators. Before we continue the discussion, let us emphasize that after experimenting with different values (and in fact also different models for calculation of badness and demerits), we have concluded that the quality from the values used since plain TFX are not so easy to improve. But we believe that some flexibility, described below, might improve the situation slightly.

It is considered non-optimal to break a formula just before a one character formula. We find a lonely H in our example paragraph. One way to avoid having a line break before it is to insert what is called a tie, a non-breakable space just before the formula. This can be done with \penalty10000, but often also as ~. The 10000 penalty will prohibit a line break. One can imagine situations where one has to choose between a line break before a singleton and a bad break inside a longer formula. For this reason, we believe that it is better to insert a smaller penalty, and to do it automatically. We can do that with \preshortinlinepenalty. By default it is set to 150.

- If $z \in \rho(T)$ then z T is injective and R(z, T) is continuous. If z T is
- injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem
- 5.23(b) the set D(R(z, T)) = R(z T) is dense in H; as R(z, T) is closed,
- we have R(z T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z T) = N(z^* T^*) = R(z T)^{\perp} = \{0\}$; therefore z T is bijective, i.e.,
- $z \in \rho(T)$. If Im $z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

Next, one could consider to open up and allow lines to break also before and after other atom classes than relation and binary operator. This is indeed possible to do for any atom class in ConTEXt. In a general setup it does not prove to be too useful. With

```
\setmathpostpenalty\mathvariablecode500
\setmathpostpenalty\mathordinarycode500
\setmathpostpenalty\mathdigitcode500
```

we allow breaks after variable, ordinary and digit atoms, adding a penalty of 500. This results in a very bad break.

- If $z \in \rho(T)$ then z T is injective and R(z, T) is continuous. If z T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem
- 5.23(b) the set D(R(z, T)) = R(z T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective, i.e.,
- $z \in \rho(T)$. If $\lim_{x \to \infty} z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

To add a penalty before an atom class \setmathpostpenalty is used. By default, we follow the traditional setup, only the penalties after relations and binary operators are set to finite values. There is, however, a third class that has a value set, punctuation is set to 10000, which as we know can be seen as infinity. There is a finesse about this, though. Say that we want to define some macro that likely will involve several commas, like a tuple. If one uses many such constructions in a paragraph, it might be difficult to find breakpoints, since in an expression like (1, 2, 3, 4, 5, 6, 7, 8, 9) there is nowhere to break. It is then possible to use a so-called math nesting.

\definemathnesting[tuple][left=(,right=),inlinefactor=500]

Now $m\{(a,b,c) + tuple\{1,2,3\} + (p,q,r)\}$ gives (a,b,c) + (1,2,3) + (p,q,r). Here the 10000 penalty after the commas have become 5000. Still not a wanted break point, but it might be better than nothing.

There is in fact yet another mechanism enabled that sometimes change the default penalties after relations and binary operators. There is a multiplier \mathinlinepenaltyfactor, by default set to 1500. It will keep control of fences and multiply the penalties inside them.

- If $z \in \rho(T)$ then z T is injective and R(z, T) is continuous. If z T is
- injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed,
- we have R(z T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $\sum_{m=0}^{N} (z - T_{mod}) = \sum_{m=0}^{N} (z^* - T_{mod}) = \sum_{m=0}^{N} (z^* - T_{mod}) = \sum_{m=0}^{N} (z - T_{mod})^{-1} = \{0\}; \text{ therefore } z = T_{mod} = T_{mod} \text{ is bijective, i.e.,}$
- $z \in \rho(T)$. If Im $z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

The binary operator penalties appearing inside parentheses have been multiplied by 1.5, and are now $700 \times 1.5 = 1050$.

We mention one more method to control line breaks in math. In a long formula it might be considered better to break somewhere in the middle rather than at the very beginning or very end. This can be done with \mathforwardpenalties and \mathbackwardpenalties:

\mathforwardpenalties 3 200 100 50
\mathbackwardpenalties 3 200 100 50

This will add 200 to the outermost penalty, 100 to the next one and 50 to the third (if available). Since we add penalties at the boundaries of formulas, we lower the penalties after the relation and binary operators, and set them to 400 and 600, respectively.

If $z \in \rho(T)$ then z - T is injective and R(z, T) is continuous. If z - T is injective and R(z, T) is continuous, then $z \notin \sigma_p(T)$ and thus by Theorem 5.23(b) the set D(R(z, T)) = R(z - T) is dense in H; as R(z, T) is closed, we have R(z - T) = D(R(z, T)) = H. If R(z, T) = H and $z \in \mathbb{R}$, then $N(z - T) = N(z^* - T^*) = R(z - T)^{\perp} = \{0\}$; therefore z - T is bijective, i.e., $z \in \rho(T)$. If $\operatorname{Im} z \neq 0$, then $z \in \rho(T)$ by Theorem 5.23(a).

Note that now the penalty after the \in in the first formula $z \in \rho(T)$ is 400 + 200 + 200 = 800, while it for the minus in the second formula z - T is 600 + 200 + 200 = 1000. For the longer formulas, > in front of the penalty helper indicate that the forward penalty is applied, < that the backwards penalty is applied, and = that both are applied. Note the ordering of the different applications. For example we see in N(z - T) at the beginning of a formula a 1100 after the minus. That comes from $600 \times 1.5 + 200$. So, the forward and backward penalties are added *after* we have compensated for being inside the parentheses.

4.3 What do others say on the breaking of inline formulas?

The breaking of inline formulas over several lines is an interesting and rather complex topic. In fact, it should not be something that the user should need to have in mind while typing, but it is good to know something about it. Let us therefore start with a small historical background.

The simplest rule is to be find in [CBB54]: "Undisplayed formulae (that is, formulae run in as part of the text) must never be broken at the end of a line."

In [Lan61] there is a discussion on the issue that runs over three pages, and except that it gives several examples, it can be summarized as follows. It is strongly suggested to change the wording or the word spacing locally to avoid line breaks in formulas. If that does not help it is suggested to display the formula that has to be broken, if it is not too short, or if it does not lead to an unbalanced emphasizing of the formula. If neither of these solutions are possible, it is suggested that one breaks the formula according to the priority below.

Let us develop their reasoning a bit. The best place to divide the formula is after a comma or other punctuation where the formula is already naturally divided. In fact, it is even suggested that this is not a problem at all in cases as $f(x) = x^2$, $x \in \mathbb{R}$, where the comma is not really a part of one of the formulas, but one can assume that they do not want to break after the comma in f(x, y). The next best solution is to divide the formula after a

verb like the equal sign, the third best is after a binary operator like plus. Except for these, breaks are really considered to be bad, but it goes on. The fourth best is to divide after a multiplication or division. In case of a multiplication like (a + b)(c + d) no multiplication sign should be printed, but in the case of division (a + b)/(c + d) one should have (a + b)/(c + d) on the first line and (c + d) on the second. The last three options are considered very bad.

If it is not possible to break the formula according to the list above, the manual also says it is forbidden to do so after functions like sin or after operators like \sum or \int .

In [Swa99] the topic is covered in Sections 3.3 and 3.4. Seven rules are formulated. They are more or less in agreement with the rules given by Lansburgh, but they are not given any clear priority. Instead of formulating the rules in [Swa99], let us point out some differences between them and [Lan61]. A noticeable one is that line breaks are allowed not only after, but also *before* verbs like = and conjunctions like +. Also, if breaking a product (a + b) (c + d) into (a + b) and (c + d) (something that we usually do not allow), it is suggested that a multiplication sign $(\cdot \text{ or } \times)$ is inserted on the second line. In the formulas x(a + b + c), (a + b - c)y and $\sum (a + b - c)$ it is written that no break should be allowed. Also, no breaks are allowed between the integral \int and the differential dx.

4.4 Tall mathematics in paragraphs

Tall mathematical expressions in inline mathematics is a problem, since they will cause an uneven space between lines in paragraphs. One way to avoid the problem is to use smaller symbols when available, like \int instead of \int (this will automatically be the case if one starts inline math and uses \int). On the other hand, in some formulas the letters might become too small. We do not want to use a big fraction like $\frac{a}{b}$ in inline formulas, since that will spread the lines, but the $\frac{a}{b}$ (that we get from \frac{a}{b} in inline math mode) looks too cramped; the small letters will decrease the readability. That becomes even worse if we also add a superscript, $\frac{a^b}{c}$. Then we also risk the line to spread.

Some tall formulas might be transformed into displayed formulas, but when that happens too much, the text can become less readable. So, the question is what we should do? Tall formulas coming from fractions can be slashed, something that we will discuss in the next section. If we want to use too tall formulas, then there is not much to do. But for formulas that are just a bit too tall, we can sometimes still reduce the lines without getting a bad result. Let us look at a maybe not to obvious example, borrowed from the book [SS98] that contains lots of nice math problems.

Problem 4.1.18 (Fa78) Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that are eigenvalues of at least one element of X. Prove that S is compact.

Problem 4.1.18 (Fa78) Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that are eigenvalues of at least one element of X. Prove that S is compact.

Maybe it is difficult to see the difference between these paragraphs. The tallest formula, \mathbb{R}^{n^2} introduces some extra space between the first two lines in the first paragraph. This space is, however, removed in the second. The mechanism behind this is *profiling*, which is enabled by invoking \setupalign[profile]. It will run over lines where extra line skip is needed, and look at the boxes. If the line skip can be reduced without the lines clashing, it

will do so (one can set up the granularity). As often is the case in ConT_EXt, it is possible to enable a tracker to visualize this (the profiling.lines.show tracker). The same two paragraphs are typeset below. In the first one, where profiling is off we show the lines. In the second we show lines where profiling kicks in.

Problem 4.1.18 (Fa78) Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified
with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that
are eigenvalues of at least one element of <i>X</i> . Prove that <i>S</i> is compact.

Problem 4.1.18 (**Fa78**) Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that are eigenvalues of at least one element of X. Prove that S is compact.

4.5 Slashing fractions

Fractions in inline formulas are problematic simply because they are tall by construction. We will below give many examples with some general advice, partly inspired by the 29(!) pages long discussion on fractions in [Lan61]. We have in mind that we want to avoid tall formulas that introduce extra line spread. Below, we will only show the output of examples, together with comments. We give suggestions both for display and inline formulas. It is often more difficult to get the inline version correct, and, as mentioned, we will often use a fraction slash instead of a fraction bar, i.e. we will *slash the fractions*.

In our first example we have fractions with numbers only. In display style math these can be set slightly smaller with \tfrac. In text style math they will automatically get the correct smaller size with \frac.

Display: $\frac{11}{19} + \frac{3}{19}\sqrt{5} - \frac{1}{19}\sqrt{7} - \frac{2}{19}\sqrt{5}\sqrt{7}$

Inline: $\frac{11}{19} + \frac{3}{19}\sqrt{5} - \frac{1}{19}\sqrt{7} - \frac{2}{19}\sqrt{5}\sqrt{7}$

If there is a fraction with only numbers, we can still set it with \tfrac, as in the first example below. This also applies if there are more terms with numeric fractions, as in the polynomial in the second example. If, however, there are some non-numeric fractions, as in the third example, we suggest to set that fraction (a/5 in the example) in display style. Then it is also natural to set the other fraction ($\frac{1}{8}$ in the example) in display style. Note that we have slashed a/5 but not $\frac{1}{8}$ in the inline version. One could argue that it looks better with 1/8 as well.

Display: $\frac{1}{24}(L^2 + 4\pi^2) = \frac{3}{5}x^2 + 2x + \frac{1}{8} = \frac{a}{5}x^2 + 2x + \frac{1}{8}$

Inline: $\frac{1}{24}(L^2 + 4\pi^2) = \frac{3}{5}x^2 + 2x + \frac{1}{8} = (a/5)x^2 + 2x + \frac{1}{8}$

With integer fractions in front of a big symbol, like an integral, big parentheses, or a sum, there is no meaning in keeping the fractions small in display math.

Display:
$$\frac{1}{2} \int_{0}^{2} f(\theta) d\theta = \frac{3}{5} \left(\frac{a}{b} - 1 \right) = \frac{1}{2} \sum_{k=1}^{+\infty} \frac{1}{k^{2'}} = \frac{1}{2} \log \left(\frac{x}{y} \right)$$

Inline: $\frac{1}{2} \int_{0}^{2} f(\theta) d\theta = \frac{3}{5} (a/b - 1) = \frac{1}{2} \sum_{k=1}^{+\infty} \frac{1}{k^{2}} - \frac{1}{2} \log(x/y)$

Here we have letter fractions that are simple in the sense that both numerator and denominator only has one term. Since there are letters, we shall not use a smaller style. This fixes the look in the display style. In text style, we must slash. The reason is that

we do not want high fractions that forces a larger total line height, and we do not want to make the symbols smaller.

Display: $\frac{1}{2\pi}$ $x' = \frac{x}{|x|}$ $\frac{dy}{dx}$ $\left\lfloor \frac{n^2}{4} \right\rfloor$ Inline: $1/2\pi$ x' = x/|x| dy/dx $\lfloor n^2/4 \rfloor$ or $\lfloor \frac{1}{4}n^2 \rfloor$

In the first example we slash and get $1/2\pi$. Could this be mixed up with $\frac{1}{2}\pi$? Yes, probably. But, if we think about how we read the formula out, "one over two π ", it makes sense to write $1/2\pi$. In cases where you want or need to, you can insert parentheses and write $1/(2\pi)$.

There is not much to say about the second and third examples. For the fourth, we can choose between $\lfloor n^2/4 \rfloor$ and $\lfloor \frac{1}{4}n^2 \rfloor$ (the fraction here is set with \frac). The important point is that the formulas do not change the height of the line.

Display:
$$\frac{\Gamma(\beta_1)\Gamma(\beta_2)\dots\Gamma(\beta_n)}{\Gamma(\beta_1+\beta_2+\dots+\beta_n)} \qquad \qquad \frac{1}{\zeta(s)}\sum_{n=1}^{+\infty}\frac{\mu(n)}{n^s}$$

Inline: $\Gamma(\beta_1)\Gamma(\beta_2)\dots\Gamma(\beta_n)/\Gamma(\beta_1+\beta_2+\dots+\beta_n) \quad [1/\zeta(s)]\sum_{n=1}^{+\infty}\mu(n)/n^s$

With the examples above we only want to emphasize that the same idea applies even if the expressions in the fractions are a bit more complicated. If they get too long, however, they should be displayed. These two formulas are border cases.

In the second example we have two fractions that are both slashed, independently of each other. Note the added square brackets in the first of them.

Display:
$$\frac{1}{2\pi i} \frac{\partial f}{\partial x_j}$$
 $\frac{\sin^2 tu}{u^2}$ $\frac{1}{d_{\chi}} (\Lambda * \mathcal{M})$

Inline: $(1/2\pi i) \partial f/\partial x_i \quad (\sin^2 t u)/u^2 \quad (1/d_{\chi}) (\Lambda * \mathcal{M})$

In these examples we have inserted parentheses when slashing the fractions. We need no parentheses around the numerator (in the third example there are already parentheses, and we must not remove them!).

Display:
$$\frac{1}{2}(a+b)$$
 or $\frac{a+b}{2}$

Inline: $\frac{1}{2}(a+b)$ or (a+b)/2

In cases like these you have the freedom to choose, but be consistent throughout your document.

Display:
$$\sqrt{\frac{v}{\sigma}} \frac{dv}{\sigma}$$

Inline: $\sqrt{v/\sigma} \, dv/\sigma$

Square roots work as parentheses, so you do not need to insert any when slashing.

Display:
$$\frac{1}{n+1}$$
 $w = \frac{az+b}{cz+d}$ $\frac{F(t_i) - F(t_{i-1})}{t_i - t_{i-1}}$
Inline: $1/(n+1)$ $w = (az+b)/(cz+d)$ $[F(t_i) - F(t_{i-1})]/(t_i - t_{i-1})$

When slashing fractions that are not simple (i.e. where the numerator and/or the denominator have more than one term), we will need to add parentheses. Note the square brackets in the third example above.

Display:
$$\frac{1}{n+1}B_{n+1}(x)$$
 $\frac{n!}{(n-2j)!(2j)!!}$ $\frac{B_1}{1+x} - \frac{B_2}{2(1+x)^2}$
Inline: $[1/(n+1)]B_{n+1}(x)$ $n!/[(n-2j)!(2j)!!] = B_1/(1+x) - B_2/[2(1+x)^2]$

In the first example the square brackets must be there. One could question them in the second example if one reads it as "*n*-factorial over …". If hesitant, add parentheses. The third example consists of two terms, one where we only need ordinary parentheses, and one where we also need square brackets. The last term could equally well have been written as $-\frac{1}{2}B_2/(1+x)^2$.

Display: $\frac{1}{(2\pi i)^k} \int_{\nu+x} \kappa \varphi$

Inline:
$$[1/(2\pi i)^k] \int_{\nu+x} \varkappa \varphi \text{ or } (2\pi i)^{-k} \int_{\nu+x} \varkappa \varphi$$

The fraction above can be slashed as we first show, which leads to extra brackets. It is perhaps better in cases like this to simply get rid of the fraction by writing $1/(2\pi i)^k$ as $(2\pi i)^{-k}$.

Display:
$$a^{\frac{3}{5}} = a^{\frac{1}{2}b} = w^{(N+2)/(N-2)} = L^{Np/(N-2)} = \left(\int_{\Omega} |f|^p \, d\mu\right)^{1/p}$$

Inline: $a^{3/5} = a^{b/2} = w^{(N+2)/(N-2)} = L^{Np/(N-2)} = \left(\int_{\Omega} |f|^p \, d\mu\right)^{1/p}$

Fractions in exponents and indices are set more or less as if they were set on the line, but with smaller sizes. This is taken care of automatically.

Bad:
$$e^{\frac{\ell_{\gamma_1}(X) + \ell_{\gamma_2}(X)}{2}}$$
 Better: $e^{\frac{1}{2}[\ell_{\gamma_1}(X) + \ell_{\gamma_2}(X)]}$ Better: $\exp\left\{\frac{1}{2}[\ell_{\gamma_1}(X) + \ell_{\gamma_2}(X)]\right\}$

The first example above is too cluttered. It gets slightly better if we take the $\frac{1}{2}$ out as a factor, but even better if we avoid the exponential form altogether and write the exponential function as exp. We end this long list with examples by reminding you that it is also possible to use a slash in display math.

Display: $\mathcal{M}_{g,n} = \mathcal{T}_{g,n}(L) / \operatorname{Mod}_{g,n} \left(\frac{az+b}{cz+d} \right) / \left(\frac{ez+f}{gz+h} \right)$

Inline: $\mathcal{M}_{g,n} = \mathcal{T}_{g,n}(L) / \operatorname{Mod}_{g,n} [(az+b)/(cz+d)]/[(ez+f)/(gz+h)]$

]

5 Displayed math

5.1 Introduction

By displayed formulas we mean formulas that stand alone, broken out of the paragraph. One simple example is given by

$$f(x) = f(0) + \int_0^x f'(t) \, dt$$

In contrast with inline formulas, that we just discussed, we have much more freedom when it comes to the displayed ones. If the formula is tall it is not a big problem, as long as it fits on the page. If it is long, we can break it across lines. For this reason it is very tempting to use displayed formulas a lot. But they can be overused. If every paragraph contains one, the text will easily look torn apart.

Nevertheless, displayed formulas are useful, and in this chapter we will discuss various ways of typesetting them. Their structure can vary, and that calls for different constructions in ConT_EXt. Until recently, and in particular in traditional T_EX, to typeset long formulas with several verbs (say equal signs), we were stuck with alignment constructions that were based on \halign. Everything was put into boxes, and the parts were typeset in several different math formulas, and then put together. In ConT_EXt(lmtx) we can in fact stay in paragraph mode, and format the paragraph according to our needs. We only need to enter and leave mathematics once. It has several positive consequences; we can more easily convert to other formats and make the code accessible.

5.2 Different types of displayed formulas

We follow [Lan61] and divide the types of formulas into three classes, depending on the structure they have. By this we mean the number of verbs (like $=, \leq$) but also how many formulas there are.

- 1. A *simple formula* is a formula with at most one verb, like a = b + c/d and a + b c.
- 2. A *chain formula* is a formula with several verbs, like $a = b + c \le d + e$.
- 3. A *multiple formula* is a set of formulas (that can be simple or chain formulas) that are to be set together.

We will discuss these types one by one. We will often use a dummy command \Snip that prints some dummy math. This is merely to emphasize the structure of the formulas, not their content.

5.3 Simple formulas

We start with the very simplest type of formula.

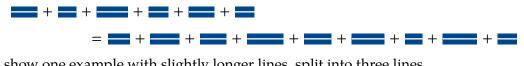
```
\startformula
  \Snip[1] \colonequals \Snip
  \stopformula
  = = + ==
```

```
\startformula
  \fenced[bar]{\Snip[4]}
```

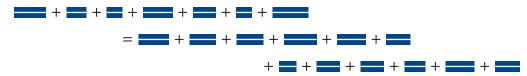
```
\leq
 \fenced[bar]{\Snip[2]} + \fenced[bar]{\Snip[2]}
\stopformula
```

A simple formula might have complicated pieces.

```
\startformula
 Snip[1] = Snip[2] +
 \startcases
   \NC \Snip[3] \TC if \im{\Snip[1] = \Snip[1]},\NR
   \NC \Snip[3] \TC if \im{\Snip[1] = \Snip[1]}.\NR
 \stopcases
\stopformula
```


If the formula is too long to fit on the line, it will automatically be broken.

```
\startformula
Snip[6] = Snip[9]
\stopformula
```


The rules on where to break the lines are driven by penalties. It is set up to prefer breaks just before the relation class, or, if that is not possible, just before the binary class. Note that both lines are mid-aligned. We can control both the breaking point and the alignment. In this particular case we use align=slanted, that flushes the first line left and the last line right, and align the rest of the lines, if there are any, to the middle.

```
\startformula
[align=slanted]
\Snip[6] \breakhere = \Snip[9]
\stopformula
```

We tell where to have line breaks with \breakhere. In this specific case, the formula would look better with a margin. We get that by adding margin=2em as an option to \startformula.

We show one example with slightly longer lines, split into three lines.

If we do not want to break the formula, we can use split=line. But then it will stick out in the margin if too long.

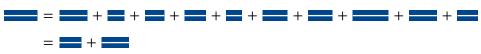
It is possible to define a new formula and set its align method and margin (and other parameters). This is preferable for consistency.

```
\defineformula
 [MySlanted]
 [align=slanted,
 margin=2em]
```

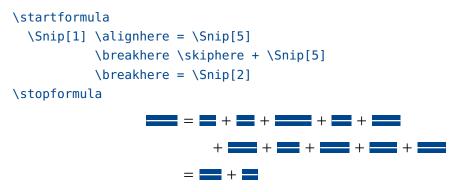
We can now use it with \startnamedformula. Note that the middle line is mid-aligned.

5.4 Chain formulas

Chain formulas contain more than one verb. It is often a good idea to break the formula over several lines and align on the verbs. This is done by using \alignhere and \breakhere.


```
\startformula
 \Snip[1] \alignhere = \Snip
    \breakhere = \Snip
 \stopformula
```

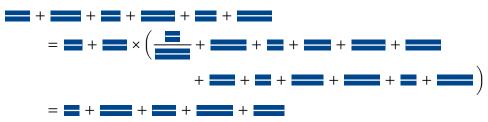
=	= + = + = + =
=	+ + +


The same output can be obtained by using \startalign and \stopalign. There is, however, an important difference. When we use \startalign and \stopalign the formula is typeset with the \halign primitive. This means that we enter end leave math mode for every cell. With the method just shown, using \alignhere, the formula is in fact one long paragraph that is broken at the appropriate places, and we never leave math mode.

It might happen that one part of the formula is much longer than the others.

\stopformula

Such a formula might look a bit unbalanced, with the equal signs so far to the left, or you might be on a narrower text block. A remedy might be to break the right-hand side in the first line into two pieces. But then we should also indent the (new) second line a bit. This is done with \skiphere.



If you have a too long left-hand side, it is possible to add it on its own line. Then the textdistance key is useful. The textdistance=3em will add 3em on all lines except the first.

```
\startformula
 [textdistance=3em]
 \alignhere \Snip[6]
 \breakhere = \Snip[8]
 breakhere = Snip[4]
\stopformula
         = = + = + = + = + = + = + = + = +
              = = + = + = + = =
We look at one more example.
\startformula
 [textdistance=3em]
 \alignhere \Snip[6]
 \breakhere = \Snip[2] \times
   \F3 \left( \frac{\Snip[1]} + \Snip[5]
 \breakhere
           \skiphere[5] + \Snip[6] \right)
```

```
\breakhere = \Snip[5]
```

\stopformula

Some comments are needed. First, we used \F3 to force the delimiters to be of the third available size. Notice also that we use a \breakhere inside the delimited part, so that is possible. We have used \skiphere[5] to emphasize that the broken pair of parentheses belong to each other. The 5 is a multiplier of the standard skip, that is set to 2em, but it can be changed with the textmargin key. It is also possible to specify an explicit length, as in \skiphere[4em].

5.5 Multiple formulas

We will here look at displayed content that in fact consists of several formulas. In inline mode, when we write $\inf\{f(x)= \sin x\}$, $\inf\{x \in \mathbb{R}, x \in \mathbb{R}\}$ we get $f(x) = \sin x, x \in \mathbb{R}$. The point here is that we use two formulas and the comma in-between them is taken from the text font (we remind you of Section 2.16 about punctuation in math). We separate formulas with $\inf p$, math text punctuation.

```
\startformula
f(x) = \sin x \mtp{,}
x \in \reals \mtp{.}
\stopformula
```

$$f(x) = \sin x, x \in \mathbb{R}.$$

We can, if we want to enforce the structure, put the formulas into the relevant math mode, but that is in general tedious.

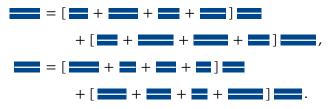
```
\startformula
  \dm{f(x) = \sin x} \mtp{,}
  \dm{x \in \reals} \mtp{.}
  \stopformula
```

$$f(x) = \sin x, \quad x \in \mathbb{R}.$$

The \mtp puts it argument into an hbox and apply the mathtextpunctuation class; the extra space you see to the right of the comma is set up via the atom class mathtextpunctuation. One can omit the comma (some also omit the period) in the example above, and then it is customary to use parentheses for the domain of definition. We use \mtp{} to get the same amount of extra spacing,

```
\startformula
f(x) = \sin x \mtp{}
(x \in \reals)
\stopformula
```

$$f(x) = \sin x \quad (x \in \mathbb{R})$$


It is usually best to keep the formulas on one line if they fit. Add spacing (for example with \mtp or \quad) between them,

If, as above, the formulas follow each other directly, only have one verb each, and if they have the same character, it might be a good idea to align them on the verb (the equal sign in the example). This is done by adding multiple \alignhere, at the relevant places.

Here is another case where it makes sense to align on the equal signs, even though the third equation runs over two lines. We use \skiphere to indent the last line.

$$\begin{aligned} \frac{\pi}{4} &= \arctan 1, \\ \frac{\pi}{4} &= \arctan \frac{1}{2} + \arctan \frac{1}{3}, \\ \frac{\pi}{4} &= 183 \arctan \frac{1}{239} + 32 \arctan \frac{1}{1023} - 68 \arctan \frac{1}{5832} \\ &+ 12 \arctan \frac{1}{110443} - 12 \arctan \frac{1}{4841182} - 100 \arctan \frac{1}{6826318}. \end{aligned}$$

It is not a problem if more than one (or all) equations do continue on the next line,

The following three formulas all have two equal signs. We suggest not to align on any of the equal signs, since that will promote either one of them,

$$E = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle = r^{2},$$

$$F = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle = 0,$$

$$G = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle = (a + r \cos u)^{2}.$$

If you want to enforce alignment, it is best to do so on the first equal sign,

$$E = \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle = r^{2},$$

$$F = \langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle = 0,$$

$$G = \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle = (a + r \cos u)^{2},$$

We can use \breakhere to stack several formulas on top of each other.

In the above case all terms fit nicely on one line, so that is a good option,

$$E = \langle \mathbf{x}_u, \mathbf{x}_u \rangle = r^2, \quad F = \langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0, \quad G = \langle \mathbf{x}_v, \mathbf{x}_v \rangle = (a + r \cos u)^2.$$

The formulas

$$x^{2} = \frac{c^{2} \sin^{2} \alpha \sin^{2} \beta}{\sin^{2} \alpha + \sin^{2} \beta - 2 \sin \alpha \sin \beta \cos \gamma}$$
$$(\pi - 2\alpha) + (\pi - 2\beta) + (\pi - 2\gamma) = \pi,$$

do not have the same character (yes, in this case more aesthetically than mathematically), and are best centered independently, or not put in the same display at all,

$$x^{2} = \frac{c^{2} \sin^{2} \alpha \sin^{2} \beta}{\sin^{2} \alpha + \sin^{2} \beta - 2 \sin \alpha \sin \beta \cos \gamma},$$
$$(\pi - 2\alpha) + (\pi - 2\beta) + (\pi - 2\gamma) = \pi.$$

It is bad style to introduce alignments where they do not belong. Let us consider a few examples, found in math books, where either the alignment was non-optimal, or where it should not have been used. We start with an example where the first formula is a long chain formula that needs to be broken over two lines.

$$\begin{split} \mathcal{F}_{x} - \mathcal{F}_{\dot{x}} &= \dot{x} \mathcal{F}_{x\dot{x}} + \dot{y} \mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}x} \dot{x} - \mathcal{F}_{\dot{x}y} \dot{y} - \mathcal{F}_{\dot{x}\dot{x}} \ddot{x} - \mathcal{F}_{\dot{x}\dot{y}} \ddot{y} \\ &= \dot{y} [\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}y} - (\dot{x}\ddot{y} - \dot{y}\ddot{x})\mathcal{F}_{1}], \\ \mathcal{F}_{y} - \dot{\mathcal{F}}_{\dot{y}} &= -\dot{x} [\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}y} + (\dot{x}\ddot{y} - \ddot{x}\dot{y})\mathcal{F}_{1}]. \end{split}$$

Here one could consider to set it as two independent formulas, and then there is nothing wrong by aligning the first one on the equal signs,

$$\begin{aligned} \mathcal{F}_{x} - \mathcal{F}_{\dot{x}} &= \dot{x}\mathcal{F}_{x\dot{x}} + \dot{y}\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}\dot{x}}\dot{x} - \mathcal{F}_{\dot{x}\dot{y}}\dot{y} - \mathcal{F}_{\dot{x}\dot{x}}\ddot{x} - \mathcal{F}_{\dot{x}\dot{y}}\ddot{y} \\ &= \dot{y}[\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}y} - (\dot{x}\ddot{y} - \dot{y}\ddot{x})\mathcal{F}_{1}], \\ \mathcal{F}_{y} - \dot{\mathcal{F}}_{\dot{y}} &= -\dot{x}[\mathcal{F}_{x\dot{y}} - \mathcal{F}_{\dot{x}y} + (\dot{x}\ddot{y} - \ddot{x}\dot{y})\mathcal{F}_{1}]. \end{aligned}$$

and

In the next example, the formula starting with b_2 indeed fits on the first line, but it becomes less emphasized than the other three formulas.

$$\begin{split} b_1 &= 1 - \frac{x^2}{2!}, \quad b_2 = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!}, \\ b_3 &= 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!}, \\ b_4 &= 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \frac{x^{14}}{14!}. \end{split}$$

Here, we better use one formula per line, if we want to align at all.

$$b_{1} = 1 - \frac{x^{2}}{2!},$$

$$b_{2} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!},$$

$$b_{3} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \frac{x^{10}}{10!},$$

$$b_{4} = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \frac{x^{10}}{10!} + \frac{x^{12}}{12!} - \frac{x^{14}}{14!}.$$

Sometimes it makes sense to group several equations with a brace.

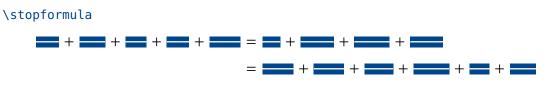
```
x = r \sin \theta \cos \phi,

y = r \sin \theta \sin \phi,

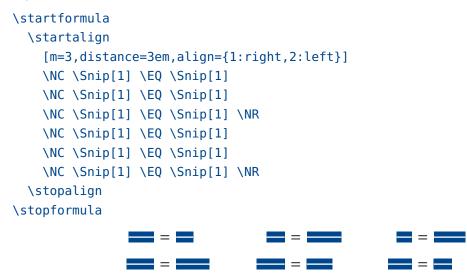
z = r \cos \theta.
```

This can also be done with a simplealign construction.

```
\definemathsimplealign
[collected]
[left={\startmathfenced[sesac]},
  right=\stopmathfenced,
  align={1:right,2:left},
  strut=yes]
```


We can now do

```
\left. \begin{array}{l} x = r \sin \theta \cos \phi, \\ y = r \sin \theta \sin \phi, \\ z = r \cos \theta. \end{array} \right\}
```


It might at first glance look weird with the brace on the right side, but that makes sense if we view the three equations as one unit and add an equation number to it. The EQ is a shortcut for NC =.

5.6 Alignments

We mentioned before that it is also possible to use \startalign and \stopalign to align formulas. This has for a very long time been *the* way to do it, but now it is almost not needed in ConT_EXt anymore. We show a few examples.

One occasion where an align can still be called for is when one has several formulas in a grid.



The result is three (since m=3) columns of formulas, and each formula has two points of alignment. The distance=3em sets 3em of spacing between the columns.

\startformula

```
\startalign
   [m=3,distance=3em plus 1fil,align={1:right,2:left}]
   \NC \Snip[1] \EQ \Snip[1]
   \NC \Snip[1] \EQ \Snip[1]
   \NC \Snip[1] \EQ \Snip[1] \NR
   \NC \Snip[1] \EQ \Snip[1]
   \NC \Snip[1] \EQ \Snip[1]
   \NC \Snip[1] \EQ \Snip[1] \NR
 \stopalign
\stopformula
= =
                                 =
=
                               ____
                                                            ____
```

We can add margins to the formula with the margin key. Below we show the same formula, but with margin=3em.

=

6 Equation labels

6.1 Introduction

There are different schools on which equations to number. Some people like to number precisely the equations that are referred to in the text, others like to label all equations, since the reader might need to refer to an equation that the author did not refer to in the text. In any case, to be able to refer to an equation, we need to label it somehow. The standard way to achieve equation numbering in ConT_EXt has always been to wrap the formula in \startplaceformula and \stopplaceformula. With the new displayed formula mechanism we will see that new opportunities have appeared.

6.2 Numbering a simple formula

The number will by default be positioned to the right of the equation, flushed to the right side of the text block. We give an example.

```
\startplaceformula
[reference=eq:Pythagoras]
\startformula
    a^2 + b^2 = c^2.
\stopformula
\stopplaceformula
```

From \in{Equation}[eq:Pythagoras] it follows\unknown

$$a^2 + b^2 = c^2. ag{6.1}$$

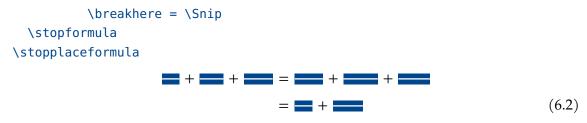
From Equation 6.1 it follows...

Note how the equation number was referred to with \in. The label of the formula is enclosed in parentheses, but when we referred to it we only got the number. To get parentheses we define a new referencing command.

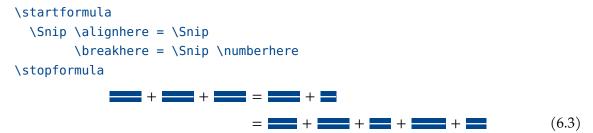
```
\definereferenceformat
```

```
[eqref]
[left=(,
  right=)]
```

We can now use \eqref.


From \eqref[eq:Pythagoras] it follows\unknown

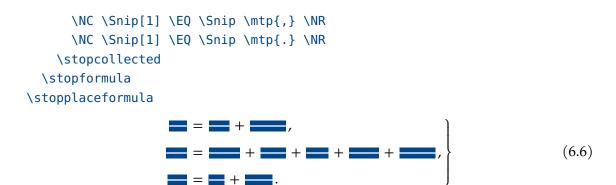
From (6.1) it follows...


6.3 One formula running over several lines

We recall that a chain formula, even if it runs over several lines, is still one formula, and therefore it should have (at most) one number attached to it. The number will by default be placed after the formula, flush right.

```
\startplaceformula
  \startformula
  \Snip \alignhere = \Snip
```


With the new formula mechanism we have \numberhere available. We can do



We can add the \numberhere on any line. By default it is put on the same line as the formula number (driven by the location key of the formula). Thus, if we put it before the \breakhere in the example above, we get this

6.4 Several equations on several lines

Sometimes several equations can be considered to be a group of equations, and then it can be natural to apply one number to the group. We can use the collected environment that we defined before.

```
\startplaceformula
  \startformula
    \startcollected
      \NC x \EQ r \sin\theta \cos\phi \mtp{,} \NR
      \NC y \EQ r \sin\theta \sin\phi \mtp{,} \NR
      NC z EQ r \cos\
                                \mbox{mtp{.} \NR}
    \stopcollected
  \stopformula
\stopplaceformula
                                 x = r \sin \theta \cos \phi,
                                 y = r \sin \theta \sin \phi,
                                                                               (6.5)
                                 z = r \cos \theta.
\startplaceformula
  \startformula
    \startcollected
      \NC \Snip[1] \EQ \Snip \mtp{,} \NR
```


Note that we did not give any reference to the equations above, so we cannot refer to it. If we really want to number each equation independently, we can either use several \numberhere or we can use align and add tags to \NR. In the first case it comes out as

```
\startformula
x \alignhere = r \sin\theta \cos\phi \mtp{,}
\numberhere[eq:x] \breakhere
y \alignhere = r \sin\theta \sin\phi \mtp{,}
\numberhere[eq:y] \breakhere
z \alignhere = r \cos\theta \mtp{.}
\numberhere[eq:z]
\stopformula
```

In equations \eqref[eq:x], \eqref[eq:y] and \eqref[eq:z] we see \unknown

$$x = r\sin\theta\cos\phi, \tag{6.7}$$

$$y = r\sin\theta\sin\phi,\tag{6.8}$$

$$z = r\cos\theta. \tag{6.9}$$

In equations (6.7), (6.8) and (6.9) we see . . .

In the second case, with an align, we instead do

In equations \eqref[eq:X], \eqref[eq:Y] and \eqref[eq:Z] we see \unknown

$$x = r\sin\theta\cos\phi,\tag{6.10}$$

$$y = r\sin\theta\sin\phi, \tag{6.11}$$

$$z = r\cos\theta. \tag{6.12}$$

In equations (6.10), (6.11) and (6.12) we see . . .

6.5 Sub-equations

For the example with spherical coordinates above, one might prefer to have one number and instead use sub-numbering with letters on the different equations. Again, we can use any of the mechanisms. With the new mechanism we need to add \startsubnumberinghere and \stopsubnumberinghere around the formula.

\startformula

```
\startsubnumberinghere
    x \alignhere = r \sin\theta \cos\phi \mtp{,}
    \numberhere[eq:xx] \breakhere
    y \alignhere = r \sin\theta \sin\phi \mtp{,}
    \numberhere[eq:yy] \breakhere
    z \alignhere = r \cos\theta \mtp{.}
    \numberhere[eq:zz]
    \stopsubnumberinghere
    \stopformula
```

In equations \eqref[eq:xx], \eqref[eq:yy] and \eqref[eq:zz] we see \unknown

$$x = r\sin\theta\cos\phi, \tag{6.13.a}$$

$$y = r\sin\theta\sin\phi, \tag{6.13.b}$$

$$z = r\cos\theta. \tag{6.13.c}$$

In equations (6.13.a), (6.13.b) and (6.13.c) we see . . .

If we prefer to use the align mechanism, we can obtain that by changing NR into NR[+].

```
\startplaceformula[eq:spherical]
  \startformula
    \startalign
    \NC x \EQ r \sin\theta \cos\phi \mtp{,} \NR[+]
    \NC y \EQ r \sin\theta \sin\phi \mtp{,} \NR[+]
    \NC z \EQ r \cos\theta
    \mtp{.} \NR[+]
    \stopalign
    \stopformula
\stopplaceformula
```

We see in \eqref[eq:spherical] \unknown

 $x = r\sin\theta\cos\phi,\tag{6.14.a}$

$$y = r\sin\theta\sin\phi, \tag{6.14.b}$$

$$z = r\cos\theta. \tag{6.14.c}$$

We see in (6.14) . . .

Note that when we refer back to the equation, we only get the main number. If we want to be able to refer to the different parts, we better use \startsubformulas and \stopsubformulas.

```
\startsubformulas
  \startplaceformula
```

We see in \eqref[eq:sx], \eqref[eq:sy] and \eqref[eq:sz] that \unknown

 $x = r\sin\theta\cos\phi,\tag{6.15.a}$

$$y = r\sin\theta\sin\phi, \tag{6.15.b}$$

$$z = r\cos\theta. \tag{6.15.c}$$

We see in (6.15.a), (6.15.b) and (6.15.c) that . . .

We can get rid of the period between the number and sub-number by using the predefined separator set none.

\setupformula [numberseparatorset=none]

We use the same example code as above, but now the output is as follows.

$$x = r\sin\theta\cos\phi, \tag{6.16a}$$

$$y = r\sin\theta\sin\phi, \tag{6.16b}$$

$$z = r\cos\theta. \tag{6.16c}$$

```
We see in (6.16a), (6.16b) and (6.16c) that ...
```

We show one additional example where we define our own separator set.

```
\defineseparatorset[Dash][][\endash]
```

```
\setupformula
 [numberseparatorset=Dash]
```

The same example code now gives the following output.

$$x = r\sin\theta\cos\phi, \tag{6.17-a}$$

$$y = r\sin\theta\sin\phi, \tag{6.17-b}$$

$$z = r\cos\theta. \tag{6.17-c}$$

We see in (6.17–a), (6.17–b) and (6.17–c) that ...

6.6 Configuring equation numbers

So far, we have only used equation numbers on the right side of the equations. We can change this.

```
\setupformula
[location=left]
```

With this setting, the equation numbers are placed flushed left instead. It is also possible to set location to inner or outer.

```
\startplaceformula
  \startformula
    J_{3/2}(x)
    =
    x^{-1} J_{1/2}(x) - J_{-1/2}(x)
    =
    \left( \frac{2}{\pi x} \right)^{1/2}
    \left( \frac{\sin x}{x} - \cos x \right)
    \stopformula
  \stopplaceformula
```

(6.18)
$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$

With longer formulas that run over several lines, the equation number is now put on the first line instead of the last.

```
\startplaceformula
  \startformula
  J_{3/2}(x)
  \alignhere
  =
  x^{-1} J_{1/2}(x) - J_{-1/2}(x)
  \breakhere
  =
  \left( \frac{2}{\pi x} \right)^{1/2}
  \left( \frac{\sin x}{x} - \cos x \right)
  \stopformula
 \stopplaceformula
```

```
(6.19)
```

$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x)$$
$$= \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$

There are more possibilities for the formula numbering. We will show a few, but we do not recommend anyone to use this format.

```
\setupformula
 [left={[},
 right={]},
 numberstyle=\bf,
 numbercolor=C:3]
```

With these setups we get a different bracketing, a lovely color, and bold style.

$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[6.20]

We can also get a different format on the numbering.

\defineconversionset
[MyConversion]

```
[Romannumerals, mathGreeknumerals]
```

\setupformula

[numberconversionset=MyConversion]

This will give us roman uppercase numbers as the main formula number, and uppercase greek (math) for the sub-numbering. With greeknumerals we would have gotten the lowercase greek from the text font, if it exists. The same formula as earlier is now set like this,

$$z = r \cos \theta.$$
 [6.XXI.**Г**]

It is possible to give some explicit but arbitrary label to an equation. But doing so, it is not possible to refer to the equation.

```
\startplaceformula
 [title=\dagger]
\startformula
 \int u\dd v + \int v\dd u = uv
\stopformula
 \stopplaceformula
```

$$\int u \, dv + \int v \, du = uv \tag{(†)}$$

6.7 Troubleshooting

The numbered equations we have been looking at so far have been rather unproblematic, in the sense that the formulas have been narrow enough so that there has always been space enough to put the equation number. If this is not the case, it is in general a complex task to get things right. In the best of worlds, we never have to think about these problems, but it is good to be aware of the default behavior, and to know what options are available. Also, in your project you should define your own formula with your chosen setting to get consistency throughout your document.

In the examples below we will use the same formula several times but with different settings. In our default layout the formula fits on the line, with a number, but instead of changing the formula from example to example, we locally change the layout. We have also enabled a tracker (math.showmargins.less) that will guide us.

First, we look at a simple one-line formula. The result in the layout used in this document is not problematic, the formula number fits well on the same line as the formula.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right) \qquad (6.22)$$
[0.0pt] [split=mathincontext] [align=middle] [location=right] [0.0pt]

Note in particular that the equation number sits in a box of a certain width. It is there to ensure that we have at least a certain distance between the formula and the equation

number (the numberdistance parameter). If we add a sufficiently large margin, the equation number is by default pushed down to the line below.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[27.5pt] [split=mathincontext] [align=middle] [location=right] [27.5pt]

One could argue that in this formula, it would look better with the number on the same line as the formula, and that can be achieved by decreasing the value of numberdistance from its default 2em. In the formula below we set it to 1em.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right) \quad (6.24)$$
[27.5pt] [split=mathincontext] [align=middle] [location=right] [27.5pt]

Another option, if we are locally in a narrower mode, might be to put the number at the right margin, independent of the current \leftskip and \rightskip. This is done by setting location to atrightmargin. One shall then be aware that this also nils the numberdistance.

$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[27.5pt] [split=mathincontext] [align=middle] [location=atrightmargin] [27.5pt]

The situation is similar if we set location=left, but then the number by default appears on top of the formula.

$$(6.26)$$

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[27.5pt] [split=mathincontext] [align=middle] [location=left] [27.5pt]

Here one can again play with the numberdistance or set location=atleftmargin. We emphasize that it is natural that the formula numbers sit above if flush left and below if flush right, in case there is not enough space. In a right-to-left document one could argue for the opposite, and it is indeed possible to change by invoking order=reverse.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[27.5pt] [split=mathincontext] [align=middle] [location=right] [27.5pt]

The situation is essentially the same when we flush formulas to the left, at least if the number is on the right.

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$

$$[0.0pt] \qquad [split=mathincontext] [align=flushleft] [location=right] \qquad [0.0pt]$$

If one decides to flush the formulas to the left, one usually has a small margin to the left. Here we have used leftmargin=3em.

$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
(6.29)

[33.0pt] [split=mathincontext] [align=flushleft] [location=right] [0.0pt]

If one in addition wants the number to the left, by invoking location=left, it will be forced to be on top of the formula, independent of the left margin.

(6.30)

$$J_{3/2}(x) = x^{-1}J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[33.0pt] [split=mathincontext] [align=flushleft] [location=left] [0.0pt]

It is still possible to use location=atleftmargin, but then one has to watch out, since then numberdistance is reset.

(6.31)
$$J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[33.0pt] [split=mathincontext] [align=flushleft] [location=atleftmargin] [0.0pt]

It is the responsibility of the author to use a sufficiently large left margin. If we set it to 4em we get the following.

$$(6.32) \qquad J_{3/2}(x) = x^{-1} J_{1/2}(x) - J_{-1/2}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right)$$
[44.0pt] [split=mathincontext] [align=flushleft] [location=atleftmargin] [0.0pt]

The situation for equations that are flushed right is completely analog to the flush left equations, but since that is a very strange way of aligning equations, we do not discuss more examples on that. Instead we move on to the more complicated aligned and slanted equations. In fact, for aligned equations, the situation is very similar to the one for single line equations that we have just discussed, so we only show a few examples. First, if there is no issue with spacing, the equation number is placed on the first line if flush left and on the last line if flush right.

$$\max_{b_k=\pm 1} U(x_k + \sqrt{2}\varepsilon b_k v_k) \ge U(x_k) + \varepsilon^2 \langle D^2 U(x_k) v_k, v_k \rangle + O(\varepsilon^2)$$
$$= U(x_k) + \varepsilon^2 \langle D^2 U(x_*) v_k, v_k \rangle + O(\varepsilon^2)$$
$$= U(x_k) - \varepsilon^2 + O(\varepsilon^2)$$
(6.33)

In a tighter layout, the number is still set on the last line if there is sufficient space (otherwise it goes to the line below).

$$\max_{b_k=\pm 1} U(x_k + \sqrt{2\varepsilon b_k v_k}) \ge U(x_k) + \varepsilon^2 \langle D^2 U(x_k) v_k, v_k \rangle + O(\varepsilon^2)$$
$$= U(x_k) + \varepsilon^2 \langle D^2 U(x_*) v_k, v_k \rangle + O(\varepsilon^2)$$
$$= U(x_k) - \varepsilon^2 + O(\varepsilon^2) \qquad (6.34)$$
[55.0pt] [split=no] [align=middle] [location=right] [55.0pt]

This shall also work if we flush formulas to the left.

[0.0pt]

We turn to slanted formulas, where we will look at examples of a formula that is split over three lines. First, we look at the result in the layout used in this document. Note that the number is placed below the last line.

$$\begin{split} I(x) &\sim \frac{1}{\sqrt{x}} e^{x\phi(c)} \int_{-\infty}^{+\infty} e^{s^2 \phi''(c)/2} \\ &\times \left(f(c) + \frac{1}{x} \left\{ \frac{1}{2} s^2 f''(c) + \frac{1}{24} s^4 f(c) \phi^{(4)}(c) + \frac{1}{6} s^4 f'(c) \phi'''(c) \right. \\ &+ \frac{1}{72} s^6 [\phi'''(c)]^2 f(c) \right\} \right) ds, \quad x \to +\infty. \end{split}$$

It is possible to use the margin and location keys to ensure space for the equation number at the last line.

$$I(x) \sim \frac{1}{\sqrt{x}} e^{x\phi(c)} \int_{-\infty}^{+\infty} e^{s^2 \phi''(c)/2} \\ \times \left(f(c) + \frac{1}{x} \left\{ \frac{1}{2} s^2 f''(c) + \frac{1}{24} s^4 f(c) \phi^{(4)}(c) + \frac{1}{6} s^4 f'(c) \phi'''(c) \right. \\ \left. + \frac{1}{72} s^6 [\phi'''(c)]^2 f(c) \right\} \right) ds, \quad x \to +\infty.$$

$$[44.0pt] \qquad [split=no] [align=slanted] [location=atrightmargin] \qquad [44.0pt]$$

This will, however, also enforce the same margin for the mid-aligned lines. Here it is better to use the margindistance key. In the example we set it to 4em, the same value as we set the margin to in the previous formula.

7 Enunciations

7.1 Introduction

If you write on mathematics you will most likely need some theorem-like environments. In ConT_EXt they are best implemented via so-called enumerations. Enumerations have many configuration possibilities, and we won't show them all. We believe it is more instructive to define a theorem environment step-by-step, to see what some of the most useful keys do with the enumerations. We give two examples, one inspired by [LS17] and one by [Uni17].

7.2 AMS styled theorems, step by step

If you are impatient, you can have a look at page 151 for the final suggested definition of the AMS styled theorem environment.

First we define the theorem enumeration, without setting any further keys.

\defineenumeration[theorem]

Let us take a look how it comes out.

```
\starttheorem
Let \im {a} and \im {b} be the legs and let \im {c} be the
hypotenuse in a right triangle. Then
\startformula
    a^2 + b^2 = c^2.
```

\stopformula \stoptheorem

theorem 1

Let *a* and *b* be the legs and let *c* be the hypotenuse in a right triangle. Then

$$a^2 + b^2 = c^2.$$

If you are familiar with AMS styled theorems, you see that there are several things to change. We start by using the alternative key to avoid heads to be written on its own line. In ConTEXt the terminology for that is that it should be serried.

```
\setupenumeration
[theorem]
[alternative=serried]
```

The same example as before now looks like this.

theorem 2Let *a* and *b* be the legs and let *c* be the hypotenuse in a right triangle.Then

$$a^2 + b^2 = c^2.$$

There is too much space between the head and the body. The problem here is twofold; the width of the head is too big and the distance between the head and the body is too big. We use the width and distance keys.

\setupenumeration

```
[theorem]
[width=fit,
  distance=lem]
```

Now the example looks better.

theorem 3 Let *a* and *b* be the legs and let *c* be the hypotenuse in a right triangle. Then

 $a^2 + b^2 = c^2.$

We next use the text key to redefine the text in the head. We change it into Theorem, with a capital T. In fact, it is possible to use any text in the head, independent of the name of the enumeration.

```
\setupenumeration
[theorem]
[text=Theorem]
```

The example now looks like this.

Theorem 4 Let *a* and *b* be the legs and let *c* be the hypotenuse in a right triangle. Then

$$a^2 + b^2 = c^2$$

The body of the theorems are set in italic. We use the style key to fix that.

```
\setupenumeration
[theorem]
[style=italic]
```

This is pretty much what we expect.

Theorem 5 Let a and b be the legs and let c be the hypotenuse in a right triangle. Then

```
a^2 + b^2 = c^2.
```

In this case we recognize the theorem as the Pythagorean theorem. We enable titles with the title key. The title should be set in normal text, not bold. This is ensured with the titlestyle key.

```
\setupenumeration
[theorem]
[title=yes,
    titlestyle=normal]
```

Note how the code and outcome change below.

```
\tarttheorem[title=Pythagoras] Let \im {a} and \im {b} be the legs and let \im {c} be the hypotenuse in a right triangle. Then
```

```
\startformula
a^2 + b^2 = c^2.
\stopformula
\stoptheorem
```

Theorem 6 (Pythagoras) *Let a and b be the legs and let c be the hypotenuse in a right triangle. Then*

$$a^2 + b^2 = c^2.$$

We include the chapter number as a prefix to the theorem number.

```
\setupenumeration
[theorem]
[prefix=yes,
    prefixsegments=chapter]
```

The theorem now looks like this.

Theorem 7.7 (Pythagoras) Let a and b be the legs and let c be the hypotenuse in a right triangle. Then

$$a^2 + b^2 = c^2.$$

In case you also want to include the section number into the number of the theorem, you can use prefixsegments=chapter:section.

Finally, in the AMS style the head ends with a period. We use a the key headcommand to add that period. The headcommand is supposed to have one argument (the head).

```
\starttexdefinition MyThmHeadCommand #1
  #1.
\stoptexdefinition
```

```
\setupenumeration
[theorem]
[headcommand=\MyThmHeadCommand]
```

Here we have defined our own command \MyThmHeadCommand that just sets its argument together with a period. In cases like this one could simply use the neat \groupedcommand.

In any case, the code now generates a theorem where the head ends with a (intentionally bold) period.

Theorem 7.8 (Pythagoras). *Let a and b be the legs and let c be the hypotenuse in a right triangle. Then*

$$a^2 + b^2 = c^2.$$

Before we continue, we emphasize that you do not need to set each of these keys one by one as we have done here. In your document, you typically add everything to the definition already.

```
\defineenumeration
 [theorem]
 [alternative=serried,
 width=fit,
 distance=lem,
 text=Theorem,
 style=italic,
 title=yes,
 titlestyle=normal,
 prefix=yes,
 headcommand=\groupedcommand{}{.}]
```

7.3 More AMS styled enunciations

It is suggested in [LS17] that the following enunciations share the style of Theorem: Algorithm, Assertion, Axiom, Conjecture, Corollary, Criterion, Hypothesis, Lemma, Proposition, Reduction and Sublemma. They all share the property that they usually require some kind of argument.

We do not need to start over and write all settings for each such enunciation we need; defineenumeration provides a second optional argument, where we can give another enumeration to copy the settings from. If we only want to change the name but keep the same counter, we only need to alter the text of the head.

```
\defineenumeration
 [lemma]
 [theorem]
 [text=Lemma]
```

Note in the example below that all the settings we had from the theorem environment are inherited by the lemma environment.

```
\startlemma[reference=lem:pyth]
```

```
The altitude of a right triangle from its right angle to its hypotenuse splits the triangle into two triangles that are both similar to the original triangle. \stoplemma
```

Lemma 7.9. The altitude of a right triangle from its right angle to its hypotenuse splits the triangle into two triangles that are both similar to the original triangle.

The reference=lem:pyth is here so that we can refer to this lemma later. We do this by typing \in{Lemma}[lem:pyth], which gives us Lemma 7.9.

Proofs are set in roman with head in italic, ending with a period.

```
\defineenumeration
[proof]
[alternative=serried,
width=fit,
distance=lex,
text=Proof,
number=no,
headstyle=italic,
headcommand=\groupedcommand{}{.}]
```

```
\startproof
```

```
By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule. \stopproof
```

Proof. By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule.

Sometimes proofs are not written directly below the theorem-like environment. It might then be a good idea to do this in the title.

\setupenumeration

```
[proof]
[title=yes,
titlestyle=normal]
```

This setting will set the title upright, and as for theorems, the titles are by default surrounded by parentheses.

```
\startproof[title={of \in{Lemma}[lem:pyth]}]
By comparing the angles of the main triangle with the two subtriangles,
we find that they are all similar according to the angle-angle rule.
\stopproof
```

Proof (of Lemma 7.9). By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule.

According to the AMS style we should write "*Proof of Lemma* 7.9.", all except the number in italic. To achieve this, we reset the title style (this means that it will have the same style as the rest of the head), and also disable the parentheses around the title by resetting the keys titleleft and titleright. In addition, we first reset the predefined distance before the title (which by default is larger than a space) with help of titledistance and then add a space with the titlecommand key. Finally, we also define a new reference style that should typeset the references in normal upright text.

```
\setupenumeration
```

```
[proof]
[titleleft=,
  titleright=,
  titledistance=0pt,
  titlecommand=\groupedcommand{\space}{}]
```

```
\definereferenceformat
[inhead]
```

[style=normal]

We need to adapt the code in the proof slightly.

```
\startproof[title={of Lemma \inhead[lem:pyth]}]
By comparing the angles of the main triangle with the two subtriangles,
we find that they are all similar according to the angle-angle rule.
\stopproof
```

Proof of Lemma 7.9. By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule.

It is a common practice to end proofs with a small box, for example \Box . This box is usually set flush right on the last line of the proof. It is said that one should not end proofs with displayed formulas, but if this is done, it can make sense to put the box to the right of the formula to save a line. We can use the \closesymbol for that.

```
\setupenumeration
 [proof]
 [closesymbol=\mathqed]
```

We run the last version of the example, and get this.

Proof of Lemma 7.9. By comparing the angles of the main triangle with the two subtriangles, we find that they are all similar according to the angle-angle rule. \Box

We show the output of an example where we have broken the general advice of not ending a proof with a displayed formula. The box is placed on the same line as the formula.

Proof. The height, drawn from the right angle, divides the hypotenuse into two parts. Let *x* be the length of the part adjacent to the leg with length *a*. Consequently, the length of the other part is c - x. From Lemma 7.9 it follows that

$$\frac{a}{c} = \frac{x}{a}, \quad \frac{b}{c} = \frac{c-x}{b}.$$
$$+ b^2 = cx + c(c-x) = c^2.$$

Rearranging,

Note the \qedhere that automatically places the symbol where we want it. If you end with a more complicated formula you might encounter problems. It is then best to rewrite the proof and end it with text instead. If we prefer to have the symbol on the line after the formula, we need to use \qed instead. We give below the complete definition of the proof environment that we ended up with.

\defineenumeration

```
[proof]
[alternative=serried,
width=fit,
distance=lem,
text=Proof,
number=no,
headstyle=italic,
headcommand=\groupedcommand{}{.},
title=yes,
title=yes,
titlestyle=,
titleleft=,
titleleft=,
titleleft=,
titledistance=0pt,
titlecommand=\groupedcommand{\space}{},
```

 a^2

If we want to use another symbol, we can for instance do

\definesymbol
[mathqed]
[{\blackrule[height=1.33ex,width=0.66ex]}]

According to [LS17] definition style enunciations include Affirmation, Application, Assumption, Condition, Convention, Definition, Discussion, Example, Exercise, Fact, Model, Problem, Property, Question, Scholium and Terminology.

They should be typeset like the theorems, but with normal (non-italic) body.

```
\defineenumeration
[definition]
[theorem]
[text=Definition,
```

```
style=normal]
```

```
\startdefinition
The \emph {Willmore energy} of a closed surface \im {\Sigma\subset S^3}
is given by the quantity
\im {\mathscr {W}(\Sigma) = \int_{\Sigma} (1+H^2) \dd \Sigma}.
\stopdefinition
```

Definition 7.10. The *Willmore energy* of a closed surface $\Sigma \subset S^3$ is given by the quantity $\mathcal{W}(\Sigma) = \int_{\Sigma} (1 + H^2) d\Sigma$.

In [LS17] the following enunciations are set in the same style as remarks: Answer, Base, Case, Claim, Comment, Conclusion, Note, Notation, Observation, Subcase, Step and Summary.

Further, one can read that remarks are set with an italic head, roman number and body. We define the remark enumeration as a copy of the theorem enumeration, and do the relevant changes.

```
\defineenumeration
 [remark]
 [theorem]
 [text=Remark,
 style=normal,
 headstyle=italic,
 numberstyle=normal,
 title=no]
 \startremark
It is not known who was first to prove the Pythagorean theorem.
 \stopremark
```

Remark 7.11. It is not known who was first to prove the Pythagorean theorem.

7.4 Chicago-styled enunciations

According to [Uni17] most enunciations can be written in small caps (with a starting large cap)

```
\defineenumeration
 [theorem]
 [alternative=serried,
 width=fit,
 text=Theorem,
 style=italic,
 title=yes,
 prefix=yes,
 indenting=yes,
 headstyle=\sc,
 headindenting=yes,
 titlestyle=normal]
```

We show the output of the Pythagorean theorem again.

THEOREM 7.1 (Pythagoras) Let a and b be the legs and let c be the hypotenuse in a right triangle. Then

$$a^2 + b^2 = c^2.$$

7.5 Comments

In case we want an enumeration to inherit all the settings from another, but to let it have its own numbering, we can explicitly set the counter.

```
\defineenumeration
  [proposition]
  [theorem]
  [text=Proposition,
    counter=proposition]
  \startproposition
  The altitude of a right triangle from its right angle to its hypotenuse
    split the triangle into two triangles that are both similar to the
    original triangle.
  \stopproposition
```

Proposition 7.1. *The altitude of a right triangle from its right angle to its hypotenuse split the triangle into two triangles that are both similar to the original triangle.*

8 Illustrations

8.1 Introduction

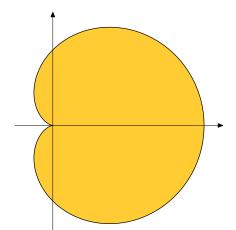
The close interplay between ConT_EXt and MetaPost (or the extension MetaFun) comes in very handy when simple figures are needed. We will not go into detail, since that would add too many pages on a somewhat peripheral topic. Instead we refer to the MetaFun manual, [Hag17], and show only a few examples, without comments. There are also other good tools, like Tikz and Asymptote, that can be used within ConT_EXt, but we will not discuss them in this document.

8.2 Function graphs

```
\startMPcode
numeric u ; u := .75cm ;

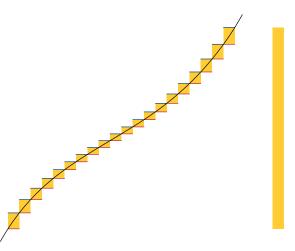
draw function(2, "x", "x*x+2*x-2", -4, 4, 1/100) scaled u ;
draw function(2, "x", "1/x", -4, -0.2, 1/100) scaled u ;
draw function(2, "x", "1/x", 0.2, 4, 1/100) scaled u ;

clip currentpicture to (fullsquare scaled 8u) ;


drawarrow ((-4.2,0) -- (4.2,0)) scaled u withpen pencircle scaled .25 ;
drawarrow ((0, -4.2) -- (0, 4.2)) scaled u withpen pencircle scaled .25 ;
label.bot("\m{x}", (4u, 0)) ;
label.lft("\m{y}", (0, 4u)) ;
\stopMPcode

y
```

```
scaled u ;
```

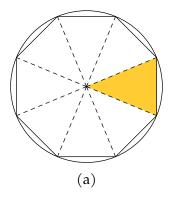

```
fill pascal withcolor "C:2" ;
draw pascal ;
```

drawarrow ((-0.5,0) -- (2.25,0)) scaled u withpen pencircle scaled .25 ; drawarrow ((0,-1.5) -- (0,1.5)) scaled u withpen pencircle scaled .25 ; \stopMPcode


```
\startMPcode
numeric u ; u := 1cm ;
numeric n ; n := 20 ;
numeric startx ; startx := -3 ;
numeric stopx ; stopx := 3 ;
numeric xx[],yy[];
path fun ; fun = (-3.2,-3)..(-2,-1.5)..(1,0.5)..(3.2,3);
for i = 0 upto n :
xx[i] := (i/n)*stopx + (1 - i/n)*startx ;
yy[i] := ypart (((xx[i],-5) -- (xx[i],5)) intersectionpoint fun) ;
if i > 0:
  fill ((xx[i - 1], yy[i] ) --
                  yy[i] ) --
        (xx[i],
        (xx[i],
                   yy[i - 1]) --
         (xx[i - 1], yy[i - 1]) -- cycle)
       scaled u withcolor "C:2" ;
   draw ((xx[i - 1], yy[i])
                              - -
        (xx[i],
                    yy[i]))
       scaled u withcolor "C:1" ;
   draw ((xx[i - 1], yy[i - 1]) --
        (xx[i], yy[i - 1]))
       scaled u withcolor "C:3";
 fi;
endfor
draw fun scaled u ;
```

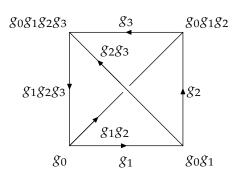
\stopMPcode

8.3 Geometry

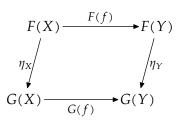

```
\startMPcode
u := 5ts ;
z0 = origin ;
z1 = (4u, 0);
z2 = (u, 2.5u);
z3 = whatever[z0, z1] = z2 + whatever*dir(angle(z1 - z0) - 90);
z4 = whatever[z1, z2] = z0 + whatever*dir(angle(z2 - z1) - 90);
z5 = whatever[z2,z0] = z1 + whatever*dir(angle(z0 - z2) - 90) ;
z6 = (z2 - z3) intersectionpoint (z4 - z0);
drawoptions(withcolor "C:3") ;
draw z2 -- z3 &&
     z0 -- z4 &&
     z1 -- z5 ;
anglemethod := 2;
anglelength := 0.2u;
draw anglebetween(z3 -- z2, z3 -- z0, "");
draw anglebetween(z4 -- z0, z4 -- z1, "");
draw anglebetween(z5 -- z1, z5 -- z2, "");
drawoptions() ;
draw z0 -- z1 -- z2 -- cycle withstacking 2 ;
drawpoints z6 withpen pencircle scaled 3pt
              withcolor "C:1" ;
\stopMPcode
```

```
\startuseMPgraphic{circle-base}
u := 8ts ;
n := 8 ;
path c ; c = fullcircle scaled 2u;
pair iz[], oz[] ;
for i = 1 upto n:
iz[i] = point ((i - 0.5)/8) along c;
oz[i] = (1/cosd(180/n))*iz[i];
endfor;
\stopuseMPgraphic
\startuseMPgraphic{circle-inner}
\includeMPgraphic{circle-base}
fill (origin -- iz[1] -- iz[8] -- cycle) withcolor "C:2";
for i = 1 upto n :
  draw origin -- iz[i] dashed evenly ;
endfor;
draw c ;
draw for i = 1 upto n : iz[i] -- endfor cycle ;
\stopuseMPgraphic
\startuseMPgraphic{circle-outer}
\includeMPgraphic{circle-base}
fill (origin -- oz[1] -- oz[8] -- cycle) withcolor "C:1";
for i = 1 upto n :
  draw origin -- oz[i] dashed evenly;
endfor;
draw c ;
draw for i = 1 upto n : oz[i] -- endfor cycle ;
\stopuseMPgraphic
```

8.4 Diagrams


We show a few diagrams, but refer to Alan's nice module /tex/texmf-context/doc/con-text/documents/general/manuals/nodes.pdf for details.

\startMPcode


```
numeric u ; u := 1cm ;
 crossingscale := .5u ;
 z1 = origin ; z2 = (3u, 0) ;
 z3 = (3u, 3u); z4 = (0, 3u);
 z12 = .5[z1, z2]; z23 = .5[z2, z3];
 z34 = .5[z3, z4]; z41 = .5[z4, z1];
 z13 = .5[z1, z3];
 draw (z2 -- z4);
 draw (z1 -- z3) crossingunder (z2 -- z4);
 drawarrow (z1 -- z12) ; draw (z12 -- z2) ;
 drawarrow (z2 -- z23) ; draw (z23 -- z3) ;
 drawarrow (z3 -- z34) ; draw (z34 -- z4) ;
 drawarrow (z4 -- z41) ; draw (z41 -- z1) ;
 drawarrow (zl
                   -- .5[z1,z13]);
 drawarrow (.1[z13,z4] -- .5[z13,z4]);
 label.llft("\m{\strut g_0}",
                                        z1) ;
 label.lrt ("\m{\strut g 0g 1}",
                                        z2);
 label.urt ("\m{\strut g_0g_1g_2}",
                                        z3);
 label.ulft("\m{\strut g_0g_1g_2g_3}", z4) ;
 label.bot ("\m{\strut g_1}",
                                       z12);
 label.rt ("\m{\strut g_2}",
                                       z23);
 label.top ("\m{\strut g_3}",
                                        z34);
 label.lft ("\m{\strut g_1g_2g_3}",
                                      z41);
 label.lrt ("\m{\strut g 1g 2}",.5[z1,z13]) ;
 label.urt ("\m{\strut g_2g_3}",.5[z13,z4]) ;
\stopMPcode
```


\setupframed

```
[node]
  [offset=.5TS]
\setupframed
  [smallnode]
  [offset=.1TS]
\startMPcode
save nodepath ; save l ; l = 5ahlength ;
save A, B, C, D, E;
pair A, B, C, D, E ;
A.i = 0 ; A = makenode(A.i, "\node{\im{\pi_1(X^1, x_0)}}") ;
B.i = 1 ; B = makenode(B.i, "\node{\im{\pi_1(Y,y_0)}}") ;
C.i = 2 ; C = makenode(C.i, "\node{\im{\pi 1(X, x 0)}}") ;
A = origin ;
B = A + betweennodes.rt(nodepath, A.i, nodepath, B.i) + (21,0);
C = .5[A,B] + (0,-3l);
for i = A.i, B.i, C.i:
  draw node(i) ;
endfor
drawarrow fromto.llft ( 0,A.i,C.i,"\smallnode{\im{i {*}}}") ;
drawarrow fromto.top ( 0,A.i,B.i,"\smallnode{\im{f {*}}}") ;
drawarrow fromto.lrt ( 0,C.i,B.i,"\smallnode{\im{\varphi}}") ;
\stopMPcode
                          \pi_1(X^1, x_0) \xrightarrow{f_*} \pi_1(Y, y_0)
                                    \pi_1(X, x_0)
\startformula
  \startnodes [dx=3cm,dy=2cm,rotation=75]
    \placenode [0,0] {\node{\im{G(X)}}}
    \placenode [1,0] {\node{\im{G(Y)}}}
    \placenode [1,1] {\node{\im{F(Y)}}}
    \placenode [0,1] {\node{\im{F(X)}}}
    \connectnodes [0,1] [alternative=arrow,
    label={\smallnode{\im{G(f)}}}, position=bottom]
    \connectnodes [3,2] [alternative=arrow,
    label={\smallnode{\im{F(f)}}},position=top]
    \connectnodes [2,1] [alternative=arrow,
    label={\smallnode{\im{n_Y}}}, position=right]
    \connectnodes [3,0] [alternative=arrow,
```

label={\smallnode{\im{η_X}}}, position=left]
\stopnodes
\stopformula

9 Math fonts

9.1 Selecting a font

The default font in $ConT_EXt$ is the Computer Modern based Latin Modern, with Latin Modern Math as math font. By running \setupbodyfont with the right arguments the font setup can be changed. For example,

\setupbodyfont[pagella]

will change the font into T_EXGyre Pagella (with the corresponding math font T_EXGyre Pagella Math), that is used in this document.

Several fonts with math support follow with an installation of $ConT_EXt$, and the aim here is to show a small sample of all of them (see Intermezzo 9.1). In addition to the fonts that are shipped with the installation, there is also support (read: ready-made type scripts) for some commercial fonts, such as Cambria and Lucida Bright. We do not own any copy of the commercial Minion Math font, and hence we do not support it.

Users shall be aware that the coverage of symbols in math fonts varies. Some might be done by tweaking an existing glyph. If you miss some glyph you can write to us, but please also add an example of real usage.

antykwa**	bonum	cambria	concrete
dejavu	ebgaramond	erewhon	iwona**
kpfonts*	kurier**	libertinus	lucida
modern	pagella	schola	stixtwo
termes	xcharter		

Intermezzo 9.1 Fonts with support in ConT_EXt. The kpfonts is marked with *. It comes in more than one weight and style. The fonts marked with ** are the only ones that have math fonts in Type1 format (they also come in several weights). All the other fonts are Opentype fonts.

There are some more free fonts that are not shipped with ConTEXt. We have not yet written any complete setup for the fonts Fira Math, GFS Neohellenic, Lete Sans Math, New Computer Modern Math, Noto Sans Math or Plex Math, since they still seem to be under development or are incomplete.

It is also possible to mix fonts in different ways than the ones mentioned here. This is typically done with the help of typescript files, and is discussed elsewhere. It can be good to have in mind, though, to enable the loading of existing goodie files if you use a supported math font. The best way to see how this is done is probably by studying some existing typescript file.

If one is not happy with the calligraphic and/or script alphabets, or if there is only one, we can use the mathextra font feature to add another one. These are pre-defined in the common-math.lfg goodie file. For T_EXGyre Pagella Math we can do this.

- \m {\mathcal ABCDEFGHIJKLMNOPQRSTUVWXYZ}\par
- \m {\mathscr ABCDEFGHIJKLMNOPQRSTUVWXYZ}

\definefontfeature
[mathextra]
[mathextra]
[eulertocalligraphic=yes,
rsfsuprighttoscript=yes]

\switchtobodyfont[pagella]

\m {\mathcal ABCDEFGHIJKLMNOPQRSTUVWXYZ}\par
\m {\mathscr ABCDEFGHIJKLMNOPQRSTUVWXYZ}
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Here we used the calligraphic alphabet from Euler Math and the script alphabet from the Ralph Smith's Formal Script font. Other options are moderntocalligraphic=yes and rsfstoscript=yes.

In a document like this one where we do several fontswitches, one shall not use setupbodyfont everywhere. For Antykwa, for example, one shall have \usebodyfont[antykwa]
before \starttext and then switch to it with \switchtobodyfont[antykwa].

9.2 antykwa

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \begin{bmatrix} n \\ 4 \end{bmatrix} &= \frac{n(n - 1)(n - 2)(n - 3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup \left\{ t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j} \right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEF GHIJKLMNOPQRSTUVWXYZ
\mathscr	ABEDEFERT J KLMNO PQ R ST UV WXYL
$\mathbf{\mathbf{k}}$	ABEDEFOHFJRLMNDPDRETUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.3 antykwa-light

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is Q_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}} \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x'}, \\ \frac{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup \left\{ t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j} \right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABGDEFGHIJKLMNOPQ R STUVWXYZ
\mathfrak	ABCDEFOH FJALMNOPORSTUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.4 antykwa-cond

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbb{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left. \left(\frac{1}{\lambda'(T)} \frac{d}{dT} \right)^k \log f_u(T) \right|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup \left\{ t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j} \right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABGDEFGHIJKLMNOPQ R ST U V WXYL
$\mathbf{\mathbf{k}}$	ABCDEFBHFJALMNDPDRSTUVWXYJ
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

.

9.5 bonum

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{P})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{p}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{P}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{P}}^{\times}$ is the character giving the action on $E[\mathfrak{P}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\{t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j}\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	<i>へ</i> お C D E F G H I J K L M N O P Q R S T U V W X Y L
\mathscr	ぺぽとうとずら外コンドよMNOPQRPTUVW X Yエ
$\mathbf{\mathbf{x}}$	ABCDEFE\$IIREMNDPDHEEU3BXY3
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμυξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.6 cambria

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$. A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak	ABCDEFG5IJKLMNDPQKETUBWXY3
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡθΣΤΥΦΧΨΩ

9.7 concrete

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\dot{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\Big|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak	ABEDEFEHIJKLMNDPDKETUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡθΣΤΥΦΧΨΩ

9.8 dejavu

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin-Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[T]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\Big|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKCMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKCMNOPQRSTUVWXYZ
\mathfrak	ABEDEFGHIJRLMNOPQRSTUVWXYJ
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.9 ebgaramond

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^*$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

•

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYE
\mathscr	ABCDEFGHIJKLMNOPQRSTUVWXYE
\mathfrak	ABCDEFG5IJALMNOPQRETUVWXY3
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπ ρςστυφχψω
uppercase greek	<i>ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡθΣ</i> ΤΥΦΧΨΩ

9.10 erewhon

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[T]^*$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\Big|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$. A few formulas:

$$\begin{split} \int_0^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod\limits_{p=2}^{p_m} (1-1/p^2)} = \prod\limits_{p=2}^{p_m} \sum\limits_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1\cdot 2\cdot 3\cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRITUVWXYI
\mathscr	ABCDEFGHI JKLMNOPQRSTUVWXYZ
\mathfrak	ABEDEFGHIJRLMNDPQRGTUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.11 iwona

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbb{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\bigg|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x'}$$
$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJK LMNOPQRST U V WXYZ
\mathfrak	ABEDEFBHFJRLMNDPQRGTUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.12 iwona-light

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is Q_{ρ} . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^{\rho}$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_{\rho}[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x},$$
$$\frac{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEF GHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJK LMNOPQRST U V WXYZ
\mathfrak	ABEDEFGHSJRLMNDPDRGTUVWXYZ
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.13 koeieletters

A FARAGRAFA FROM [[]RL95]:

Meetric for the non-err that \mathcal{C}_{2} to \mathcal{O}_{2} . In this case \mathcal{R}_{2} is somewhere to the Court-Fare energy accordance to $2\pi \circ \pi^2$ there $2 \circ 2(2)$. Then certain 2π is conversion a constant of $[2^{(1)}](\pi) \circ 0$ cancer do that $[2](2_{(1)}) \circ 2_{(1-3)}$. It and there is a conversion of $[2^{(1)}](\pi) \circ 0$ cancer do that $[2](2_{(1)}) \circ 2_{(1-3)}$. It and there court denses $\mathcal{C}_{2}(T) \circ \mathcal{C}_{2}(T) \circ \mathcal{C}_{2}(T) \circ \mathcal{C}_{2}(T)$. Then a subservation of the court of $[2^{(1)}](\pi) \circ \mathcal{C}_{2}(T) \circ \mathcal{C}_{2}$

It is easy to see that $2_{G,\widetilde{X}}$ sides a non-chemicu: $\mathfrak{U}_{\infty} \to \mathfrak{U}_{\infty,\widetilde{X}} \to \mathfrak{O}_{\widetilde{X}}$ carestrice $2_{G,\widetilde{X}}(2^2) = 2(2)^{G} 2_{G,\widetilde{X}}(2)$ where 22 Gau($\widetilde{Z}/\widetilde{Z}) \to \mathfrak{O}_{\widetilde{Z}}^{n}$ is the character sides the action on $\mathfrak{E}[2^{(n)}]$.

A FED FORDILAS:

$$\int_{0}^{2/3} 4n(6nnn) 2n = -\frac{2}{2} 4n 3, \quad \frac{n}{2n} = \frac{n}{2n} = \frac{2}{n} + \frac{n}{2n} = \frac{n}{2n} + \frac{n}{2n} = \frac{n}{2n} + \frac{n}{2n} +$$

A fea altabets:

\mathit	ABGDEFGAIJNLAMOPENSTOVARTS
\mathrm	A56D576AA386aA070867570875
\mathss	ascdefearjslamoferfronste
\mathtt	A56D576AA386aA070867570875
\mathcal	4569579863864807987579875
\mathscr	436257646382440768675757575
\mathfrak	4569579863864807987579875
\mathbb	4569579863864807987579875
Foueleuse eleet	\$
offengase oneen	\$

9.14 kpfonts

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{p}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{p}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{p}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{p}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{p}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{p}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{p}} \to \mathcal{O}_{\rho}$ satisfying $\delta_{k,\mathfrak{p}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{p}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\rho}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod\limits_{p=2}^{p_m} (1 - 1/p^2)} = \prod\limits_{p=2}^{p_m} \sum\limits_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n \colon |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak	ABCDEFGHIJREMNOPQRSTUVWXY3
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.15 kurier

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is Q_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\bigg|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k'}}$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x},$$
$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJK LMNOPQR ST U V WXYZ
\mathfrak	ABEDEFBHSJRLMNDPDRGTUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.16 kurier-light

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbb{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\bigg|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x},$$
$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJK LMNOPQRST U V WXYZ
\mathfrak	ABCDEFOHSIRLMNDPQRGTUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.17 libertinus

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbb{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbb{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{P}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^{k} \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta \colon \operatorname{Gal}(\bar{F}/F) \to \mathcal{O}_{\mathfrak{P}}^{\times}$ is the character giving the action on $E[\mathfrak{P}^{\infty}]$. A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x},$$
$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\}.$$

\mathit	ABCDEFGHI JKLMNOPQRSTUVW XYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYE
\mathscr	ABCDEFGHIJKLMNOPQRSTUVWXYE
\mathbf{h}	ABCDEFE5TFRLMNDPQRSLUVWXY3
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.18 lucida

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin-Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{\boldsymbol{k},\boldsymbol{\mathcal{P}}}(\boldsymbol{u}) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^{\boldsymbol{k}}\log f_{\boldsymbol{u}}(T)\Big|_{\boldsymbol{T}=\boldsymbol{0}}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{P}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{P}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x},$$
$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGH1JKLMNOPQRSTUVWXYZ
\mathscr	へいしめさテ らドリ らくよれれつゆえれるエロヤル まみユ
\mathfrak	ABCDEfGAIJRLMMOPQRSTUVWXY3
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡ?ΣΤΥΦΧΨΩ

9.19 modern

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \underline{\lim} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \geq 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \geq 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1-x^2}{(1+x)^2} = \frac{1-x}{1+x}, \\ \binom{n}{4} &= \frac{n(n-1) \left(n-2\right) \left(n-3\right)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathfrak	ABCDEFGHIJRLMNDPDRGTUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	$lphaeta\gamma\deltaarepsilon\zeta\eta heta\iota\kappa\lambda\mu u$ ξοπρςστυ $arphi\chi\psi\omega$
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.20 pagella

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to O_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to O_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln\left(\sin x\right) dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod\limits_{p=2}^{p_{m}} (1-1/p^{2})} = \prod\limits_{p=2}^{p_{m}} \sum\limits_{k=0}^{+\infty} \frac{1}{p^{2k'}} \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1-x^{2}}{(1+x)^{2}} = \frac{1-x}{1+x'} \\ \binom{n}{4} &= \frac{n(n-1)\left(n-2\right)\left(n-3\right)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_{n} : |\xi(t) - \xi(t_{n})| = 2^{-j}\right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUUWXYZ
\mathscr	ABCDEFGHIJKLMNOPQRSTUUWXYZ
\mathfrak	ABEDEFGHIJRLMNDPDRGTUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.21 schola

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin– Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \underline{\lim} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[T]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \left|_{T=0}\right|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln\left(\sin x\right) dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1-1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1+x)^2} = \frac{1 - x}{1+x}, \\ \begin{bmatrix} n \\ 4 \end{bmatrix} &= \frac{n(n-1)\left(n-2\right)\left(n-3\right)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n : \left|\xi(t) - \xi(t_n)\right| = 2^{-j}\right\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKLMNOPQRITUVWXYL
\mathbf{h}	ABEDEFEHIJREMNOPORSTUVWX93
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.22 stixtwo

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\Big|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{P}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : $\operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{P}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_{0}^{\pi/2} \ln(\sin x) \, dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\}. \end{split}$$

\mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHIJKLMNOP2RSTUVWXYZ
\mathfrak	ABCDCFC5TFALMNDPQRSLUVBXQ3
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

9.23 termes

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \lim_{n \to \infty} u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p [\![T]\!]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ ($k \ge 1$) in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T)\Big|_{T=0}.$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{P}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where θ : Gal $(\overline{F}/F) \to \mathcal{O}_{\mathfrak{P}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\begin{split} \int_0^{\pi/2} \ln\left(\sin x\right) dx &= -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}}, \\ \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} &= 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x}, \\ \binom{n}{4} &= \frac{n(n-1)\left(n-2\right)\left(n-3\right)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} \coloneqq \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}. \end{split}$$

)
)

9.24 xcharter

A paragraph from [Wil95]:

Assume for the moment that $F_{\mathfrak{P}}$ is \mathbf{Q}_p . In this case $\hat{E}_{\mathfrak{P}}$ is isomorphic to the Lubin–Tate group associated to $\pi x + x^p$ where $\pi = \varphi(\mathfrak{p})$. Then letting ω_n be nontrivial roots of $[\pi^n](x) = 0$ chosen so that $[\pi](\omega_n) = \omega_{n-1}$, it was shown in [CW] that to each element $u = \varprojlim u_n \in U_{\infty,\mathfrak{P}}$ there corresponded a unique power series $f_u(T) \in \mathbf{Z}_p[[T]]^{\times}$ such that $f_u(\omega_n) = u_n$ for $n \ge 1$. The definition of $\delta_{k,\mathfrak{P}}$ $(k \ge 1)$ in this case was then

$$\delta_{k,\mathfrak{P}}(u) = \left(\frac{1}{\lambda'(T)}\frac{d}{dT}\right)^k \log f_u(T) \bigg|_{T=0}$$

It is easy to see that $\delta_{k,\mathfrak{P}}$ gives a homomorphism: $U_{\infty} \to U_{\infty,\mathfrak{P}} \to \mathcal{O}_{\mathfrak{p}}$ satisfying $\delta_{k,\mathfrak{P}}(\varepsilon^{\sigma}) = \theta(\sigma)^k \delta_{k,\mathfrak{P}}(\varepsilon)$ where $\theta: \operatorname{Gal}(\overline{F}/F) \to \mathcal{O}_{\mathfrak{p}}^{\times}$ is the character giving the action on $E[\mathfrak{p}^{\infty}]$.

A few formulas:

$$\int_{0}^{\pi/2} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln 2, \quad \frac{1}{\prod_{p=2}^{p_m} (1 - 1/p^2)} = \prod_{p=2}^{p_m} \sum_{k=0}^{+\infty} \frac{1}{p^{2k}},$$
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}} = 2, \quad \frac{1 - x^2}{(1 + x)^2} = \frac{1 - x}{1 + x},$$
$$\binom{n}{4} = \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4}, \quad t_{n+1} := \sup\left\{t < t_n : |\xi(t) - \xi(t_n)| = 2^{-j}\right\}.$$

∖mathit	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathrm	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathss	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathtt	ABCDEFGHIJKLMNOPQRSTUVWXYZ
∖mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
\mathscr	ABCDEFGHI JKLMNOPQRSTUVWXYZ
∖mathfrak	ABCDEFGHIJALMNDPQKGTUNWXYZ
\mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase greek	αβγδεζηθικλμνξοπρςστυφχψω
uppercase greek	ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΘΣΤΥΦΧΨΩ

10 Meaningful mathematics

10.1 Introduction

We have so far focused mainly on how to typeset mathematics; we have not discussed so much about the meaning of the formulas. It should be clear that \sqrt{x} stands for the square root of x, but many other symbols are used with more than one meaning. When we see a formula, we can often guess the intended meaning from the context, in particular if the author has used standard notation, introduced new notation, not used the same notation to mean several things, and kept the notation as simple as possible. There are, however, ambiguous cases.

We give one example where the situation might not be completely clear. If, in a manuscript on complex analysis, we meet the formula $\overline{z} \in \overline{U}$, we will likely interpret the first bar as the complex conjugate of the complex number z. But the meaning of \overline{U} is perhaps less clear. The \in hints that it should be a set. One standard notation implies that it denotes the closure of the set U. But it could also, in principle, mean the set of complex conjugate of the set U. Even if the bars over these characters look the same in the pdf file, it would be good if it was possible also to carry the meaning somehow.

If somebody who copies the formula from the pdf they shall get something sensible out of it when pasting it elsewhere. It is therefore important to work with the symbols predefined in Unicode math, and not to come up with own weird symbols by clipping, rotating, or in other problematic ways combining symbols and perhaps also rules.

Unicode math contains a lot of symbols. Many of them are described with names that rather say something about the shape than about how they are supposed to be used. Given that we are free to use whatever symbol to denote anything, this is perhaps natural. But it is also problematic. Take \otimes (its official name is CIRCLED TIMES), for example. It comes with two synonyms that tell a bit how it can be used "tensor product" and "vector pointing into page". For the first usage the macro name **\otimes** has traditionally in T_EX been attached to the symbol. But, as the synonym says, sometimes it also denotes a vector pointing into the page, and then one can question both the macro name and the binary operation class that is attached to it. If one wants to use this symbol in the latter meaning it is natural to define a new macro that typesets the symbol, with a matching class. Observe, however, that such a construct will not change the meaning for someone copying the symbol from the pdf. It will still be CIRCLED TIMES.

10.2 Accessibility, tagging

When it comes to accessibility, the situation becomes even more interesting. How shall a screen reader read the symbol \otimes ? As "CIRCLED TIMES", as "tensor product" or as "points into the page"? Or perhaps as "otimes"? ConTEXt has for a long time been able to tag documents that include mathematics and also export them to MathML. As of now, the formulas are transformed into some core MathML and included as attachments in the pdf file. Meaning easily gets lost in this conversion, so one can question how accessible the result actually is for a person who needs to have it read aloud. Moreover, the MathML itself, or the flavor of it, sometimes changes. For example, the mfenced element recently got deprecated, leading to compatibility issues for a lot of existing documents. This lack of stability makes it both difficult and demotivating to support tagging. It can be useful to have the MathML if one wants to export and show the output on a web site. One shall remember, though, that the typeset math from ConTEXt that one gets in a pdf file is not in general equivalent (features differ) to the MathML produced, so it will not be perfect.

The example $\overline{z} \in \overline{U}$, discussed in the introduction comes out like this (we have replaced the math italic z and U so that they show below since they are not present in the monotype font we use)

```
<math>
<mrow>
<mover>
<mo></mo>
</mover>
<mo>E</mo>
<mover>
<mi>U</mi>
<mo></mover>
</mover>
</mover>
</mover>
</mover>
</mover>
```

Let us also mention that it is not easy to verify that the tagging actually works. At Lund university, where Mikael is working, the tool Ally (as a plugin to the Canvas LMS) is used to check the tagged pdf files, and it does usually mark tagged pdf files from Con-T_EXt as being perfectly tagged. But even here, things do change. At some point it was changed so that formulas were seen as attached images, and then it complained about lacking alternative texts. It is also an interesting fact that exporting a claimed perfectly tagged pdf file into sound (also possible in Canvas LMS), it does not read the formulas correctly, if at all.

10.3 Dictionaries

With the right mark up and choice of notation from the writer, it should be possible to have it read different things, depending on the context. We therefore came up with dictionaries. They make it possible for symbols to carry a meaning and context, in addition to the atom class. In fact, we shall think of it as something that is independent of the atom class. A Unicode character can thus have several instances, where different instances might belong to different groups. Of course the math class can also vary. Thus, for \otimes it could be like this:

Symbol	Macro	Class	Group	Meaning
\otimes	\tensorproduct	binary operator	binary operator	tensor product
\otimes	\pointsintopage	ordinary	unary arithmetic	points into the page

The idea is then that the user can specify the groups used in a document. If one typesets a document on mathematical logic, one can load the groups that are attached to logic, and one will have these macros predefined, likely with the intended meaning. One can of course add or change the setup as well.

10.4 Formulas converted into text

One reason to introduce dictionaries with groups, in addition to atom classes, is that we can now use the label system in ConT_EXt to attach to each symbol also a label that tells how it could be read out. The same has been done for various macros, and as a result we can convert formulas into "spoken mathematics", something that will be easily read by screen readers, since it is only text. Of course, given the amount of symbols and macros, we are not complete. In fact, we do not want to be complete either, and the reason is simple: We cannot know how various authors want their formulas to be spoken. So, what we have is merely a proof of concept, with a set of interpretations that covers many basic usages of commonly used symbols.

To get a hold of it, let us look at a few simple examples, where we after each formula show how it is interpreted in text.

```
\startformula
  1 + 2 = 3
\stopformula
```

$$1 + 2 = 3^{1}_{248}$$

¹ 1 plus 2 equals 3

\startformula
 3^2 + 4^2 = 5^2
\stopformula

$$3^2 + 4^2 = 5^{2}$$

² 3 squared plus 4 squared equals 5 squared

\startformula
 \frac{3}{6} = \frac{1}{2} = 1/2
 \stopformula

$$\frac{3}{6} = \frac{1}{2} = 1/2^{3}_{\text{lense}}$$

 3 the fraction of 3 and 6 equals the fraction of 1 and 2 equals 1 divided by 2

\startformula
 \sqrt{9} = 3
 \stopformula

$$\sqrt{9} = 3^{4}_{\text{end}}$$

⁴ the square root of 9 equals 3

```
\startformula
  \sin \left(\frac{\pi}{6}\right) = \frac{1}{2}
\stopformula
```

$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \frac{1}{2}$$

 $^5\,$ sin fenced the fraction of π and 6 end fenced equals the fraction of 1 and 2 $\,$

\startformula
 \conjugate{1 + 2\ii} = 1 - 2\ii

\stopformula

$$\overline{1+2i} = 1 - 2i^{6}_{246}$$

⁶ the conjugate of 1 plus 2 *i* equals 1 minus 2 *i*

\startformula
 \frac{1 + 2}{3 + 4} = \frac{3}{7}
 \stopformula

$$\frac{1+2}{3+4} = \frac{3_{17}}{7^{2488}}$$

⁷ the fraction of 1 plus 2 and denominator 3 plus 4 end denominator equals the fraction of 3 and 7

10.5 Some difficulties and comments

The process has really been trial and error. There is for sure space for improvements and variations, but we believe that the main structure is there. Different areas of mathematics come with different notation and different ways to interpret. So, if for example a logician wants to take this up, there is for sure some basic tuning before it works as expected.

One of the difficulties we encountered along the way was how to work with parentheses. When we write a(b + c) we likely read it as "*a* times *b* plus *c*". But we cannot read it like that, since that could equally well be interpreted as ab + c. We need the parentheses to be interpreted as some group:

```
\startformula
    a(b + c)
\stopformula
```

```
a(b+c)^{8}_{2494}
```

⁸ *a* times group *b* plus *c* end group

On the other hand, when we write f(x) it is likely that it shall be interpreted as "*f* of *x*" rather than "*f* times *x*".

```
\startformula
  f(x) \neq f\of(x)
\stopformula
```

```
f(x) \neq f(x)^{9}
```

⁹ *f* times group *x* end group is not equal to *f* of group *x* end group

In addition to the \of to handle this case, we also introduced the possibility to declare glyphs as being functions. So, it is possible to do

```
\registermathfunction[]
```

and then leave out the \of. In fact, one of the main difficulties has been to control when the explicit "times" shall be there and when it shall not. There are several special cases; we have likely missed a few.

It is also possible to declare whole alphabets as being for example vectors or matrices. We can do

```
\registermathsymbol[default][en][lowercasebold][the vector]
```

and then use them as follows:

```
\startformula
 (\alpha + \beta) \mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}
\stopformula
```

$$(\alpha + \beta)\mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u}$$

¹⁰ group α plus β end group times the vector **u** equals α times the vector **u** plus β times the vector **u**

10.6 A few more examples

We give a few more examples for you to ponder.

\startformula a__1(1 + x) + (1 + y)b__1 - a_2(1 + z) - (1 + u)b_2 \stopformula

$$a_1(1+x) + (1+y)b_1 - a_2(1+z) - (1+u)b_2$$

¹¹ *a* with lower index 1 times group 1 plus *x* end group plus group 1 plus *y* end group times *b* with lower index 1 minus *a* with lower index 2 times group 1 plus *z* end group minus group 1 plus *u* end group times *b* with lower index 2

```
\startformula
```

```
a_{0}.a_{1}\notimes a_{2} \ldots a_{n} \ldots
\stopformula
```

$$a_0.a_1a_2...a_n..._{a_n}^{12}$$

 12 *a* with lower index 0 . *a* with lower index 1 , *a* with lower index 2 , and so on, *a* with lower index *n* , and so on,

\startformula
 h'\of(x) \neq h'(x)
\stopformula

$$h'(x) \neq h'(x)|_{2504}^{13}$$

¹³ *h* prime of group *x* end group is not equal to *h* prime of group *x* end group

```
\startformula
  s\of(1) = s\of(\set{0}) = \set{0} \cup \set{\set{0}}
\stopformula
```

```
s(1) = s(\{0\}) = \{0\} \cup \{\{0\}\}_{\mathbb{Z}^{55}}^{14}
```

¹⁴ s of group 1 end group equals s of group the set 0 end the set end group equals the set 0 end the set union the set the set 0 end the set end the set

$$a\sqrt{x} = ax^{1/2} \neq ax^{1/3} = a\sqrt[3]{x}$$

¹⁵ *a* times the square root of *x* equals *a* times *x* to the power of group 1 divided by 2 end group is not equal to *a* times *x* to the power of group 1 divided by 3 end group equals *a* times the root with degree 3 of *x*

```
\startformula
\rationals = \set{\frac{p}{q} \fence p,q \in \integers \land q \neq 0}
\stopformula
```

$$\mathbb{Q} = \left\{ \frac{p}{q} \middle| p, q \in \mathbb{Z} \land q \neq 0 \right\}_{l=0}^{\lfloor 16 \\ l \neq 0}$$

¹⁶ the rational numbers equals the set the fraction of p and q such that p comma q belongs to the integers and q is not equal to 0 end the set

```
\startformula
  f \mapsas x \mapsto x + \exp(x)
\stopformula
```

$$f: x \mapsto x + \exp(x) \Big|_{\frac{17}{2500}}$$

¹⁷ *f* is defined so that *x* maps to *x* plus exp of *x*

```
\startformula
  \lim_{k \tendsto +\infty} \frac{A_k}{B_k}
\stopformula
```

$$\lim_{k \to +\infty} \frac{A_k}{B_k}_{e^{18}}^{18}$$

¹⁸ the limit under group k tends to plus infinity end group the fraction of numerator A with lower index k end numerator and denominator B with lower index k end denominator

```
\startformula
\Gamma__1^^2__3^^4 \neq \Gamma__1^^2^{}__3^^4
\stopformula
```

$$\Gamma_{13}^{24} \neq \Gamma_{13}^{2} |_{\text{en}}^{4|_{19}}$$

¹⁹ Γ postscripts sub 1 super 2 sub 3 super 4 end scripts is not equal to Γ postscripts sub 1 super 2 sub 3 super 4 end scripts

```
\startformula
  \int_{a}^{b} f'(x) \dd x = f(b) - f(a)
  \stopformula
```

$$\int_{a}^{b} f'(x) \, dx = f(b) - f(a)_{\text{line}}^{|20|}$$

²⁰ integral from *a* to *b*, of *f* prime of group *x* end group differential d *x* equals *f* times group *b* end group minus *f* times group *a* end group

```
\startformula
  \int_{\Omega} f \dd \mu = 0
  \stopformula
```

$$\int_{\Omega} f \, d\mu = 0^{|21}_{\text{left}}$$

²¹ integral over Ω , of *f* differential d μ equals 0

```
\startformula
  \sigma \of (A \transpose{A}) \setminus \set{0}
  =
  \sigma \of (\transpose{A} A) \setminus \set{0}
  \stopformula
```

$$\sigma(AA^T) \setminus \{0\} = \sigma(A^T A) \setminus \{0\}_{\text{set}}^{22}$$

²² σ of group *A* times the transpose of *A* end group set minus the set 0 end the set equals σ of group the transpose of *A* times *A* end group set minus the set 0 end the set

```
\startformula
  \frac{\partial^3 u}{\partial x^2 \partial y}
```

```
\stopformula
```

$$\frac{\partial^3 u}{\partial x^2 \partial y^{\text{ESI}}}$$

 23 the partial derivative partial d cubed *u* over partial d *x* squared partial d *y* end derivative

It is also possible to alter the meaning. We show one example.

```
\startmathmeaning
  x = R \sin\theta \cos\phi \mtext{and}
  y = R \sin\theta \sin\phi \mtext{and}
  z = R \setminus cos \setminus theta
\stopmathmeaning
\startformula
  \startalign
    NC \times EQ R \ in\ \ \, \
    \NC y \EQ R \sin\theta \sin\phi \mtp{,} \NR
    NC z EQ R \cos
                                      \mtp{.} \NR
  \stopalign
\stopformula
                                x = R\sin\theta\cos\phi,
                                y = R\sin\theta\sin\phi,
                                z = R \cos \theta.
```

²⁴ x = R the function sin θ times the function cos ϕ and y = R the function sin θ times the function sin ϕ and z = R the function cos θ

10.7 A longer example, revisited

We show below again the example from the introduction, this time with the math interpretations written out. To get some variation, we use here T_EXGyre Bonum.

24 2515

We prove the l'Hospital rule directly from the Lagrange mean value theorem, without using the Cauchy mean value theorem.

Anders Holst Mikael P. Sundqvist

Abstract. At our first-year calculus course for engineers we discuss Lagrange's mean value theorem but not Cauchy's mean value theorem, and for this reason we usually give a weak form of l'Hospital's rule on limits. In this note we give a simple proof of the stronger version of l'Hospital's rule, using only Lagrange's mean value theorem and elementary results on limits and derivatives.

We formulate and prove the l'Hospitals rule for one-sided limits. This in fact strengthen the usual formulation slightly.

Theorem 10.3 (l'Hospital's rule). Assume that the functions $f \stackrel{2}{=} and g \stackrel{2}{=} are continuous in [a, b) \stackrel{2}{=} and differentiable in <math>(a, b) \stackrel{2}{=} Assume further that <math>f(a) = g(a) = 0 \stackrel{29}{=} and that g'(x) \neq 0 \stackrel{3}{=} n (a, b) \stackrel{3}{=} If f'(x)/g'(x) \rightarrow A \stackrel{3}{=} as x \rightarrow a^{+} \stackrel{3}{=} then f(x)/g(x) \rightarrow A \stackrel{3}{=} as x \rightarrow a^{+} \stackrel{35}{=} be a f(x)/g(x) \rightarrow A \stackrel{3}{=} as x \rightarrow a^{+} \stackrel{35}{=} be a f(x)/g(x) \rightarrow A \stackrel{3}{=} be a$

A geometric interpretation of the l'Hospital rule goes as follow. In the uv^{36} lane, draw the curve parametrized by $u = g(x)^{32}$ and $v = f(x)^{38}$. Then the direction coefficient $f(x)/g(x)^{36}$ the secant (dotted in Figure 10.1) connecting $(g(x), f(x))^{40}$ with $(g(a), f(a)) = (0, 0)^{48}$ should approach the same value as the direction coefficient $f'(x)/g'(x)^{46}$ the tangent to the curve at $(g(x), f(x))^{46}$ dashed in Figure 10.1) as x^{44} pproaches a^{45} . Our proof of the theorem uses that we can

²⁵ the function f

 $^{^{26}}$ the function *g*

²⁷ the right open interval a comma b end the right open interval

²⁸ the open interval *a* comma *b* end the open interval

²⁹ the function f of a equals the function g of a equals 0

³⁰ the function *g* prime of *x* is not equal to 0

³¹ the open interval a comma b end the open interval

³² the function *f* prime of *x* divided by the function *g* prime of *x* tends to *A*

 $^{^{33}}$ x tends to a with upper index plus

³⁴ the function *f* of *x* divided by the function *g* of *x* tends to *A*

³⁵ *x* tends to *a* with upper index plus

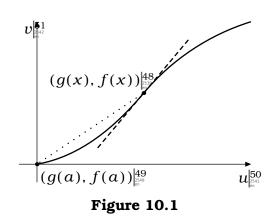
 $^{^{36}}$ *u* times *v*

³⁷ *u* equals the function *g* of *x*

³⁸ v equals the function f of x

³⁹ the function *f* of *x* divided by the function *g* of *x*

⁴⁰ group the function *g* of *x* comma the function *f* of *x* end group


⁴¹ group the function g of a comma the function f of a end group equals group 0 comma 0 end group

⁴² the function *f* prime of *x* divided by the function *g* prime of *x*

⁴³ group the function g of x comma the function f of x end group

 $[\]begin{array}{c} 44 \\ x \\ 45 \\ a \end{array}$

parametrize this curve locally around the origin as a function graph $u = t^{|46|}_{|a|}$ and $v = f(g^{-1}(t))^{|47|}_{|a|}$

The only place in our proof where Lagrange's mean value theorem occurs is in this useful property of right-hand side derivatives.

Lemma 10.4. Let $c > 0^{52}$ Assume that $\phi: [0, c) \to \mathbb{R}$ is continuous in [0, c) and differentiable in $(0, c)^{52}$ and that $\lim_{t\to 0^+} \phi'(t)^{52}$ sists and equals A^{57} then

$$\lim_{h \to 0^+} \frac{\phi(0+h) - \phi(0)}{h} = A._{\text{\tiny Ens}}^{58}$$

Proof. For $h \in (0, c)$ the differential quotient $(\phi(0+h) - \phi(0))/h \stackrel{60}{=} quals \phi'(\xi_h) \stackrel{61}{=} for some \xi_h \in (0, h) \stackrel{62}{=} by$ Lagrange's mean value theorem. As $h \to 0^+ \stackrel{63}{=} bw$ have $\xi_h \to 0^+ \stackrel{64}{=} and$ so

$$\lim_{h \to 0^+} \frac{\phi(0+h) - \phi(0)}{h} = \lim_{h \to 0^+} \phi'(\xi_h) = A._{\text{line}}^{65} \square$$

⁵⁰ u

⁵¹ v

⁵² *c* is greater than 0

⁵⁴ the right open interval 0 comma c end the right open interval

⁵⁷ A

- ⁶⁰ group ϕ group 0 plus *h* end group minus ϕ group 0 end group end group divided by *h*
- ⁶¹ ϕ prime of group ξ with lower index *h* end group
- ⁶² ξ with lower index *h* belongs to the open interval 0 comma *h* end the open interval
- 63 *h* tends to 0 with upper index plus
- ⁶⁴ ξ with lower index h tends to 0 with upper index plus

⁴⁶ u equals t

 v^{47} v equals the function f of group the inverse of the function g of group t end group end group

⁴⁸ group the function g of x comma the function f of x end group

⁴⁹ group the function g of a comma the function f of a end group

⁵³ ϕ maps the right open interval 0 comma *c* end the right open interval to the real numbers

⁵⁵ the open interval 0 comma c end the open interval

⁵⁶ the limit under group *t* tends to 0 with upper index plus end group ϕ prime of group *t* end group

⁵⁸ the limit under group *h* tends to 0 with upper index plus end group the fraction of numerator ϕ group 0 plus *h* end group minus ϕ group 0 end group end numerator and *h* equals *A*

⁵⁹ *h* belongs to the open interval 0 comma *c* end the open interval

⁶⁵ the limit under group *h* tends to 0 with upper index plus end group the fraction of numerator ϕ group 0 plus *h* end group minus ϕ group 0 end group end numerator and *h* equals the limit under group *h* tends to 0 with upper index plus end group ϕ prime of group ξ with lower index *h* end group equals *A*

Proof (of Theorem 10.3). Since $g' \cong$ s a Darboux function it will not change sign in $(a, b) \cong$ and for simplicity we assume that $g' > 0 \cong$ this interval. Lagrange's mean value theorem assures that $g \cong$ strictly monotone in the interval $[a, b] \cong$ and thus that it has an inverse $g^{-1}: [0, g(b)) \to [a, b) \cong$

The composite function $\phi: t \mapsto f(g^{-1}(t))_{\mathbb{F}^{5}}^{1/2} \in [0, g(b))_{\mathbb{F}^{5}}^{1/3}$ continuous at $t = 0_{\mathbb{F}^{5}}^{1/4}$ and differentiable for $t \in (0, g(b))_{\mathbb{F}^{5}}^{1/5}$ By the substitution $t = g(x)_{\mathbb{F}^{5}}^{1/3}$ the given limit, together with the chain rule and the rule of derivatives of inverse functions, we get

$$A = \lim_{x \to a^+} \frac{f'(x)}{g'(x)} = \lim_{t \to 0^+} \frac{f'(g^{-1}(t))}{g'(g^{-1}(t))} = \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) = \lim_{t \to 0^+} \phi'(t) \cdot \lim_{t \to 0^+} \frac{f'(g^{-1}(t))}{g'(g^{-1}(t))} = \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) = \lim_{t \to 0^+} \frac{f'(g^{-1}(t))}{g'(g^{-1}(t))} = \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) = \lim_{t \to 0^+} \frac{f'(g^{-1}(t))}{g'(g^{-1}(t))} = \lim_{t \to 0^+} \frac{d}{dt} f(g^{-1}(t)) = \lim_{t \to$$

By Lemma 10.4, and by substitution t = g(x) again, we conclude that

$$A = \lim_{t \to 0^+} \frac{\phi(0+t) - \phi(0)}{t} = \lim_{t \to 0^+} \frac{f(g^{-1}(t))}{t} = \lim_{x \to a^+} \frac{f(x)}{g(x)} \cdot |_{a^{-1}}^{75}$$

This completes the proof.

⁶⁶ the function *g* prime

 $^{^{67}}$ the open interval *a* comma *b* end the open interval

 $^{^{68}}$ the function g prime is greater than 0

 $^{^{69}}$ the function *g*

⁷⁰ the right open interval *a* comma *b* end the right open interval

⁷¹ the inverse of the function *g* maps the right open interval 0 comma the function *g* of *b* end the right open interval to the right open interval *a* comma *b* end the right open interval

⁷² ϕ is defined so that *t* maps to the function *f* of group the inverse of the function *g* of group *t* end group end group

 $^{^{73}}$ t belongs to the right open interval 0 comma the function g of b end the right open interval

⁷⁴ *t* equals 0

⁷⁵ *t* belongs to the open interval 0 comma the function *g* of *b* end the open interval

⁷⁶ *t* equals the function *g* of *x*

⁷⁷ A equals the limit under group x tends to a with upper index plus end group the fraction of numerator the function f prime of group x end group end numerator and denominator the function g prime of group x end group end denominator equals the limit under group t tends to 0 with upper index plus end group the fraction of numerator the function f prime of group the inverse of the function g of group t end group end numerator and denominator the function g of group t end group end group end numerator and denominator the function g prime of group the inverse of the function g of group t end group end group end denominator equals the limit under group tends to 0 with upper index plus end group the derivative differential d over differential d t end derivative times the function f of group the inverse of the function g of group t end group end group end group tends to 0 with upper index plus end group the inverse of the function f of group the inverse of the function f of group the inverse of the function g of group tends to 0 with upper index plus end group tends to 0 with upper index plus end group tends to 0 with upper index plus end group tends to 0 with upper index plus end group ϕ prime of group t end group times

⁷⁸ *t* equals the function *g* of *x*

⁷⁹ *A* equals the limit under group *t* tends to 0 with upper index plus end group the fraction of numerator ϕ group 0 plus *t* end group minus ϕ group 0 end group end numerator and *t* equals the limit under group *t* tends to 0 with upper index plus end group the fraction of numerator the function *f* of group the inverse of the function *g* of group *t* end group end group end numerator and *t* equals the limit under group *x* tends to *a* with upper index plus end group the fraction of numerator the function *f* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator the function *g* of group *x* end group end numerator and denominator

11 Miscellaneous

11.1 Introduction

In this section we collected some topics that we felt did not really fit elsewhere. The content here will likely change, and is not really part of the base material.

11.2 Defining math commands

Most mechanisms come with their own definition possibilities to define new instances. Sometimes it might, however, be motivated to define own macros, and then there is the macro \definemathcommand to get some assistance.

For example, \bigl is defined by

\definemathcommand [bigl] [open] [one] {\big}

The one means that it takes one argument, the open that the result will be of class open. This technique could in principle also be used to define symbols that do not have slots in Unicode, but maybe should. But then one should also have in mind what happens when copying and pasting from the PDF.

The stuff that is put into the definition can be rather complicated. We show one more example.

```
\definemathcommand
 [slashD]
 [ordinary]
 {\Umathaccent class \mathordinarycode exact overlay 0 0 "338 {D}}
\startformula
```

```
\startrormuta
\slashD = \gamma^^{\mu} D__{\mu}
\stopformula
```

 $D = \gamma^{\mu} D_{\mu}$

11.3 Manipulating matrices

If you want to show both a matrix and its transpose, you do not need to rewrite the matrix again. There is an action key that lets you do some simple manipulations of the matrix.

```
\startformula

\bmatrix{-1, 2, 3; 4,-5, 6; 7, 8,-9}^T =

\bmatrix

[action=transpose]

{-1, 2, 3; 4,-5, 6; 7, 8,-9}

\stopformula

\begin{bmatrix} -1 & 2 & 3 \\ 4 & -5 & 6 \end{bmatrix}^T = \begin{bmatrix} -1 & 4 \\ 2 & -5 \end{bmatrix}
```

 $\begin{bmatrix} -1 & 2 & 3 \\ 4 & -5 & 6 \\ 7 & 8 & -9 \end{bmatrix}^{T} = \begin{bmatrix} -1 & 4 & 7 \\ 2 & -5 & 8 \\ 3 & 6 & -9 \end{bmatrix}$

In addition to transposing one can also scale the matrix with the action key. If you use action=negate you scale by -1.

\startformula -3 \bmatrix{-1, 2, 3; 4, -5, 6; 7, 8, -9} = \bmatrix [action={{scale, -3}}] {-1, 2, 3; 4, -5, 6; 7, 8, -9} \stopformula $-3\begin{bmatrix} -1 & 2 & 3 \\ 4 & -5 & 6 \\ 7 & 8 & -9 \end{bmatrix} = \begin{bmatrix} 3 & -6 & -9 \\ -12 & 15 & -18 \\ -21 & -24 & 27 \end{bmatrix}$

It is possible to both transpose and scale. If you need more advanced printing and calculations with matrices, you can load the matrix module.

```
\usemodule[matrix]
```

Once this is loaded we can for example typeset a general matrix with

```
\startformula
\ctxmodulematrix{
  typeset(moduledata.matrix.symbolic("a", "m", "n"))}
\stopformula
```

```
\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}
```

We can also define some matrices and do some math with them.

```
\startluacode
  document.matA = {{ 1, 2, 2}, { 2, 1, -2}, { -2, 2, -1}}
  document.matB = {{ 1, 2}, { 2, 4}, { 3, -3}}
  matrixoption = {fences = "brackets"}
\stopluacode
```

First we typeset them. By adding matrixoption as en extra argument to typeset we get the matrix with brackets instead of parentheses. Here brackets can be changed into parentheses or bars.

```
\startformula
A = \directlua{moduledata.matrix.typeset(document.matA)}\mtp{,}
B = \directlua{moduledata.matrix.typeset(document.matB,matrixoption)}
\stopformula
```

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{pmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & -3 \end{bmatrix}$$

The module supports the calculation of inverses, transposes and determinants of matrices.

```
\startformula
AB = \directlua{
  moduledata.matrix.typeset(
     moduledata.matrix.product(
        document.matA,
```

```
document.matB),
  matrixoption)}
\stopformula
```

$$AB = \begin{bmatrix} 11 & 4\\ -2 & 14\\ -1 & 7 \end{bmatrix}$$

It is also possible to perform row operations, write a matrix in row echelon form, as well as to solve linear equations. You can find examples by looking in (and compiling) m-matrix.mkiv.

11.4 Systems of equations

We have emphasized simplicity. Thus, with a system of equations, we have suggested to either write them in the same line if possible,

$$x^2 + y^2 = 1$$
, $y + 2x = 1$,

or put on top of each other, aligned on the equal sign,

$$x^2 + y^2 = 1,$$

$$y + 2x = 1.$$

We have emphasized that it does not make sense to align more terms in the equations. In linear algebra books, one often sees alignments on more terms (that mess up the spacing in the equations, but that is usually not seen as an issue). In ConTEXt we can use the simplealign mechanism for this, and in particular there is implemented a parser (a bit like simplecommand for matrices) that will let us type the equations in a natural way without lots of alignment characters. We give a few examples.

```
\startformula
  \equationsystem {
      x - y - z = 2,
  \{-2\}x - 3y + \{3a\}z = 12,
                  4z = \{-3\},\
  }
\stopformula
                                    x - y - z = 2
                                 -2x - 3y + 3az = 12
                                          + 4z = -3
\startformula
  \ell = 16, 4z = \{-3\}
  \iff
  \ell = \{x - y - z = 2, -5y + \{(3a-5)\}z = 16, 4z = \{-3\}\}
\stopformula
              \begin{cases} x - y - z = 2 \\ -5y + (3a - 5)z = 16 \\ + 4z = -3 \end{cases} \iff \begin{cases} x - y - z = 2 \\ -5y + (3a - 5)z = 16 \\ + 4z = -3 \end{cases}
```

Note that the 4z in 4z = -3 gets an extra plus in front, just as the minus sign in front of -5y must be present.

11.5 Polynomial long division

Polynomial long division is usually taught in highschool. It can be a tiresome task to type, and there are several ways to do this. We will show below how to do this in $ConT_EXt$ with the \polynomial* macros, and we will do it by one example. First, we can obtain the result by just typing (in math mode)

\startformula
 \polynomial
 [7, -5, 0, 3, 2]
 [3, 0, 1]
 \stopformula

to get

$$\frac{2x^4 + 3x^3 - 5x + 7}{x^2 + 3} = 2x^2 + \frac{3x^3 - 6x^2 - 5x + 7}{x^2 + 3}$$
$$= 2x^2 + 3x + \frac{-6x^2 - 14x + 7}{x^2 + 3}$$
$$= 2x^2 + 3x - 6 + \frac{-14x + 25}{x^2 + 3}$$

With alternative=complete we get all steps twice, first by adding and subtracting the term, and then by simplification.

\startformula \polynomial [alternative=complete] [7, -5, 0, 3, 2] [3, 0, 1] \stopformula $\frac{2x^4 + 3x^3 - 5x + 7}{x^2 + 3} = \frac{2x^2(x^2 + 3) + 2x^4 + 3x^3 - 5x + 7 - 2x^2(x^2 + 3)}{x^2 + 3}$ $= 2x^2 + \frac{3x^3 - 6x^2 - 5x + 7}{x^2 + 3}$ $= 2x^2 + \frac{3x(x^2 + 3) + 3x^3 - 6x^2 - 5x + 7 - 3x(x^2 + 3)}{x^2 + 3}$ $= 2x^2 + 3x + \frac{-6x^2 - 14x + 7}{x^2 + 3}$ $= 2x^2 + 3x + \frac{-6(x^2 + 3) - 6x^2 - 14x + 7 + 6(x^2 + 3)}{x^2 + 3}$ $= 2x^2 + 3x - 6x^2 + \frac{-14x + 25}{x^2 + 3}$

By running \polynomial a few macros also get defined. They give us access to the various parts in the polynomial division. If we want to play with them, it might also be handy to use the option alternative=none. Then no output is given. Thus, if we do

\polynomial

[alternative=none] [7, -5, 0, 3, 2] [3, 0, 1]

then we will have access to everything in Intermezzo 11.1.

```
2x^4 + 3x^3 - 5x + 7
\polynomialnumerator
                              x^{2} + 3
\polynomialdenominatorx^2 + 3\polynomialnumerator[1]3x^3 - 6x^2 - 5x + 7
\polynomialdenominator
\polynomialnumerator[2] -6x^2 - 14x + 7
                              -14x + 25
\polynomialnumerator[3]
                              2x^2
\polynomialquotient[1]
                              2x^2 + 3x
\polynomialquotient[2]
                              2x^2 + 3x - 6
\polynomialquotient[3]
\polynomialquotientstep[1] 2x^2
\polynomialquotientstep[2]
                              3x
polynomialquotientstep[3] -6
                              3
\polynomialsteps
```

Intermezzo 11.1

This means that we can do the typesetting a bit as we wish. For instance, if we type

```
\startformula
  \frac{\polynomialnumerator}{\polynomialdenominator}
  =
  \frac{\polynomialnumerator
    + \polynomialquotientstep[1](\polynomialdenominator)
        - \polynomialquotientstep[1](\polynomialdenominator)}
        {\polynomialdenominator}
}
```

```
\stopformula
```

then we do the adding and subtracting after the current numerator instead of before it,

$$\frac{2x^4 + 3x^3 - 5x + 7}{x^2 + 3} = \frac{2x^4 + 3x^3 - 5x + 7 + 2x^2(x^2 + 3) - 2x^2(x^2 + 3)}{x^2 + 3}$$

It is also possible to use a different name of the variable.

\startformula \polynomial [symbol=z] [7, -5, 0, 3, 2] [3, 0, 1] \stopformula $\frac{2z^4 + 3z^3 - 5z + 7}{z^2 + 3} = 2z^2 + \frac{3z^3 - 6z^2 - 5z + 7}{z^2 + 3}$ $= 2z^2 + 3z + \frac{-6z^2 - 14z + 7}{z^2 + 3}$ $= 2z^2 + 3z - 6 + \frac{-14z + 25}{z^2 + 3}$

It is also possible to use colors.

\startformula \polynomial [color={1={n=C:1,d=C:2,q=C:3},2={n=C:3,d=C:2,q=C:1}}] [7, -5, 0, 3, 2] [3, 0, 1] \stopformula $2x^4 + 3x^3 - 5x + 7 - 3x^3 - 6x^2 - 5x + 7$

$$\frac{2x^4 + 3x^3 - 5x + 7}{x^2 + 3} = 2x^2 + \frac{3x^3 - 6x^2 - 5x + 7}{x^2 + 3}$$
$$= 2x^2 + 3x + \frac{-6x^2 - 14x + 7}{x^2 + 3}$$
$$= 2x^2 + 3x - 6 + \frac{-14x + 25}{x^2 + 3}$$

If we use non-integers, we might get surprised.

\startformula
 \polynomial
 [7, -5, 2, 3]
 [3, 0, 2.7]
\stopformula

$$\frac{3x^3 + 2x^2 - 5x + 7}{2.7x^2 + 3} \approx 1.111x + \frac{2x^2 - 8.333x + 7}{2.7x^2 + 3}$$
$$\approx 1.111x + 0.741 + \frac{-8.333x + 4.778}{2.7x^2 + 3}$$

11.6 Frames and decorations of formulas

It is possible to frame formulas.

```
\startformula
  \mframed{ \int_0^x f'(t) \dd t = f(x) - f(0) }
\stopformula
```

$$\int_{0}^{x} f'(t) \, dt = f(x) - f(0)$$

This mechanism uses the frame mechanism and therefore it is possible to use various keywords.

```
\startformula
\mframed
  [offset=lex,
    frame=no,
    foregroundcolor=C:1,
    background=color,
    backgroundcolor=C:2]
    { f(x) = f(0) + \int_0^x f'(t) \dd t}
\stopformula
```

$$f(x) = f(0) + \int_0^x f'(t) \, dt$$

If we want to frame just a part of a formula, we need to use the framedmath mechanism instead of mframed (yes!).

```
\startformula
  f(x) = \mframed{f(0)} + \int_0^x f'(t) \dd t
  \breakhere
  f(x) = \framedmath{f(0)} + \int_0^x f'(t) \dd t
  \stopformula
```

$$f(x) = \frac{f(0)}{1} + \int_0^x f'(t) dt$$
$$f(x) = f(0) + \int_0^x f'(t) dt$$

It is also possible to set backgrounds using the bar mechanism. With the definition

```
\definebar
[foobar]
[mathbackground]
[height=\strutht,
   depth=\strutdp,
   offset=.5ex,
   color=C:2]
```

we can set the background of the same formula as before as

```
\tartformula \\ foobar { f(x) = f(0) + int_0^x f'(t) \d t } \\ stopformula \\ \end{tabula}
```

$$f(x) = f(0) + \int_0^x f'(t) \, dt$$

The bar approach also works for formulas that break over a line.

```
\startformula
  \foobar {
    f(x)
    \alignhere = f(0) + \int_0^x f'(t) \dd t
    \breakhere = \frac{\dd}{\dd x}\int_0^x f(t) \dd t
    }
\stopformula
```

$$f(x) = f(0) + \int_0^x f'(t) dt$$
$$= \frac{d}{dx} \int_0^x f(t) dt$$

There are, of course, limitations to this approach.

```
\definebar
[Foobar]
[foobar]
[offset=lex,
    color=C:3]
```

\definebar

```
[FooBar]
[Foobar]
[color=C:1]
\startformula
\foobar { a \alignhere = \Foobar {b} \breakhere
= c \breakhere = \FooBar {d} + e }
\stopformula
```


Maybe it is more useful for emphasizing a few terms, rather than the whole equation.

\startformula

\stopformula

$$f(x) = \frac{d}{dx} \int_0^x f(t) \, dt = \frac{f(0)}{1 - 1} + \int_0^x f'(t) \, dt$$

12 Unicode symbols

12.1 Introduction

Unicode comes with several blocks that contain mathematical symbols. Below we list the symbols in the math blocks. The structure of the tables is the following (with one example):

Unicode slotSymbolMacroMath classDescriptionU+02200 \forall \forallordinaryfor all

Many of the symbols are indeed defined in $ConT_EXt$ via some macro, but not all. One of the reasons is that we simply do not know how many of the symbols are meant to be used, and there are so many of them, so the names would just become silly. You can define macros for the additional symbols that you need.

```
\definemathsymbol[similar][relation]["02243]
```

Once that is done you can use $\mbox{m{a \similar b}}$ to get $a \simeq b$. Some other Unicode slots do have several macro definitions attached to them, often with a different math class. Use the appropriate one that fits with your intended use case. We give one example with \divides and \mbox{mid} that are both attached to the vertical bar 0×02223 . Note the difference in spacing around the vertical bar.

```
\startformula
    3\divides 15 \mtp{} \{x \in \reals \mid x > 0\}
\stopformula
```

 $3|15 \{x \in \mathbb{R} \mid x > 0\}$

You may also have noticed that we have switched font in this chapter. We use Stix Two Math since it has a lot more symbols than T_EXGyre Pagella Math. If you want to generate lists like the ones below, you can do:

```
\usemodule[math-characters]
\showmathfontcharacters[list=mathematicaloperators,method=manual]
```

Possible values for the list key can be found in char-ini.lua.

12.2 Basic latin block

This is not a true math block.

U+0002B	+		binary	plus sign
U+0003C	<	\lt	relation	less-than sign
U+0003D	=	\Relbar	relation	equals sign
		\eq	relation	
U+0003E	>	\gt	relation	greater-than sign
U+0005E	۸		ordinary	circumflex accent
U+0007C			ordinary	vertical line
		\lvert	open	
		\mvert	middle	
		\rvert	close	
		\singleverticalbar	delimiter	

\vert		delimiter	
U+0007E	~	relation	tilde

12.3 Latin-1 Supplement block

This is not a true math block.

U+000AC	٦	\lnot	ordinary	not sign
U+000B0	0		ordinary	degree sign
U+000B1	±	\pm	binary	plus-minus sign
U+000D7	Х		binary	multiplication sign
		\crossproduct	binary	
		\times	binary	
U+000F7	÷	\div	binary	division sign

12.4 Mathematical operators

U+02200	A	\forall	ordinary	for all
U+02201	С	\complement	ordinary	complement
U+02202	9	\partial	differential	partial differential
U+02203	Ξ	\exists	ordinary	there exists
U+02204	∄	\nexists	ordinary	there does not exist
U+02205	Ø	\emptyset	ordinary	empty set
U+02206	Δ	\laplace	differential	increment
U+02207	∇	\gradient	differential	nabla
		\nabla	differential	
U+02208	E	\in	relation	element of
U+02209	∉	\nin	relation	not an element of
		\notin	relation	
U+0220A	e		ordinary	small element of
U+0220B	∋	\ni	relation	contains as member
		\owns	relation	
U+0220C	∌	\nni	relation	does not contain
				as member
		\nowns	relation	
U+0220D	Э		ordinary	small contains
				as member
U+0220E			ordinary	end of proof
U+0220F	Π	\prod	operator	n-ary product
U+02210	Ш	\coprod	operator	n-ary coproduct
U+02211	Σ	\sum	operator	n-ary summation
U+02212	-	\minus	binary	minus sign
		\relbar	relation	
U+02213	Ŧ	\mp	binary	minus-or-plus sign
U+02214	÷	\dotplus	binary	dot plus
	/		ordinary	division slash
U+02215	/		j	
U+02215 U+02216	\langle	\setminus	binary	set minus
		∖setminus ∖adjointsymbol	•	
U+02216			binary	set minus

UNICODE SYMBOLS » MATHEMATICAL OPERATORS

		\convolve	binary	
U+02218	o	\circ	binary	ring operator
U+02210	•	(CITC	binary	bullet operator
U+02219 U+0221A	~	\rootradical	root	square root
0+0221A	V	\surd		-
			ordinary radical	/
U. 0001D	37	\surdradical		
U+0221B	3√ 4∫		ordinary	
U+0221C	$\sqrt[4]{}$		ordinary	
U+0221D	\propto	\propto	relation	I I I I I I I I I
U+0221E	∞	\infty	ordinary	•
U+0221F	L	\rightangle	ordinary	0 0
U+02220	Ζ	\angle	ordinary	e
U+02221	Ă	\measuredangle	ordinary	e
U+02222	4	\sphericalangle	ordinary	· · ·
U+02223		\divides	ordinary	divides
		\mid	relation	
U+02224	ł		relation	does not divide
		\ndivides	ordinary	7
		\nmid	relation	
U+02225			relation	parallel to
		\parallel	relation	
U+02226	H	\nparallel	relation	not parallel to
U+02227	Λ	\land	binary	logical and
		\wedge	binary	e
U+02228	V	\lor	binary	logical or
		\vee	binary	6
U+02229	\cap	\cap	binary	intersection
U+0222A	U	\cup	binary	union
U+0222B	ſ	(000)	integral	integral
••••====	J	\int	integral	
		\intop	ordinary	T
U+0222C	ſſ	THEOD	integral	double integral
0+02220	JJ	\iint	integral	_
			ordinary	
U+0222D	ccc	\iintop		
0+02220	ſſſ	\ i i i at	integral	triple integral
		\iiint	integral	_
	C	\iiintop	ordinary	
U+0222E	∮ cc	\oint	integral	contour integral
U+0222F	∯	\oiint	integral	surface integral
U+02230	∰	\oiiint	integral	2
U+02231	ſ	\intclockwise	integral	clockwise integral
U+02232	Þ	\ointclockwise	integral	clockwise con-
				tour integral
U+02233	¢	\ointctrclockwise	integral	anticlockwise contour
				integral
U+02234	\therefore	\therefore	ellipsis	therefore
U+02235	\therefore	\because	ellipsis	because

Vcolon punctuation \maps as punctuation \maps as punctuation U+02237 :: \squaredots U+02238 · \dotminus U+02239 : minuscolon U+02234 : ordinary U+02235 : ordinary U+02236 · sim U+02237 :: ordinary U+02238 : ordinary U+02236 · \sim U+02237 :: sim U+02238 · ordinary U+02247 · \sim U+02248 · ordinary U+02241 · \nsimeq U+02242 · \equiv U+02243 · \simeq U+02244 * \simeq U+02245 · approxEq U+02246 · \ncong U+02247 * \approxEq U+02248 · spproxEq · nor nor atsually equal to <tr< th=""><th>U+02236</th><th>:</th><th></th><th>punctuation</th><th>ratio</th></tr<>	U+02236	:		punctuation	ratio
Imaps mapsaspunctuation punctuationU+02237::\squaredotsrelationU+02238:\dotminusbinarydot minusU+02239::\minuscolonrelationexcessU+02230::\minuscolonrelationtilde operatorU+02231::\simrelationtilde operatorU+02232::\simrelationreversed tildeU+02232::\simrelationreversed tildeU+02232::\simordinarysine waveU+02232::\wrordinarysine waveU+02231::\wrbinarywreath productU+02241::\wrbinarywreath productU+02242::\equiv relationnot tildeU+02243::\simeqrelationnot asymptotically equal toU+02244::\simeqrelationapproximately equal toU+02245::\approxEqrelationapproximately equal toU+02246::\approxEqrelationnor atually equal toU+02247::\approxEqrelationalmost equal toU+02248::\approxrelationalmost equal toU+02249 <td:< td="">\approxrelationalmost equal toU+02244::\sigmappicatelrelationalmost equal toU+02245::\sigmappicatelrelationalmost equal toU+02246::\sigmappicatel<td< td=""><td>0.02200</td><td>•</td><td>\colon</td><td>-</td><td>Tutto</td></td<></td:<>	0.02200	•	\colon	-	Tutto
\mapsaspunctuationU+02237::\squaredotsrelationproportionU+02238:\dotminusbinarydot minusU+0223A::ordinarygeometric proportionU+0223B:ordinaryhomotheticU+0223C<				•	
U+02237 ::: \squaredots relation proportion U+02238 -: \dotminus binary dot minus U+02239 -: \influscolon relation excess U+02238 -: ordinary permetric proportion U+02238 -: ordinary homothetic U+02230 ~ \sim relation tide operator U+02237 -: \sim relation tide operator U+02238 -: ordinary inverted lazy s ordinary U+02237 -: \sim relation not tilde U+02240 / \wr binary wreath product U+02241 ~ \simeq relation minus tilde U+02242 / \wr ordinary apymotically equal to U+02244 / \simeq relation not symptotically equal to U+02244 / napproxEq relation not actually equal to U+02244 / approxEq relation not almost equal to U+02248				-	
U+02238 → \\dotminus binary dot minus U+02239 → \\minuscolon relation excess U+02232 → ordinary geometric proportion U+02232 → ordinary homothetic U+02232 ~ \sim relation reversed tilde U+02232 ~ \backsim relation reversed tilde U+02237 ~ ordinary inverted lazy s U+02247 ~ \vr ordinary inverted lazy s U+02241 ~ \vr binary wave U+02242 ~ \vr binary wave U+02242 ~ \vr binary wave U+02242 ~ \vr ordinary inverted lazy s U+02247 ~ \sineq relation not tilde U+02246 ~ \napproxEq relation approximately equal to U+02247 # \approxEq relation neither approximately nor actually equal to U+02248 \approxEq relation	U+02237	::		•	proportion
U+02239 -: \minuscolon relation excess U+0223A -: ordinary geometric proportion U+0223B -: ordinary homothetic U+0223C \sim relation relevesd tilde U+0223E -: ordinary inverted lazy s U+0223F -: ordinary inverted lazy s U+02242 -: vmr binary wave U+02242 -: veqsim relation not tilde U+02242 -: \versimeq relation minus tilde U+02242 -: \versimeq relation not asymptotically equal to U+02242 -: \versimeq relation approximately equal to U+02244 -: \spproxEq relation approximately but not actually equal to U+02247 -: \spproxEq relation nor actually equal to U+02248 -: \approx relation not almost equal to U+02247 -: \approx relation not almost equal to U+02248 :					
U+0223A ∺ ordinary geometric proportion U+0223B ~ \sim ordinary homothetic U+0223C ~ \sim relation tilde operator U+0223D ~ \backSim relation reversed tilde U+0223F ~ ordinary inverted lazy s U+02240 ¿ \wr binary wreath product U+02241 ~ \simeq relation not tilde U+02242 ~ \equiv (wr binary wreath product U+02242 ~ \vertice ordinary inverted lazy s U+02243 ~ \simeq relation not tilde U+02243 ~ \simeq relation asymptotically equal to U+02245 ≅ \approxEq relation approximately equal to U+02246 ữ \napproxEq relation atmost equal to U+02247 ứ \approx relation not atmost equal to U+02248 <		-:		•	
U+0223B → visim relation tilde operator U+0223C ~ \sim relation tilde operator U+0223D ~ \backsim relation reversed tilde U+0223E ~ ordinary inverted lazy s U+0225F ~ ordinary sine wave U+02240 ¿ \wr binary wreath product U+02241 ~ \nsim relation not tilde U+02242 ~ \equivalue visimeq relation minus tilde U+02242 ~ \simeq relation not asymptotically equal to U+02245 ≅ \simeq relation approximately equal to U+02246 ≨ \napproxEq relation approximately but not actually equal to U+02247 ¥ \approxnEq relation nor actually equal to U+02248 \approx relation not almost equal to U+02248 \approxeq relation almost equal to U+02248 \approxeq relation geo			(
U+0223C ~ \sim relation tilde operator U+0223D ~ \backsim relation reversed tilde U+0223F ~ ordinary inverted lazy s inverted lazy s U+0224F ~ ordinary wreath product U+02241 ~ \wr binary wreath product U+02242 ~ \equin time relation not tilde U+02243 ~ \simeq relation asymptotically equal to U+02244 ∠ \simeq relation asymptotically equal to U+02245 ≃ \simeq relation approximately but not actually equal to U+02246 ∠ \approxEq relation neither approximately nor actually equal to U+02246 ∠ \approx relation actually equal to U+02247 ∠ \approx relation not almost equal to U+02248 \approx relation almost equal to U+02248 \approx relation almost equal to U+02248 \approx	U+0223B	$\dot{\sim}$			• • •
U+0223D ∽ \backsim relation reversed tilde U+0223E ∼ ordinary inverted lazy s U+02240 ≀ \wr binary wreath product U+02241 ~ \wr binary wreath product U+02242 ~ \vr binary wreath product U+02242 ~ \vr binary wreath product U+02243 ~ \simeq relation mot tilde U+02244 2 \simeq relation not asymptotically equal to U+02245 2 \approxEq relation not asymptotically equal to U+02246 2 \approxEq relation approximately equal to U+02246 2 \approxEq relation not actually equal to U+02246 2 \approxEq relation not actually equal to U+02247 2 \approxEq relation not almost equal to U+02248 ~ \approx relation almost equal to U+02244 > \approxeq relation almost eq			\sim		
U+0223F ~ ordinary inverted lazy s U+02247 ~ ordinary sine wave U+02241 ~ \wr binary wreath product U+02242 ~ \sineq relation not tilde U+02243 ~ \sineq relation anymptotically equal to U+02243 ~ \sineq relation apymptotically equal to U+02244 2 \sineq relation apymptotically equal to U+02245 2 \approxEq relation approximately but not actually equal to U+02246 2 \approxEq relation neither approximately nor actually equal to U+02247 2 \approx relation not actually equal to U+02247 2 \approx relation neither approximately nor actually equal to U+02248 \approx relation almost equal to U+02248 \approxeq relation almost equal to U+02248 \approxeq relation almost equal to U+02240 \asymp		~		relation	-
U+0223F ∿ ordinary sine wave U+02240 ¿ \wr binary wreath product U+02241 ~ \realized (a) not tilde not tilde U+02242 ~ \eqsim relation minus tilde U+02243 ~ \eqsim relation asymptotically equal to U+02244 \neq \simeq relation approximately equal to U+02245 \cong \approxEq relation approximately equal to U+02246 \cong \approxEq relation approximately but not actually equal to U+02247 2 \approxEq relation neither approximately nor actually equal to U+02247 2 \approx relation neither approximately equal to U+02248 \approx \approx relation almost equal to U+02248 \approx \approxeq relation almost equal to U+02248 \approx \approxeq relation almost equal to U+02248 \approx \approxeq relation geometrically equal to U+02240	U+0223E	2		ordinary	inverted lazy s
U+02240 ¿ \wr binary wreath product U+02241 ~ \nsim relation not tilde U+02242 ~ \eqsim relation minus tilde U+02243 ~ \simeq relation asymptotically equal to U+02244 ~ \nsimeq relation asymptotically equal to U+02245 ~ \approxEq relation approximately equal to \cong relation approximately equal to actually equal to U+02245 ~ \napproxEq relation approximately but not actually equal to U+02247 # \napproxEq relation nor actually equal to U+02247 # \approx relation not almost equal to U+02248 \approx relation almost equal to U+02248 \approxeq relation all equal to U+02248 \approxeq relation all equal to U+02248 \approxeq relation geometrically equal to U+02245 \doteq	U+0223F	\sim			
U+02241 ≁ \nsim relation not tilde U+02242 ≂ \eqsim relation minus tilde U+02243 ≃ \simeq relation asymptotically equal to U+02244 ∡ \nsimeq relation asymptotically equal to U+02245 ≃ \approxEq relation approximately equal to U+02246 ≃ \ncong relation approximately but not actually equal to U+02247 ≇ \napproxEq relation neither approximately nor actually equal to U+02247 ≇ \approx relation neither approximately nor actually equal to U+02247 ≇ \approx relation not almost equal to U+02247 ≇ \approx relation almost equal to U+02248 ≈ \approx relation almost equal to U+02248 ≈ \approxeq relation all equal to U+02248 ≈ Nasymp relation all equal to U+022415 ≈ \doteq relation geometrically equivalent to	U+02240	ζ	\wr	•	wreath product
U+02243 ≃ \simeq relation asymptotically equal to U+02244 \neq \nsimeq relation not asymptotically equal to U+02245 ≅ \approxEq relation approximately equal to U+02246 ¥ \napproxEq relation approximately but not actually equal to U+02247 ¥ \approxnEq relation neither approximately nor actually equal to U+02247 ¥ \approxnEq relation neither approximately nor actually equal to U+02248 ≈ \approx relation not almost equal to U+02248 × \approx relation not almost equal to U+02248 × \approx relation almost equal to U+02248 × \approx relation almost equal to U+02248 × relation all equal to to U+02248 × \asymp relation geometrically equal to U+02248 × \asymp relation geometrically equal to U+02249 × \asymp relation geometrically eq	U+02241	\sim	\nsim	relation	-
U+02244	U+02242	$\overline{\sim}$	\eqsim	relation	minus tilde
U+02245 ≅ \approxEq relation approximately equal to \cong relation approximately equal to U+02246 ¥ \napproxEq relation approximately but not actually equal to \ncong relation neither approximately nor actually equal to U+02247 # \approx relation neither approximately nor actually equal to U+02248 ≈ \approx relation not almost equal to U+02248 ≈ \approx relation not almost equal to U+02248 ≈ \approxeq relation almost equal to U+02248 ≈ \approxeq relation almost equal to U+02240 ≈ \approxeq relation all equal to U+02241 ≈ \bumpeq relation all equal to U+02242 ≈ \approxeq relation all equal to U+02245 ≈ \bumpeq relation geometrically equivalent to U+02245 ≈ \bumpeq relation approaches the limit U+02251 ÷ \coloteq relation approximately equal to or U+02252 ≒ \fallingdotseq relation approximately equal to	U+02243	\simeq	\simeq	relation	asymptotically equal to
U+02245 ≅ \approxEq relation approximately equal to U+02246 ≩ \napproxEq relation approximately but not actually equal to U+02247 ≇ \approxnEq relation neither approximately nor actually equal to U+02247 ≇ \approxnEq relation neither approximately nor actually equal to U+02248 ≈ \approx relation not almost equal to U+02248 ≈ \approx relation almost equal to U+0224B ≈ \approx relation almost equal to U+0224E ≈ \symp relation geometrically equivalent to U+0224F ≈ \dotteq relation approximately equal to U+02251 ÷ \dotteq relation approximately equal to or the image of U+02252 ≒ \fallingdotseq relation<	U+02244	≄	\nsimeq	relation	not asymptotically equal
\congrelationU+02246¥\napproxEqrelationapproximately but not actually equal toU+02247¥\approxnEqrelationneither approximately nor actually equal toU+02248≈\approxrelationneither approximately nor actually equal toU+02248≈\approxrelationnot almost equal toU+02248≈\approxrelationnot almost equal toU+02248≈\approxrelationalmost equal or equal toU+02248≈\approxeqrelationalmost equal toU+02248≈\approxeqrelationalmost equal toU+02248≈\approxeqrelationalmost equal toU+02249×\approxeqrelationalmost equal toU+02248≈\approxeqrelationalmost equal toU+02249×\approxeqrelationalmost equal toU+02248≈\approxeqrelationalmost equal toU+02249×\approxrelationall equal toU+02248≈\approxeqrelationgeometrically equivalent toU+02249×\approxrelationgeometrically equal toU+02247≤\box\approxeqrelationapproxeqU+02248≈\box\approxeqrelationapproxeqU+0224F≈\box\boxapproxeqrelationU+02251÷\box\boxrelationapprox					to
U+02246¥\napproxEqrelationapproximately but not actually equal toU+02247¥\approxnEqrelationneither approximately nor actually equal toU+02248≈\approxrelationneither approximately nor actually equal toU+02248≈\approxrelationnot almost equal toU+02248≈\approxrelationnot almost equal toU+02248≈\approxeqrelationalmost equal or equal toU+02248≈\approxeqrelationalmost equal or equal toU+02248≈\approxeqrelationall equal toU+02249×\asymprelationall equal toU+02248≈\approxeqrelationall equal toU+02249×\asymprelationgeometrically equivalent toU+02248≈\approxeqrelationall equal toU+02247×\asymprelationgeometrically equivalent toU+02248≈\approxeqrelationapproxeqU+02247÷\approxeqrelationgeometrically equal toU+02247÷\approxeqrelationapproxeqU+02248≈\approxeqrelationapproxeqU+02247÷\approxeqrelationapproxeqU+02247÷\approxeqrelationapproxeqU+02248÷\approxeqrelationapproxeqU+02251÷\approxeqrelationapproximately equa	U+02245	\cong	\approxEq	relation	approximately equal to
Line in the intervention of the intervent of the intervention of the intervention of the inter			\cong	relation	
\ncongrelationU+02247 ≇\approxnEqrelationneither approximately nor actually equal toU+02248 ≈\approxrelationalmost equal toU+02249 *\napproxrelationnot almost equal toU+02244 ≅\approxeqrelationalmost equal or equal toU+02248 ≈\approxeqrelationalmost equal or equal toU+02248 ≈relationtriple tildeU+02248 ≈relationall equal toU+02248 ≈relationall equal toU+02240 ×\asymprelationequivalent toU+0224F ÷\sumpeqordinarydifference betweenU+02250 ÷\doteqrelationapproaches the limitU+02251 ÷\boteqrelationgeometrically equal toU+02252 ≒\fallingdotseqrelationapproximately equal to or the image ofU+02253 ≓\colonequalsrelationimage of or approxi- mately equal toU+02254 ==\colonequalsrelationcolon equalsU+02255 ==\equilocolonrelationequal scolonU+02256 =\equilocolonrelationrelationU+02255 ==\equilocolonrelationrelationU+02256 =\equilocolonrelationrelationU+02257 =\equilocolonrelationrelationU+02257 =\colonequalsrelationring in equal toU+02257 =\colonequalsrelationring in equal to	U+02246	¥	\napproxEq	relation	approximately but not
U+02247¥\approxnEqrelationneither approximately nor actually equal toU+02248≈\approxrelationalmost equal toU+02249*\napproxrelationnot almost equal toU+02244≃\approxeqrelationalmost equal or equal toU+02248≈\approxeqrelationalmost equal or equal toU+02248≈\approxeqrelationalmost equal or equal toU+02248≈\approxeqrelationall equal toU+02248≈\asymprelationall equal toU+02240×\asymprelationgeometrically equivalent toU+0224F≈\Bumpeqrelationgeometrically equivalent toU+02250÷\doteqrelationapproximately equal toU+02251÷\Doteqrelationgeometrically equal toU+02252÷\fallingdotseqrelationapproximately equal to or the image ofU+02253≓\colonequalsrelationimage of or approxi- mately equal toU+02254≔\colonequalsrelationcolon equalsU+02253≕\equilscolonrelationequal scolonU+02254≔\colonequalsrelationimage of or approxi- mately equal toU+02255≕\equilscolonrelationequals colonU+02256×\equilscolonrelationring in equal toU+02257°\circeqrelationring					actually equal to
U+02248 ≈ \approx relation almost equal to U+02249 ≈ \approx relation not almost equal to U+0224A ≈ \approxeq relation almost equal to U+0224A ≈ \approxeq relation almost equal to U+0224B ≈ \approxeq relation almost equal to U+0224B ≈ \approxeq relation almost equal to U+0224D ≈ \asymp relation all equal to U+0224E ≈ \asymp relation geometrically equivalent to U+0224F ≈ \Bumpeq relation approaches the limit U+02250 i \doteq relation approaches the limit U+02251 ÷ \Doteq relation geometrically equal to U+02252 ÷ \fallingdotseq relation approximately equal to or the image of U+02253 ≓ \risingdotseq relation image of or approximately equal to U+02254 := \colonequals relation equals colon U+02			\ncong	relation	
U+02248 ≈ \approx relation almost equal to U+02249 ≈ \approx relation not almost equal to U+0224A ≃ \approxeq relation almost equal or equal to U+0224B ≈ \approxeq relation almost equal or equal to U+0224B ≈ \approxeq relation almost equal or equal to U+0224D ≃ \asymp relation all equal to U+0224E ≃ \asymp relation equivalent to U+0224F ≃ \Bumpeq relation geometrically equivalent to U+02250 ≐ \doteq relation approaches the limit U+02251 ÷ \Doteq relation approximately equal to \doteqdot relation approximately equal to or the image of U+02252 ≒ \fallingdotseq relation approximately equal to or U+02253 ≓ \colonequals relation image of or approximately equal to U+02254 i= \colonequals relation equals colon	U+02247	≇	\approxnEq	relation	neither approximately
U+02249≈\napproxrelationnot almost equal toU+0224A≃\approxeqrelationalmost equal or equal toU+0224B≈relationtriple tildeU+0224C≅relationall equal toU+0224D×\asymprelationequivalent toU+0224E≈\Bumpeqrelationgeometrically equivalentU+0224F≏Ordinarydifference betweenU+02250=\doteqrelationapproaches the limitU+02251÷\Doteqrelationgeometrically equal toU+02252=\fallingdotseqrelationapproximately equal to or the image ofU+02253≓\risingdotseqrelationimage of or approxi- mately equal toU+02254:=\colonequalsrelationcolon equalsU+02255:=\equilscolonrelationequals colonU+02256:=\equilscolonrelationring in equal toU+02257*\equilscolonrelationring in equal to					nor actually equal to
U+0224A≅\approxeqrelationalmost equal or equal toU+0224B≋relationtriple tildeU+0224C≅relationall equal toU+0224D×\asymprelationequivalent toU+0224E≈\Bumpeqrelationgeometrically equivalentU+0224F≏Ordinarydifference betweenU+02250≐\doteqrelationapproaches the limitU+02251÷\Doteqrelationgeometrically equal toU+02252≒\fallingdotseqrelationapproximately equal to or the image ofU+02253≓\colonequalsrelationapproximately equal toU+02254≔\colonequalsrelationimage of or approxi- mately equal toU+02255≕\equilocolonrelationequals colonU+02256x\equilocolonrelationrelationU+02257°\circeqrelationrelation	U+02248	\approx	\approx	relation	almost equal to
U+0224B 0224C≈relationtriple tildeU+0224C≅relationall equal toU+0224D×\asymprelationequivalent toU+0224E×\Bumpeqrelationgeometrically equivalent toU+0224F≃ordinarydifference betweenU+02250÷\doteqrelationapproaches the limitU+02251÷\Doteqrelationgeometrically equal to relationU+02252≒\fallingdotseqrelationapproximately equal to or the image ofU+02253≓\colonequalsrelationimage of or approxi- mately equal toU+02254:=\colonequalsrelationcolon equalsU+02255::\equilscolonrelationequals colonU+02256x\equilscolonrelationring in equal toU+02257°\circeqrelationring in equal to	U+02249	pprox	\napprox	relation	not almost equal to
U+0224C≅relationall equal toU+0224D×\asymprelationequivalent toU+0224E×\Bumpeqrelationgeometrically equivalent toU+0224F~ordinarydifference betweenU+02250÷\doteqrelationapproaches the limitU+02251÷\Doteqrelationgeometrically equal toU+02252÷\fallingdotseqrelationapproximately equal to or the image ofU+02253≓\risingdotseqrelationimage of or approxi- mately equal toU+02254:=\colonequalsrelationcolon equalsU+02255:=\equilscolonrelationequals colonU+02256x\equilscolonrelationring in equal toU+02257*\circeqrelationring equal to	U+0224A	≊	\approxeq	relation	almost equal or equal to
U+0224D≍\asymprelationequivalent toU+0224E≈\Bumpeqrelationgeometrically equivalent toU+0224F≏ordinarydifference betweenU+02250≐\doteqrelationapproaches the limitU+02251÷\Doteqrelationgeometrically equal to relationU+02252÷\fallingdotseqrelationapproximately equal to or the image ofU+02253÷\risingdotseqrelationimage of or approxi- mately equal toU+02254:=\colonequalsrelationcolon equalsU+02255:=\equilscolonrelationequals colonU+02256:=\equilscolonrelationring in equal toU+02257÷\equilscolonrelationring equal to	U+0224B	≋		relation	triple tilde
U+0224E≈\Bumpeqrelationgeometrically equivalent toU+0224F≃ordinarydifference betweenU+02250≐\doteqrelationapproaches the limitU+02251÷\Doteqrelationgeometrically equal to relationU+02252≒\fallingdotseqrelationapproximately equal to or the image ofU+02253≓\risingdotseqrelationimage of or approxi- mately equal toU+02254:=\colonequalsrelationcolon equalsU+02255::\equalscolonrelationrelationU+02256:=\equin colon equalsrelationimage of or approxi- mately equal toU+02256:=\colonequalsrelationrelationU+02257:=\equin colonrelationrelationU+02257:=\circeqrelationring equal to	U+0224C	SII		relation	all equal to
U+0224F≏ordinarytoU+02250≐\doteqrelationapproaches the limitU+02251÷\Doteqrelationgeometrically equal toU+02252÷\fallingdotseqrelationapproximately equal to or the image ofU+02253≓\fallingdotseqrelationimage of or approxi- mately equal toU+02254≔\colonequalsrelationcolon equalsU+02255≕\equilscolonrelationequals colonU+02254≔\colonequalsrelationrelationU+02255≕\equilscolonrelationrelationU+02256≈\equilscolonrelationring in equal toU+02257°\circeqrelationring equal to	U+0224D	\scriptstyle	\asymp		-
U+0224F≏ordinarydifference betweenU+02250≐\doteqrelationapproaches the limitU+02251÷\Doteqrelationgeometrically equal to\doteqdotrelationrelationU+02252≒\fallingdotseqrelationapproximately equal to or the image ofU+02253≓\risingdotseqrelationimage of or approxi- mately equal toU+02254≔\colonequalsrelationcolon equalsU+02255≕\equinctionrelationequals colonU+02256≖\equinctionrelationring in equal toU+02257°\circeqrelationring equal to	U+0224E	≎	\Bumpeq	relation	geometrically equivalent
U+02250 ≐\doteqrelationapproaches the limitU+02251 ÷\Doteqrelationrelationgeometrically equal to\doteqdotrelationrelationapproximately equal to orU+02252 ≒\fallingdotseqrelationapproximately equal to orU+02253 ≓\risingdotseqrelationimage of or approximately equal toU+02254 ≔\colonequalsrelationcolon equalsU+02255 ≕\equalscolonrelationequals colonU+02256 ≖\equin circeqrelationring in equal to					
U+02251 ÷\Doteqrelationgeometrically equal toU+02252 ≒\fallingdotseqrelationapproximately equal to or the image ofU+02253 ≓\risingdotseqrelationimage of or approxi- mately equal toU+02254 ≔\colonequalsrelationcolon equalsU+02255 ≕\equalscolonrelationequals colonU+02256 ≖\eqcircrelationring in equal toU+02257 ≗\circeqrelationring equal to					
\doteqdotrelationU+02252 ≒\fallingdotseqrelationapproximately equal to or the image ofU+02253 ≓\risingdotseqrelationimage of or approxi- mately equal toU+02254 ≔\colonequalsrelationcolon equalsU+02255 ≕\equalscolonrelationequals colonU+02256 ≖\eqcircrelationring in equal toU+02257 ≗\circeqrelationring equal to	U+02250	≐			••
$U+02252 \doteq \langle fallingdotseq$ relationapproximately equal to or the image of $U+02253 \neq \langle risingdotseq$ relationimage of or approxi- mately equal to $U+02254 \coloneqq \langle colonequals$ relationcolon equals $U+02255 = \langle equalscolon$ relationequals colon $U+02256 = \langle eqcirc$ relationring in equal to $U+02257 = \langle circeq$ relationring equal to	U+02251	÷			geometrically equal to
$U+02253 \neq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $					
$U+02253 \rightleftharpoons$ \rightleftharpoons \land \land \land $image$ of or approximately equal to $U+02254 \coloneqq$ \backsim \land \land \land $image$ of or approximately equal to $U+02255 \rightleftharpoons$ \land \land \land \land \land $U+02256 \oiint$ \checkmark \land \land \land \land $U+02257 \rightleftharpoons$ \land \land \land \land \land $U+02257 \Leftrightarrow$ \land \land \land \land \land $U+02257 \land$ \land \land \land \land \land $U+02$	U+02252	÷.	\fallingdotseq	relation	
$U+02254 := \langle colonequals$ relationcolon equals $U+02255 := \langle equalscolon$ relationequals colon $U+02256 := \langle eqcirc$ relationring in equal to $U+02257 := \langle circeq$ relationring equal to					U
$U+02254 :=$ \colonequalsrelationcolon equals $U+02255 :=$ \equalscolonrelationequals colon $U+02256 :=$ \eqcircrelationring in equal to $U+02257 :=$ \circeqrelationring equal to	U+02253	≓.	\risingdotseq	relation	
$U+02255 =:$ \equalscolonrelationequals colon $U+02256 =$ \eqcircrelationring in equal to $U+02257 =$ \circeqrelationring equal to				. .	
$U+02256 = \langle eqcirc \\ U+02257 \stackrel{\circ}{=} \langle circeq \\ circeq \\ relation \\ relation \\ ring equal to \\ relation \\ r$:=			-
U+02257 ≗ \circeq relation ring equal to			•		-
					-
0+02258 = ordinary corresponds to			\circeq		
	U+02258	=		ordinary	corresponds to

UNICODE SYMBOLS » MATHEMATICAL OPERATORS

U+02259	\triangleq	\wedgeeq	relation	estimates
U+0225A	≚	\veeeq	relation	equiangular to
				1 0
U+0225B		\stareq	relation	star equals
U+0225C		\triangleq	relation	delta equal to
U+0225D	def	\definedeq	relation	equal to by definition
U+0225E	m	\measuredeq	relation	measured by
U+0225F		\questionedeq	relation	questioned equal to
U+02260	\neq	\ne	relation	not equal to
		\neq	relation	
U+02261	Ξ	\equiv	relation	identical to
U+02262	≢	\nequiv	relation	not identical to
U+02263	,		relation	strictly equivalent to
			relation	• •
U+02264	\leq	\le		less-than or equal to
		\leq	relation	
U+02265	\geq	\ge	relation	greater-than or equal to
		\geq	relation	
U+02266	≦	\leqq	relation	less-than over equal to
U+02267	= ≥	\geqq	relation	greater-than over equal
0102207	=	(geqq	relation	•
	,			to
U+02268	≨	\lneqq	relation	less-than but not equal to
U+02269	≥	\gneqq	relation	greater-than but not
				equal to
U+0226A	~	\11	relation	much less-than
U+0226B		\gg	relation	much greater-than
			relation	between
U+0226C))	\between		
U+0226D	st	\nasymp	relation	not equivalent to
U+0226E	≮	\nless	relation	not less-than
U+0226F	≯	\ngtr	relation	not greater-than
U+02270	≰	\nleq	relation	neither less-than nor
	7-			equal to
U+02271	≱		relation	neither greater-than nor
0+02271	⊈_	\ngeq	relation	
				equal to
U+02272	\lesssim	\lesssim	relation	less-than or equivalent to
U+02273	\gtrsim	\gtrsim	relation	greater-than or equiva-
				lent to
U+02274	≴	\nlesssim	relation	neither less-than nor
	\sim	(1010010	equivalent to
11.02275	×) a startin		-
U+02275	≵	\ngtrsim	relation	neither greater-than nor
				equivalent to
U+02276	≶	\lessgtr	relation	less-than or greater-than
U+02277	≷	\gtrless	relation	greater-than or less-than
U+02278	≸	\nlessgtr	relation	neither less-than
	+	· · · · · · ·		nor greater-than
11,02270	\checkmark	\ natrl occ	rolation	
U+02279	¥	\ngtrless	relation	neither greater-than nor
				less-than
U+0227A	\prec	\prec	relation	precedes
U+0227B	\succ	\succ	relation	succeeds

			1 .	
U+0227C	≼	\preccurlyeq	relation	precedes or equal to
U+0227D	≽	\succcurlyeq	relation	succeeds or equal to
U+0227E	\precsim	\precsim	relation	precedes or equivalent to
U+0227F	\gtrsim	\succsim	relation	succeeds or equivalent to
U+02280	⊀	\nprec	relation	does not precede
U+02281	≯	\nsucc	relation	does not succeed
U+02282	ر د	\subset	relation	subset of
U+02283	с Э	\supset	relation	superset of
				not a subset of
U+02284	¢	\nsubset	relation	
U+02285	⊅	\nsupset	relation	not a superset of
U+02286	⊆	\subseteq	relation	subset of or equal to
U+02287	⊇	\supseteq	relation	superset of or equal to
U+02288	⊈	\nsubseteq	relation	neither a subset of nor
				equal to
U+02289	⊉	\nsupseteq	relation	neither a superset of nor
				equal to
U+0228A	ç	\subsetneq	relation	subset of with not equal
	-			to
U+0228B	⊋	\supsetneq	relation	superset of with not
0+02200	¥	(subsectied	Telation	equal to
11.00000				•
U+0228C	€		ordinary	multiset
U+0228D	⊍		ordinary	multiset multiplication
U+0228E	Ĥ	\uplus	binary	multiset union
U+0228F		\sqsubset	relation	square image of
U+02290		\sqsupset	relation	square original of
U+02291	⊑	\sqsubseteq	binary	square image of or equal
				to
U+02292	⊒	\sqsupseteq	binary	square original of or
	_		5	equal to
U+02293	П	\sqcap	binary	square cap
U+02294	Ц	\sqcup	binary	square cup
0+02294 U+02295			binary	circled plus
	\oplus	\oplus	•	-
U+02296	θ	\ominus	binary	circled minus
U+02297	\otimes	\otimes	binary	circled times
U+02298	\oslash	\oslash	binary	circled division slash
U+02299	\odot	\odot	binary	circled dot operator
U+0229A	\odot	\circledcirc	binary	circled ring operator
U+0229B	*	\circledast	binary	circled asterisk operator
U+0229C	⊜	\circledequals	binary	circled equals
U+0229D	Θ	\circleddash	binary	circled dash
U+0229E	⊞	\boxplus	binary	squared plus
U+0229F		\boxminus	binary	squared minus
U+022A0	\square	\boxtimes	binary	squared times
			•	_
U+022A1	\Box	\boxdot	binary	squared dot operator
U+022A2	⊢	\vdash	relation	right tack
U+022A3	-	\dashv	relation	left tack
U+022A4	Т	\top	ordinary	down tack

UNICODE SYMBOLS » MATHEMATICAL OPERATORS

U+022A5	T	\bot	ordinary	up tack
0.022/10	-	\orthogonalcomplementsymbol	prime	up tuon
		\perp	relation	
U+022A6	F	(bc.b	ordinary	assertion
U+022A0	⊨	\models	relation	models
U+022A7	F	\vDash	relation	true
U+022A0	_ ⊩	\Vdash	relation	forces
U+022A9 U+022AA		\Vvdash	relation	
UTUZZAA	111	(vvuasii	Telation	triple vertical bar right turnstile
	1∟	\VDash	relation	double vertical bar dou-
U+022AB	⊫	VDASH	relation	
	LZ.) would be		ble right turnstile
U+022AC		\nvdash	relation	does not prove
	⊭	\nvDash	relation	not true
U+022AE		\nVdash	relation	does not force
U+022AF	¥	\nVDash	relation	negated double vertical
				bar double right turnstile
U+022B0	Ŷ		ordinary	precedes under relation
U+022B1	۶		ordinary	succeeds under relation
U+022B2	\triangleleft		binary	normal subgroup of
U+022B3	\triangleright		binary	contains as nor-
				mal subgroup
U+022B4	⊴		ordinary	normal subgroup of or
				equal to
U+022B5	⊵		ordinary	contains as normal sub-
				group or equal to
U+022B6	⊶		relation	original of
U+022B7	••		relation	image of
U+022B8	-0	\multimap	relation	multimap
U+022B9			ordinary	hermitian conju-
			-	gate matrix
U+022BA	т	\intercal	binary	intercalate
U+022BB	⊻	\veebar	binary	xor
U+022BC	$\overline{\mathbf{X}}$	\barwedge	binary	nand
U+022BD	$\overline{\nabla}$		ordinary	nor
U+022BE	Ł		ordinary	right angle with arc
U+022BF	Δ		ordinary	right triangle
U+022C0	$\overline{\wedge}$	\bigwedge	operator	n-ary logical and
U+022C1	Ń	\bigvee	operator	n-ary logical or
U+022C2	Ň	\bigcap	operator	n-ary intersection
U+022C3	ij	\bigcup	operator	n-ary union
U+022C4	○	\diamond	binary	diamond operator
U+022C4	•		binary	dot operator
0102203		\cdot	binary	dot operator
		\cdotp	punctuation	
		\scalarproduct	binary	
U+022C6	*	\star	binary	star operator
U+022C0	*	\divideontimes	binary	division times
0.02207	A.		onnary	

U+022C8	\bowtie	\Join	relation	bowtie
0102200		\bowtie	relation	bowne
U+022C9	\ltimes	\ltimes	binary	left normal factor semidi-
0+02209	n	(ccilles	billary	rect product
U+022CA	\rtimes	\rtimes	binary	right normal factor semi-
UTUZZCA	\sim	(I CIMES	Unitary	direct product
U+022CB		\leftthreetimes	hinom	-
U+022CB	X		binary binary	left semidirect product
	\checkmark	\rightthreetimes	binary	right semidirect product
U+022CD	\sim		ordinary	reversed tilde equals
U+022CE	Ŷ	\curlyvee	binary	curly logical or
U+022CF	٨	\curlywedge	binary	curly logical and
U+022D0	C	\Subset	relation	double subset
U+022D1	Ð	\Supset	relation	double superset
U+022D2	M	\Сар	binary	double intersection
		\doublecap	binary	
U+022D3	U	\Cup	binary	double union
		\doublecup	binary	
U+022D4	Μ	\pitchfork	relation	pitchfork
U+022D5	#		ordinary	equal and parallel to
U+022D6	<	\lessdot	binary	less-than with dot
U+022D7	≫	\gtrdot	binary	greater-than with dot
U+022D8	⋘	\111	relation	very much less-than
		\llless	relation	
U+022D9	≫	\ggg	relation	very much greater-than
		\gggtr	relation	
U+022DA	۲N	\lesseqgtr	relation	less-than equal to
				or greater-than
U+022DB	N۲	\gtreqless	relation	greater-than equal to or
				less-than
U+022DC	<	\eqless	relation	equal to or less-than
U+022DD	⋝	\eqgtr	relation	equal to or greater-than
U+022DE	⋞	\curlyeqprec	relation	equal to or precedes
U+022DF	≽	\curlyeqsucc	relation	equal to or succeeds
U+022E0	≰	\npreccurlyeq	relation	does not precede or equal
U+022E1	≱	\nsucccurlyeq	relation	does not succeed or equal
U+022E2	ŗ ⊈	\nsqsubseteq	relation	not square image of or
	-	(equal to
U+022E3	⊉	\nsqsupseteq	relation	not square original of or
0102225	<i>≠</i>	(15454656664	relation	equal to
U+022E4	Ę	\sqsubsetneq	relation	square image of or not
0+02224	¥	(sysubserney	Telation	equal to
U+022E5	-		relation	square original of or not
UTUZZEJ	⋥	\sqsupsetneq	Telation	
11.00050	/)] a sin		equal to
U+022E6	\$	\lnsim	relation	less-than but not equiva-
)		lent to
U+022E7	\gtrsim	\gnsim	relation	greater-than but not
				equivalent to

UNICODE SYMBOLS » MATHEMATICAL OPERATORS

U+022E8	\overleftrightarrow	\precnsim	relation	precedes but not equiva-
U+022E9	≻≁	\succnsim	relation	lent to succeeds but not equiva-
	h	\ntrianaloriaht	relation	lent to
U+022EA U+022EB	⋪ ⋫	\ntriangleright ∖ntriangleleft	relation	not normal subgroup of does not contain as nor-
0+022ED	μ×		Telation	mal subgroup
U+022EC	⋬	\ntrianglelefteq	relation	not normal subgroup of
U+022ED	⊭	\ntrianglerighteq	relation	or equal to does not contain as nor-
0+022ED	¥		Telation	mal subgroup or equal
U+022EE	÷	\vdots	ellipsis	vertical ellipsis
U+022EF		\cdots	ellipsis	midline horizon-
				tal ellipsis
U+022F0	÷	\udots	ellipsis	up right diagonal ellipsis
U+022F1	·.	\ddots	ellipsis	down right diago-
				nal ellipsis
U+022F2	€		ordinary	element of with long hor-
				izontal stroke
U+022F3	Ð		ordinary	element of with vertical
				bar at end of horizontal
				stroke
U+022F4	e		ordinary	small element of with
				vertical bar at end of hor-
				izontal stroke
U+022F5	ė		ordinary	element of with
				dot above
U+022F6	Ē		ordinary	element of with overbar
U+022F7	Ē		ordinary	small element of with
				overbar
U+022F8	⋸		ordinary	element of with underbar
U+022F9	€		ordinary	element of with two hori-
				zontal strokes
U+022FA	€		ordinary	contains with long hori-
				zontal stroke
U+022FB	Ð		ordinary	contains with vertical
				bar at end of horizontal
				stroke
U+022FC	Ð		ordinary	small contains with verti-
				cal bar at end of horizon-
				tal stroke
U+022FD	Ð		ordinary	contains with overbar
U+022FE	ē		ordinary	small contains
			-	with overbar
U+022FF	Ε		ordinary	z notation bag member-
				ship

12.5 Miscellaneous Mathematical Symbols-A

11.02700			ordinom	three dimensional angle
U+027C0 U+027C1			ordinary	three dimensional angle white triangle containing small white triangle
U+027C1	—		ordinary	e e e
U+027C2			2	open subset
U+027C3			•	open superset
			•	
U+027C5	L.		•	left s-shaped bag delimiter
U+027C6	S		ordinary	
U+027C7			ordinary	
U+027C8			•	reverse solidus preceding subset
U+027C9				superset preceding solidus
U+027CB	Г Т		ordinary	5 5
U+027CC)		•	long division
U+027CD			•	mathematical falling diagonal
U+027D0	•		2	white diamond with centred dot
U+027D1			2	and with dot
U+027D2			•	element of opening upwards
U+027D3	Ŀ		•	lower right corner with dot
U+027D4	Ŀ		ordinary	upper left corner with dot
U+027D5	\bowtie		ordinary	left outer join
U+027D6	\bowtie		ordinary	right outer join
U+027D7	\bowtie		ordinary	full outer join
U+027D8	\perp		ordinary	large up tack
U+027D9	Т		ordinary	large down tack
U+027DA	≓⊨		ordinary	left and right double turnstile
U+027DB	$\dashv \vdash$		ordinary	left and right tack
U+027DC	<u>~</u>		ordinary	left multimap
U+027DD	—		ordinary	long right tack
U+027DE	—		ordinary	long left tack
U+027DF	l		ordinary	up tack with circle above
U+027E0	\Diamond		ordinary	lozenge divided by horizontal rule
U+027E1	\$		ordinary	white concave-sided diamond
U+027E2	♦		ordinary	white concave-sided diamond with leftwards tick
U+027E3	♦		ordinary	white concave-sided diamond with rightwards
			5	tick
U+027E4	-		ordinary	white square with leftwards tick
U+027E5	Г		ordinary	white square with rightwards tick
U+027E6	ſ	∖llbracket	open	mathematical left white square bracket
U+027E7	1	\rrbracket	close	mathematical right white square bracket
U+027E8	ш (\langle	open	mathematical left angle bracket
U+027E9	ò	\rangle	close	mathematical right angle bracket
U+027E3	«	\llangle	open	mathematical left double angle bracket
U+027EB	»»	\rrangle	close	mathematical right double angle bracket
U+027EC	1	(Trangee	ordinary	mathematical left white tortoise shell bracket
U+027EC	u D		ordinary	mathematical right white tortoise shell bracket
0+027EE	у (∖lgroup	open	mathematical left flattened parenthesis
0+027EE U+027EF	()	\rgroup	close	mathematical right flattened parenthesis
υτυζ/ΕΓ)	\igioup	C102C	mamematical right nationed patentilesis

12.6 Miscellaneous Mathematical Symbols-B

		-	
	\tripleverticalbar	delimiter	triple vertical bar delimiter
•		ordinary	z notation spot
8		ordinary	z notation type colon
{		ordinary	left white curly bracket
}		ordinary	right white curly bracket
(ordinary	left white parenthesis
)		ordinary	right white parenthesis
1		ordinary	z notation left image bracket
D		ordinary	z notation right image bracket
4		ordinary	z notation left binding bracket
Þ		ordinary	z notation right binding bracket
Ī		ordinary	left square bracket with underbar
]		ordinary	right square bracket with underbar
[ordinary	left square bracket with tick in top corner
]		ordinary	right square bracket with tick in bottom
			corner
[ordinary	left square bracket with tick in bottom corner
]		ordinary	right square bracket with tick in top
,			corner
			left angle bracket with dot
		•	right angle bracket with dot
			left arc less-than bracket
		-	right arc greater-than bracket
			double left arc greater-than bracket
		-	double right arc less-than bracket
l		-	left black tortoise shell bracket
		-	
)		-	right black tortoise shell bracket
	•	-	
	\rrointerval		
			dotted fence
ł		•	vertical zigzag line
A			measured angle opening left
Ł.			right angle variant with square
⊾			measured right angle with dot
ß		-	angle with s inside
∠		•	acute angle
⊳		•	spherical angle opening left
4		-	spherical angle opening up
7			turned angle
7		ordinary	reversed angle
		<pre> % % % % % % % % % % % % % % % % % % %</pre>	 ordinary

11.02044			an al a satisfa sun d'aula an
U+029A4	$\underline{\leftarrow}$	ordinary	angle with underbar
U+029A5	$\overline{}$	ordinary	reversed angle with underbar
U+029A6		ordinary	oblique angle opening up
U+029A7		ordinary	oblique angle opening down
U+029A8	Å	ordinary	measured angle with open arm ending
			in arrow pointing up and right
U+029A9	A	ordinary	measured angle with open arm ending
			in arrow pointing up and left
U+029AA	Z.	ordinary	measured angle with open arm ending
			in arrow pointing down and right
U+029AB	¥	ordinary	measured angle with open arm ending
			in arrow pointing down and left
U+029AC	₽ ^a	ordinary	measured angle with open arm ending
		2	in arrow pointing right and up
U+029AD	₩	ordinary	measured angle with open arm ending
			in arrow pointing left and up
U+029AE	A	ordinary	measured angle with open arm ending
01023/12	74	orannary	in arrow pointing right and down
U+029AF	A	ordinary	measured angle with open arm ending
0+02 <i>3</i> AI	4	ofulfiary	in arrow pointing left and down
U+029B0	8	ordinary	reversed empty set
0+029B0 U+029B1		ordinary	
		2	empty set with overbar
U+029B2		ordinary	empty set with small circle above
U+029B3		ordinary	empty set with right arrow above
U+029B4		ordinary	empty set with left arrow above
U+029B5	-	ordinary	circle with horizontal bar
U+029B6	Φ	ordinary	circled vertical bar
U+029B7	0	ordinary	circled parallel
U+029B8	\otimes	ordinary	circled reverse solidus
U+029B9	٩	ordinary	circled perpendicular
U+029BA	\oplus	ordinary	circle divided by horizontal bar and top
			half divided by vertical bar
U+029BB	Ø	ordinary	circle with superimposed x
U+029BC	\otimes	ordinary	circled anticlockwise-rotated division
			sign
U+029BD	Φ	ordinary	up arrow through circle
U+029BE	0	ordinary	circled white bullet
U+029BF	۲	ordinary	circled bullet
U+029C0	\otimes	ordinary	circled less-than
U+029C1	\otimes	ordinary	circled greater-than
U+029C2	<u></u> 0•	ordinary	circle with small circle to the right
U+029C3	C=	ordinary	circle with two horizontal strokes to
	0	j	the right
U+029C4		ordinary	squared rising diagonal slash
U+029C5		ordinary	squared falling diagonal slash
U+029C5	*	ordinary	squared asterisk
U+029C0 U+029C7		ordinary	squared small circle
0+02907		orunnary	squareu sinan enere

U+029C8		ordinary	squared square
U+029C9		ordinary	two joined squares
U+029CA	•	ordinary	triangle with dot above
U+029CB		ordinary	triangle with underbar
U+029CC		ordinary	s in triangle
U+029CD		ordinary	triangle with serifs at bottom
U+029CE		ordinary	right triangle above left triangle
U+029CF	•	ordinary	left triangle beside vertical bar
U+029D0		ordinary	vertical bar beside right triangle
U+029D1	M	ordinary	bowtie with left half black
U+029D2	×	ordinary	bowtie with right half black
U+029D3	×	ordinary	black bowtie
U+029D4	ĸ	ordinary	times with left half black
U+029D5	×	ordinary	times with right half black
U+029D6	Χ	ordinary	white hourglass
U+029D7	X	ordinary	black hourglass
U+029D8	}	ordinary	left wiggly fence
U+029D9	ł	ordinary	right wiggly fence
U+029DA	*	ordinary	left double wiggly fence
U+029DB	#	ordinary	right double wiggly fence
U+029DC	\sim	ordinary	incomplete infinity
U+029DD	\otimes	ordinary	tie over infinity
U+029DE	¢	ordinary	infinity negated with vertical bar
U+029DF	0 0	ordinary	double-ended multimap
U+029E0		ordinary	square with contoured outline
U+029E1	⊿	ordinary	increases as
U+029E2	Ш	ordinary	shuffle product
U+029E3	#	ordinary	equals sign and slanted parallel
U+029E4	<i></i> #	ordinary	equals sign and slanted parallel with
			tilde above
U+029E5	#	ordinary	identical to and slanted parallel
U+029E6	H	ordinary	gleich stark
U+029E7	‡ ▼ 7	ordinary	thermodynamic
U+029E8	\mathbf{V}	ordinary	down-pointing triangle with left half
		1.	black
U+029E9	\mathbf{V}	ordinary	down-pointing triangle with right half
11.00054	•	1	black
U+029EA		ordinary	black diamond with down arrow
U+029EB U+029EC		ordinary	black lozenge white circle with down arrow
0+029EC U+029ED	Q	ordinary ordinary	black circle with down arrow
0+029ED U+029EE	₽ ⁻	ordinary	error-barred white square
0+029EE U+029EF	₽	ordinary	error-barred black square
0+029EF U+029F0	∎ ∑	ordinary	error-barred white diamond
U+029F0 U+029F1	¥ ₹	ordinary	error-barred black diamond
U+029F1 U+029F2	₹ Ç	ordinary	error-barred white circle
U+029F2 U+029F3	Ŷ ∳	ordinary	error-barred black circle
0102913	Ŧ	orunnary	

U+029F4	\Rightarrow	ordinary	rule-delayed
U+029F5	\setminus	ordinary	reverse solidus operator
U+029F6	7	ordinary	solidus with overbar
U+029F7	f	ordinary	reverse solidus with horizontal stroke
U+029F8	/	ordinary	big solidus
U+029F9		ordinary	big reverse solidus
U+029FA	#	ordinary	double plus
U+029FB	#	ordinary	triple plus
U+029FC	<	ordinary	left-pointing curved angle bracket
U+029FD	>	ordinary	right-pointing curved angle bracket
U+029FE	+	ordinary	tiny
U+029FF	-	ordinary	miny

12.7 Supplemental Mathematical Operators

	-			
U+02A00	\odot	\bigodot	operator	n-ary circled dot operator
U+02A01	\oplus	\bigoplus	operator	n-ary circled plus operator
U+02A02	\otimes	\bigotimes	operator	n-ary circled times operator
U+02A03	0	\bigudot	operator	n-ary union operator with dot
U+02A04	+	\biguplus	operator	n-ary union operator with plus
U+02A05	Π	\bigsqcap	operator	n-ary square intersection operator
U+02A06	\square	\bigsqcup	operator	n-ary square union operator
U+02A07	\wedge		ordinary	two logical and operator
U+02A08	\mathbb{V}		ordinary	two logical or operator
U+02A09	Х	\bigtimes	operator	n-ary times operator
U+02A0A	D		ordinary	modulo two sum
U+02A0B	D L		ordinary	summation with integral
U+02A0C	ĴĴĴĴ		integral	quadruple integral operator
		\iiiint	integral	
		\iiiintop	ordinary	
U+02A0D	f		ordinary	finite part integral
U+02A0E	€		ordinary	integral with double stroke
U+02A0F	f		ordinary	integral average with slash
U+02A10	¢		ordinary	circulation function
U+02A11	£		ordinary	anticlockwise integration
U+02A12	ب ر		ordinary	line integration with rectangular path
				around pole
U+02A13	ş		ordinary	line integration with semicircular path
				around pole
U+02A14	5		ordinary	line integration not including the pole
U+02A15	Ş		ordinary	integral around a point operator
U+02A16	ſſ		ordinary	quaternion integral operator
U+02A17	∱		ordinary	integral with leftwards arrow with hook
U+02A18	¥		ordinary	integral with times sign
U+02A19	ſ		ordinary	integral with intersection
U+02A1A	ý		ordinary	integral with union
U+02A1B	Ĵ		ordinary	integral with overbar
	•		5	č

U+02A1C	ſ		ordinary	integral with underbar
U+02A1C	$\frac{J}{M}$		ordinary	•
U+02A1D			-	large left triangle operator
U+02A1E U+02A1F	\triangleleft		ordinary	
	,		-	
U+02A20			ordinary	110
U+02A21			ordinary	
U+02A22			ordinary	
U+02A23			ordinary	1 0
U+02A24			ordinary	
U+02A25	•		•	plus sign with dot below
U+02A26	\sim		ordinary	
U+02A27	2		•	plus sign with subscript two
U+02A28			-	plus sign with black triangle
U+02A29	<u>,</u>		ordinary	-
U+02A2A	÷		ordinary	e
U+02A2B	÷		ordinary	6 6
U+02A2C	÷		ordinary	minus sign with rising dots
U+02A2D	0		ordinary	plus sign in left half circle
U+02A2E	Ð		ordinary	plus sign in right half circle
U+02A2F	×		ordinary	vector or cross product
U+02A30	×		ordinary	multiplication sign with dot above
U+02A31	×		ordinary	multiplication sign with underbar
U+02A32	X		ordinary	semidirect product with bottom closed
U+02A33	*		ordinary	smash product
U+02A34	6		ordinary	multiplication sign in left half circle
U+02A35	×		ordinary	multiplication sign in right half circle
U+02A36	Ô		ordinary	circled multiplication sign with circum-
				flex accent
U+02A37	\otimes		ordinary	multiplication sign in double circle
U+02A38	÷		ordinary	circled division sign
U+02A39	À			plus sign in triangle
U+02A3A	A		ordinary	
U+02A3B	$\overline{\mathbb{A}}$		ordinary	
U+02A3C			ordinary	1 8 8
U+02A3D	L		ordinary	
U+02A3E	° 9		ordinary	
U+02A3F	, Ц	\amalg	binary	amalgamation or coproduct
U+02A40	_ ∩	(ama eg	ordinary	
U+02A41	⊌		ordinary	
U+02A42	Ū		ordinary	8
U+02A43	ō		ordinary	
U+02A43	۱۱ ۵		ordinary	
U+02A44 U+02A45	i⊼i ⊠		ordinary	C
0+02A45 U+02A46			ordinary	e
U+02A47			ordinary	
U+02A48	ň		ordinary	
U+02A49	Û		ordinary	intersection above bar above union

			1.	
U+02A4A	ω		-	union beside and joined with union
U+02A4B	m		ordinary	intersection beside and joined
				with intersection
U+02A4C	σ		ordinary	closed union with serifs
U+02A4D			5	closed intersection with serifs
U+02A4E	—		ordinary	
	n		5	1
U+02A4F	Ш		ordinary	-
U+02A50	⊗		ordinary	
				product
U+02A51	ż		ordinary	logical and with dot above
U+02A52	Ý		ordinary	logical or with dot above
U+02A53	۸		ordinary	-
U+02A54	₩		ordinary	e
U+02A55			-	two intersecting logical and
U+02A56			ordinary	
			•	0 0
U+02A57			ordinary	
U+02A58			ordinary	
U+02A59	×		ordinary	
U+02A5A	٨		ordinary	logical and with middle stem
U+02A5B	¥		ordinary	logical or with middle stem
U+02A5C	A		ordinary	logical and with horizontal dash
U+02A5D	¥		ordinary	•
U+02A5E			ordinary	-
U+02A5F	Δ		ordinary	e
U+02A60			ordinary	-
	≙		5	6
U+02A61			ordinary	
U+02A62			ordinary	e
U+02A63	⊻		ordinary	6
U+02A64	\triangleleft		ordinary	z notation domain antirestriction
U+02A65	\triangleright		ordinary	z notation range antirestriction
U+02A66	÷		ordinary	equals sign with dot below
U+02A67	≐		ordinary	identical with dot above
U+02A68	#		ordinary	
0,01,000	π		01011101	stroke
U+02A69	#		ordinary	
0+02A03	111		orunnary	stroke
			1.	
U+02A6A			ordinary	-
U+02A6B			ordinary	1 0
U+02A6C	≈		ordinary	
U+02A6D			ordinary	congruent with dot above
U+02A6E	*		ordinary	equals with asterisk
U+02A6F	$\hat{\approx}$		ordinary	almost equal to with circumflex accent
U+02A70	≊II		ordinary	
U+02A71	= =		ordinary	
U+02A71	+ ±		ordinary	
			ordinary	
U+02A73		\	2	
U+02A74	*=	\coloncolonequals	relation	double colon equal

U+02A75 U+02A76 U+02A77	===	/eqeq \eqeq	relation relation ordinary	two consecutive equals signs three consecutive equals signs equals sign with two dots above and two dots below
U+02A78 U+02A79 U+02A7A U+02A7B U+02A7C U+02A7D U+02A7E U+02A7F	ا ا	\leqslant \geqslant	ordinary ordinary ordinary ordinary relation relation ordinary	equivalent with four dots above less-than with circle inside greater-than with circle inside less-than with question mark above greater-than with question mark above less-than or slanted equal to greater-than or slanted equal to
U+02A80	≽		ordinary	
U+02A81	K		ordinary	
U+02A82	≽		ordinary	greater-than or slanted equal to with dot above
U+02A83	`≼		ordinary	less-than or slanted equal to with dot above right
U+02A84	.≽		ordinary	greater-than or slanted equal to with dot above left
U+02A85 U+02A86 U+02A87 U+02A88 U+02A89 U+02A8A U+02A8B	VIIV&V &A +V +A &V &A	<pre>\lessapprox \gtrapprox \lneq \rneq \lnapprox \gnapprox \lesseqqgtr</pre>	relation relation relation relation relation relation	less-than or approximate greater-than or approximate less-than and single-line not equal to greater-than and single-line not equal to less-than and not approximate greater-than and not approximate less-than above double-line equal above
U+02A8C	VIIV	\gtreqqless	relation	greater-than greater-than above double-line equal above less-than
U+02A8D U+02A8E U+02A8F	עז אז אזא		ordinary ordinary ordinary	less-than above similar or equal greater-than above similar or equal
U+02A90	٨٤٧		ordinary	greater-than above similar above less- than
U+02A91	≶II		ordinary	less-than above greater-than above dou- ble-line equal
U+02A92	N∥		ordinary	greater-than above less-than above dou- ble-line equal
U+02A93	VIII		ordinary	less-than above slanted equal above greater-than above slanted equal
U+02A94			ordinary	greater-than above slanted equal above less-than above slanted equal

SUPPLEMENTAL MATHEMATICAL OPERATORS « UNICODE SYMBOLS

U+02A95	≷	\eqslantless	relation	slanted equal to or less-than
U+02A96	≥	\eqslantgtr	relation	slanted equal to or greater-than
U+02A97	≷		ordinary	slanted equal to or less-than with dot
			-	inside
U+02A98	≽		ordinary	slanted equal to or greater-than with
0102450	9		orallary	dot inside
	_		1.	
U+02A99			ordinary	-
U+02A9A			ordinary	double-line equal to or greater-than
U+02A9B	1		ordinary	double-line slanted equal to or less-than
U+02A9C	€		ordinary	double-line slanted equal to or greater-
	-		5	than
U+02A9D	\approx		ordinary	
			•	
U+02A9E	\approx		ordinary	6
U+02A9F	З		ordinary	-
				sign
U+02AA0	\simeq		ordinary	similar above greater-than above equals
	_		2	sign
U+02AA1	*		ordinary	-
U+02AA2			ordinary	
			5	e
U+02AA3			ordinary	
U+02AA4	×			greater-than overlapping less-than
U+02AA5	\times		ordinary	greater-than beside less-than
U+02AA6	\triangleleft		ordinary	less-than closed by curve
U+02AA7	\triangleright		ordinary	greater-than closed by curve
U+02AA8			ordinary	
0102/010	~		orunnary	equal
	~			-
U+02AA9	\square		ordinary	
				slanted equal
U+02AAA	€		ordinary	smaller than
U+02AAB	>		ordinary	larger than
U+02AAC	≤		ordinary	smaller than or equal to
U+02AAD	≥		ordinary	larger than or equal to
U+02AAE	_ ≙		ordinary	equals sign with bumpy above
U+02AAF			relation	
	ĭ	\preceq		precedes above single-line equals sign
U+02AB0	≥	\succeq	relation	succeeds above single-line equals sign
U+02AB1	≯	\precneq	relation	precedes above single-line not equal to
U+02AB2	≿	\succneq	relation	succeeds above single-line not equal to
U+02AB3		\preceqq	relation	precedes above equals sign
U+02AB4	≥	\succeqq	relation	succeeds above equals sign
U+02AB5	\prec	\precneqq	relation	precedes above not equal to
U+02AB6	ጽሃ ଅለ ዙሃ ዙለ በሃ በለ	\succneqq	relation	succeeds above not equal to
	≠ ≺			•
U+02AB7	æ	\precapprox	relation	precedes above almost equal to
U+02AB8	\approx	\succapprox	relation	succeeds above almost equal to
U+02AB9	¥¥	\precnapprox	relation	precedes above not almost equal to
U+02ABA	₩	\succnapprox	relation	succeeds above not almost equal to
U+02ABB	≪		ordinary	double precedes
U+02ABC	\gg		ordinary	double succeeds

			1.	1
U+02ABD	C		ordinary	
U+02ABE	Э		ordinary	-
U+02ABF	ç		ordinary	subset with plus sign below
U+02AC0	⊋		ordinary	superset with plus sign below
U+02AC1	č		ordinary	subset with multiplication sign below
U+02AC2	₹		ordinary	superset with multiplication sign below
U+02AC3			ordinary	subset of or equal to with dot above
U+02AC4			ordinary	superset of or equal to with dot above
U+02AC5	⊆	\subseteqq	relation	subset of above equals sign
U+02AC5			relation	
		\supseteqq		superset of above equals sign
U+02AC7	⊊		ordinary	subset of above tilde operator
U+02AC8			ordinary	superset of above tilde operator
U+02AC9	UN NN		ordinary	subset of above almost equal to
U+02ACA	R		ordinary	superset of above almost equal to
U+02ACB	⊊	\subsetneqq	relation	subset of above not equal to
U+02ACC	≩	\supsetneqq	relation	superset of above not equal to
U+02ACD			ordinary	square left open box operator
U+02ACE			ordinary	
U+02ACF	D		ordinary	
U+02AD0	D		ordinary	
U+02AD1	_		ordinary	
U+02AD1			ordinary	-
			5	· ·
U+02AD3	ทบ ทบ ทบ ทบ		ordinary	-
U+02AD4	ы С		ordinary	-
U+02AD5			ordinary	
U+02AD6			ordinary	
U+02AD7	C		ordinary	-
U+02AD8	Æ		ordinary	superset beside and joined by dash with
				subset
U+02AD9	Ш		ordinary	element of opening downwards
U+02ADA	Ψ		ordinary	pitchfork with tee top
U+02ADB	Μ		ordinary	transversal intersection
U+02ADC	sk.		ordinary	forking
U+02ADD	Ψ		ordinary	nonforking
U+02ADE			ordinary	short left tack
U+02ADF			ordinary	
			ordinary	
U+02AE0			•	*
U+02AE1			ordinary	* *
U+02AE2			ordinary	vertical bar triple right turnstile
U+02AE3			ordinary	double vertical bar left turnstile
U+02AE4			ordinary	vertical bar double left turnstile
U+02AE5	킈		ordinary	
U+02AE6	⊩		ordinary	long dash from left member of double
				vertical
U+02AE7	ᆕ		ordinary	short down tack with overbar
U+02AE8	⊥		ordinary	short up tack with underbar
U+02AE9			ordinary	short up tack above short down tack
	I.		or annuar y	

U+02AEA	Π	ordinary	double down tack
U+02AEB	Ш	ordinary	double up tack
U+02AEC	7	ordinary	double stroke not sign
U+02AED	F	ordinary	reversed double stroke not sign
U+02AEE	ł	ordinary	does not divide with reversed negation
			slash
U+02AEF	Ŷ	ordinary	vertical line with circle above
U+02AF0	ſ	ordinary	vertical line with circle below
U+02AF1	Î	ordinary	down tack with circle below
U+02AF2	 	ordinary	parallel with horizontal stroke
U+02AF3	₩	ordinary	parallel with tilde operator
U+02AF4	III	ordinary	triple vertical bar binary relation
U+02AF5	₩	ordinary	triple vertical bar with horizontal stroke
U+02AF6	:	ordinary	triple colon operator
U+02AF7	₩	ordinary	triple nested less-than
U+02AF8		ordinary	triple nested greater-than
U+02AF9	<pre>%</pre>	ordinary	double-line slanted less-than or equal to
U+02AFA		ordinary	double-line slanted greater-than or
			equal to
U+02AFB	///	ordinary	triple solidus binary relation
U+02AFC	III	ordinary	large triple vertical bar operator
U+02AFD	//	ordinary	double solidus operator
U+02AFE	0	ordinary	white vertical bar
U+02AFF	0	ordinary	n-ary white vertical bar

12.8 Miscellaneous Symbols and Arrows

U+02B12		ordinary	square with top half black
U+02B13		ordinary	square with bottom half black
U+02B14		ordinary	square with upper right diagonal half black
U+02B15		ordinary	square with lower left diagonal half black
U+02B16	◆	ordinary	diamond with left half black
U+02B17	\mathbf{A}	ordinary	diamond with right half black
U+02B18	\diamondsuit	ordinary	diamond with top half black
U+02B19	\Diamond	ordinary	diamond with bottom half black
U+02B1A		ordinary	dotted square
U+02B1B		ordinary	black large square
U+02B1C		ordinary	white large square
U+02B1D	•	ordinary	black very small square
U+02B1E	D	ordinary	white very small square
U+02B1F		ordinary	black pentagon
U+02B20	$\hat{\Omega}$	ordinary	white pentagon
U+02B21	\bigcirc	ordinary	white hexagon
U+02B22	•	ordinary	black hexagon
U+02B23		ordinary	horizontal black hexagon
U+02B24		ordinary	black large circle
U+02B25	•	ordinary	black medium diamond
U+02B26	\diamond	ordinary	white medium diamond

U+02B27	•	ordinary	black medium lozenge
U+02B28	•	ordinary	white medium lozenge
U+02B29	•	ordinary	black small diamond
U+02B2A		ordinary	black small lozenge
U+02B2B		ordinary	white small lozenge
U+02B2C		ordinary	black horizontal ellipse
U+02B2D	0	ordinary	white horizontal ellipse
U+02B2E	•	ordinary	black vertical ellipse
U+02B2F	0	ordinary	white vertical ellipse
U+02B30	•	ordinary	-
U+02B31		ordinary	
U+02B32	`	ordinary	left arrow with circled plus
U+02B33		ordinary	long leftwards squiggle arrow
U+02B34		ordinary	leftwards two-headed arrow with vertical stroke
U+02B35		ordinary	leftwards two-headed arrow with double vertical stroke
U+02B36		ordinary	leftwards two-headed arrow from bar
U+02B37		ordinary	leftwards two-headed triple dash arrow
U+02B38		ordinary	-
U+02B39		ordinary	
U+02B3A		ordinary	
U+02B3B		ordinary	leftwards two-headed arrow with tail
U+02B3C		ordinary	
U+02B3D		ordinary	leftwards two-headed arrow with tail with double vertical
		5	stroke
U+02B3E	~×	ordinary	leftwards arrow through x
U+02B3F	\leftarrow	ordinary	wave arrow pointing directly left
U+02B40	⇒	ordinary	equals sign above leftwards arrow
U+02B41	\approx	ordinary	reverse tilde operator above leftwards arrow
U+02B42	₹	ordinary	leftwards arrow above reverse almost equal to
U+02B43	≫	ordinary	rightwards arrow through greater-than
U+02B44	€	ordinary	rightwards arrow through superset
U+02B45	ŧ	ordinary	leftwards quadruple arrow
U+02B46	⇒	ordinary	rightwards quadruple arrow
U+02B47	\rightarrow	ordinary	reverse tilde operator above rightwards arrow
U+02B48	\Rightarrow	ordinary	rightwards arrow above reverse almost equal to
U+02B49	←	ordinary	tilde operator above leftwards arrow
U+02B4A	$\overleftarrow{\approx}$	ordinary	leftwards arrow above almost equal to
U+02B4B	÷	ordinary	leftwards arrow above reverse tilde operator
U+02B4C		ordinary	rightwards arrow above reverse tilde operator
U+02B50	\overleftrightarrow	ordinary	white medium star
U+02B51	*	ordinary	black small star
U+02B52	*	ordinary	
U+02B53	•	ordinary	black right-pointing pentagon
U+02B54	\bigcirc	ordinary	white right-pointing pentagon

12.9 Supplemental Arrows-A

₥		ordinary	upwards quadruple arrow
\Downarrow		ordinary	downwards quadruple arrow
C		ordinary	anticlockwise gapped circle arrow
С		ordinary	clockwise gapped circle arrow
\oplus		ordinary	right arrow with circled plus
\leftarrow	\longleftarrow	relation	long leftwards arrow
\longrightarrow	\longrightarrow	relation	long rightwards arrow
\longleftrightarrow	\longleftrightarrow	relation	long left right arrow
\Leftarrow	\Longleftarrow	relation	long leftwards double arrow
\Rightarrow	\Longrightarrow	relation	long rightwards double arrow
\Leftrightarrow	\Longleftrightarrow	relation	long left right double arrow
\leftarrow	\longmapsfrom	relation	long leftwards arrow from bar
\mapsto	\longmapsto	relation	long rightwards arrow from bar
\Leftarrow	\Longmapsfrom	relation	long leftwards double arrow from
			bar
\Rightarrow	\Longmapsto	relation	long rightwards double arrow from
			bar
~~~~ <del>`</del>	\longrightsquigarrow	relation	long rightwards squiggle arrow
		<pre> ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓</pre>	₩ordinary♡ordinaryOordinaryCordinaryΦordinary←\longleftarrow→\longleftarrow←\longleftrightarrow←\longleftarrow←\longleftarrow←\longleftarrow←\longleftarrow←\longleftrightarrow←\longleftrightarrow←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfrom←\longmapsfr

# 12.10 Supplemental Arrows-B

U+02900	+>		ordinary	rightwards two-headed arrow with vertical stroke
U+02901	<del>-#&gt;&gt;</del>		ordinary	rightwards two-headed arrow with double vertical stroke
U+02902	#		ordinary	leftwards double arrow with verti- cal stroke
U+02903	⇒		ordinary	rightwards double arrow with ver- tical stroke
U+02904	\$		ordinary	left right double arrow with verti- cal stroke
U+02905	⊨≫		ordinary	rightwards two-headed arrow from bar
U+02906	ŧ	\Mapsfrom	relation	leftwards double arrow from bar
U+02907	⇒	\Mapsto	relation	rightwards double arrow from bar
U+02908	ŧ		ordinary	downwards arrow with horizontal stroke
U+02909	<b>†</b>		ordinary	upwards arrow with horizontal stroke
U+0290A	₼	\Uuparrow	relation	upwards triple arrow
U+0290B	$\Downarrow$	\Ddownarrow	relation	downwards triple arrow
U+0290C	←-	\dashedleftarrow	relation	leftwards double dash arrow
U+0290D	->	\dashedrightarrow	relation	rightwards double dash arrow
U+0290E	<del>&lt;</del>		ordinary	leftwards triple dash arrow
U+0290F	>		ordinary	rightwards triple dash arrow
U+02910	> <del>»</del>		ordinary	rightwards two-headed triple dash

				arrow
U+02911	>	\dottedrightarrow	relation	rightwards arrow with dotted stem
U+02912	Ť	, , , , , , , , , , , , , , , , , , ,	ordinary	upwards arrow to bar
U+02913	$\downarrow$		ordinary	downwards arrow to bar
U+02914	$\rightarrow \rightarrow$		ordinary	rightwards arrow with tail with
				vertical stroke
U+02915	⊯		ordinary	rightwards arrow with tail with
				double vertical stroke
U+02916	≻	\twoheadrightarrowtail	relation	rightwards two-headed arrow with tail
U+02917	₩		relation	rightwards two-headed arrow with
				tail with vertical stroke
U+02918	<del>,∦≫</del>		ordinary	rightwards two-headed arrow with
				tail with double vertical stroke
U+02919	$\prec$		ordinary	leftwards arrow-tail
U+0291A	$\leftarrow$		ordinary	rightwards arrow-tail
U+0291B			ordinary	leftwards double arrow-tail
U+0291C	☀		ordinary	rightwards double arrow-tail
U+0291D	•←		ordinary	leftwards arrow to black diamond
U+0291E	$\rightarrow \bullet$		ordinary	rightwards arrow to black dia-
				mond
U+0291F	•		ordinary	leftwards arrow from bar to black
				diamond
U+02920	↦•		ordinary	rightwards arrow from bar to black diamond
U+02921	$\mathbf{N}$	\nwsearrow	relation	north west and south east arrow
U+02922	$\checkmark$	\neswarrow	relation	north east and south west arrow
U+02923	5	\lhooknwarrow	relation	north west arrow with hook
U+02924	2	\rhooknearrow	relation	north east arrow with hook
U+02925	$\mathbf{S}$	\lhooksearrow	relation	south east arrow with hook
U+02926	~	\rhookswarrow	relation	south west arrow with hook
U+02927	Х		ordinary	north west arrow and north east
				arrow
U+02928	Х		ordinary	
			1.	arrow
U+02929	Х		ordinary	
11.02024	57			arrow
U+0292A	X		ordinary	
U+0292B	$\mathbf{N}$		ordinor	arrow
0+02920	Х		ordinary	rising diagonal crossing falling diagonal
U+0292C	$\sim$		ordinary	falling diagonal crossing rising
0,02920	$\sim$		orunnary	diagonal
U+0292D	Х		ordinary	e
0.02920	<u> </u>		oraniary	east arrow
U+0292E	X		ordinary	
	× ×		sincer y	east arrow

U+0292F	×	ordinary	falling diagonal crossing north
U+02930	×	ordinary	0 0 0
U+02931	X	ordinary	Ũ
U+02932	X	ordinary	e
			east arrow
U+02933		ordinary	
U+02934	£	ordinary	1 0 0
			curving upwards
U+02935	¢	ordinary	1 0 0
			curving downwards
U+02936	Ą	ordinary	
			curving leftwards
U+02937	ц,	ordinary	arrow pointing downwards then
			curving rightwards
U+02938	2	ordinary	right-side arc clockwise arrow
U+02939	Ç	ordinary	left-side arc anticlockwise arrow
U+0293A	5	ordinary	top arc anticlockwise arrow
U+0293B	3	ordinary	bottom arc anticlockwise arrow
U+0293C	3	ordinary	
		2	with minus
U+0293D	<i>\</i> ⊊	ordinary	
		or annual y	plus
U+0293E	J	ordinary	lower right semicircular clockwise
0102552	S	orannary	arrow
U+0293F	G	ordinary	
0+02951	G	orunnary	wise arrow
U+02940	Ó	ordinary	anticlockwise closed circle arrow
U+02940 U+02941	- \	5	
	0	ordinary	
U+02942	$\overrightarrow{\leftarrow}$	ordinary	8
		1.	wards arrow
U+02943	$\overleftrightarrow$	ordinary	6
			wards arrow
U+02944	$\overleftrightarrow$	ordinary	6
			wards arrow
U+02945	$\rightarrow$	ordinary	-
U+02946	<del>&lt; _</del>	ordinary	1
U+02947	*	ordinary	rightwards arrow through x
U+02948	↔	ordinary	left right arrow through
			small circle
U+02949	\$	ordinary	upwards two-headed arrow from
			small circle
U+0294A	<i>←</i>	ordinary	left barb up right barb down
		2	harpoon
U+0294B	<del>∠→</del>	ordinary	
		2	C

			up harpoon
U+0294C	1	ordinary	
U+0294D	1	ordinary	*
U+0294E	4	ordinary	left barb up right barb up harpoon
U+0294F	ţ	ordinary	up barb right down barb right harpoon
U+02950	$\overline{}$	ordinary	left barb down right barb down harpoon
U+02951	1	ordinary	*
U+02952	μ <u>−</u>	ordinary	•
U+02953		ordinary	rightwards harpoon with barb up to bar
U+02954	4	ordinary	
U+02955	F	ordinary	downwards harpoon with barb
U+02956	<b>⊢</b>	ordinary	•
U+02957		ordinary	0
U+02958	1	ordinary	
U+02959	7	ordinary	-
U+0295A	4	ordinary	
U+0295B	4	ordinary	
U+0295C	1	ordinary	
U+0295D	Ţ	ordinary	from bar downwards harpoon with barb
U+0295E	Ţ	ordinary	right from bar leftwards harpoon with barb down
U+0295F	H	ordinary	from bar rightwards harpoon with barb
U+02960	1	ordinary	down from bar upwards harpoon with barb left
U+02961	1	ordinary	from bar
U+02962	<u> </u>	ordinary	from bar
5.02302	`	or annur y	above leftwards harpoon with barb down

#### SUPPLEMENTAL ARROWS-B « UNICODE SYMBOLS

U+02963	1	ordinary	upwards harpoon with barb left
			beside upwards harpoon with barb
U+02964	<u> </u>	ordinary	right rightwards harpoon with barb up
0+02904	$\rightarrow$	orunnary	above rightwards harpoon with
			barb down
U+02965	1	ordinary	downwards harpoon with barb left
	Υ.	01 <b>0</b> 11101	beside downwards harpoon with
			barb right
U+02966	<b>4</b>	ordinary	leftwards harpoon with barb up
		j in j	above rightwards harpoon with
			barb up
U+02967	<b>₩</b>	ordinary	leftwards harpoon with barb down
			above rightwards harpoon with
			barb down
U+02968	⇒	ordinary	rightwards harpoon with barb up
			above leftwards harpoon with barb
			up
U+02969	$\overline{\leftarrow}$	ordinary	rightwards harpoon with barb
			down above leftwards harpoon
			with barb down
U+0296A	<u> </u>	ordinary	leftwards harpoon with barb up
			above long dash
U+0296B	$\overline{}$	ordinary	leftwards harpoon with barb down
			below long dash
U+0296C	$\Rightarrow$	ordinary	rightwards harpoon with barb up
			above long dash
U+0296D	<b>=</b>	ordinary	rightwards harpoon with barb
		1.	down below long dash
U+0296E	11	ordinary	upwards harpoon with barb left
			beside downwards harpoon with
	1k		barb right
U+0296F	11	ordinary	downwards harpoon with barb
			left beside upwards harpoon with
U+02970	_	ordinary	barb right right double arrow with rounded
0+02970	<b>—</b>	orunnary	head
U+02971	<i>=</i> →	ordinary	
0+02971	$\rightarrow$	orunnary	wards arrow
U+02972	$\rightarrow$	ordinary	tilde operator above rightwards
0.02572		orunnary	arrow
U+02973	$\overleftarrow{\sim}$	ordinary	leftwards arrow above tilde
0.02070	~	orunnary	operator
U+02974		ordinary	rightwards arrow above
		5	tilde operator
U+02975	⋧	ordinary	rightwards arrow above almost
		2	equal to

U+02976	¥	ordinary	less-than above leftwards arrow
U+02977	≪	ordinary	leftwards arrow through less-than
U+02978	≥	ordinary	greater-than above right-
			wards arrow
U+02979	Ş	ordinary	subset above rightwards arrow
U+0297A	€	ordinary	leftwards arrow through subset
U+0297B	₽	ordinary	superset above leftwards arrow
U+0297C	<del>-</del>	ordinary	left fish tail
U+0297D	$\rightarrow$	ordinary	right fish tail
U+0297E	Υ	ordinary	up fish tail
U+0297F	T	ordinary	down fish tail

# **12.11 Mathematical Alphanumeric Symbols**

U+003B1	α	∖alpha	variab	le greek small letter alpha
U+003B2	β	\beta	variab	0
U+003B3	γ	\gamma	variab	6
U+003B4	δ	\delta	variab	0 0
U+003B5	ε	\varepsilo	n variab	-
U+003B6	ζ	\zeta	variab	0
U+003B7	ŋ	∖eta	variab	0
U+003B8	θ	\theta	variab	0
U+003B9	ι	∖iota	variab	-
U+003BA	κ	\kappa	variab	le greek small letter kappa
U+003BB	λ	∖lambda	variab	le greek small letter lamda
U+003BC	μ	\mu	variab	le greek small letter mu
U+003BD	ν	∖nu	variab	le greek small letter nu
U+003BE	ξ	\xi	variab	le greek small letter xi
U+003BF	0	\omicron	variab	le greek small letter omicron
U+003C0	π	\pi	variab	le greek small letter pi
U+003C1	ρ	\rho	variab	le greek small letter rho
U+003C2	ς	∖varsigma	variab	le greek small letter final sigma
U+003C3	σ	∖sigma	variab	le greek small letter sigma
U+003C4	τ	\tau	variab	le greek small letter tau
U+003C5	υ	\upsilon	variab	le greek small letter upsilon
U+003C6	φ	∖varphi	variab	le greek small letter phi
U+003C7	χ	\chi	variab	le greek small letter chi
U+003C8	ψ	\psi	variab	le greek small letter psi
U+003C9	ω	\omega	variab	le greek small letter omega
U+00391	Α	\Alpha	variable	greek capital letter alpha
U+00392	В	\Beta	variable	greek capital letter beta
U+00393	Γ	\Gamma	variable	greek capital letter gamma
U+00394	$\Delta$	\Delta	variable	greek capital letter delta
U+00395	Е	\Epsilon	variable	greek capital letter epsilon
U+00396	Ζ	\Zeta	variable	greek capital letter zeta
U+00397	Η	\Eta	variable	greek capital letter eta
U+00398	Θ	\Theta	variable	greek capital letter theta
U+00399	Ι	\Iota	variable	greek capital letter iota

U+0039A	Κ	∖Карра	variable	greek capital let	
U+0039B	Λ	\Lambda	variable	greek capital let	
U+0039C	Μ	\Mu	variable	greek capital let	
U+0039D	Ν	∖Nu	variable	greek capital let	ter nu
U+0039E	Ξ	∖Xi	variable	greek capital let	ter xi
U+0039F	0	\Omicron	variable	greek capital let	ter omicron
U+003A0	П	∖Pi	variable	greek capital let	ter pi
U+003A1	Р	\Rho	variable	greek capital let	ter rho
U+003A3	Σ	\Sigma	variable	greek capital let	ter sigma
U+003A4	Т	∖Tau	variable	greek capital let	ter tau
U+003A5	Y	\Upsilon	variable	greek capital let	
U+003A6	Φ	∖Phi	variable	greek capital let	_
U+003A7	Х	\Chi	variable	greek capital let	-
U+003A8	Ψ	\Psi	variable	greek capital let	
U+003A9	Ω	\Omega	variable	greek capital let	-
U+003AA	Ï	(emega	variable		ter iota with dialytika
0.000/01	-		variable	groon ouprairie	
U+1D400	Α			variable	mathematical bold capital a
U+1D401	В			variable	mathematical bold capital b
U+1D402	С			variable	mathematical bold capital c
U+1D403	D			variable	mathematical bold capital d
U+1D404	Ε			variable	mathematical bold capital e
U+1D405	F			variable	mathematical bold capital f
U+1D406	G			variable	mathematical bold capital g
U+1D407	Н			variable	mathematical bold capital h
U+1D408	Ι			variable	mathematical bold capital i
U+1D409	J			variable	mathematical bold capital j
U+1D40A	K			variable	mathematical bold capital k
U+1D40B	L			variable	mathematical bold capital l
U+1D40C	Μ			variable	mathematical bold capital m
U+1D40D	N			variable	mathematical bold capital n
U+1D40E	0			variable	mathematical bold capital o
U+1D40F	P			variable	mathematical bold capital p
U+1D410	Q			variable	mathematical bold capital q
U+1D411	R R			variable	mathematical bold capital r
U+1D411	S			variable	mathematical bold capital s
U+1D412	Б Т			variable	mathematical bold capital t
U+1D413	U			variable	mathematical bold capital u
0+1D414 U+1D415	v			variable	mathematical bold capital v
				variable	•
U+1D416	W				mathematical bold capital w
U+1D417	X			variable	mathematical bold capital x
U+1D418	Y			variable	mathematical bold capital y
U+1D419	Ζ			variable	mathematical bold capital z
U+1D41A	a			variable	mathematical bold small a
U+1D41B	b			variable	mathematical bold small b
U+1D41C	c			variable	mathematical bold small c
U+1D41D	d			variable	mathematical bold small d
U+1D41E	e			variable	mathematical bold small e

U+1D41F	f		variable	mathematical bold small f
U+1D420	g		variable	mathematical bold small g
U+1D421	h		variable	mathematical bold small h
U+1D422	i		variable	mathematical bold small i
U+1D423	j		variable	mathematical bold small j
U+1D424	k		variable	mathematical bold small k
U+1D425	1		variable	mathematical bold small l
U+1D426	m		variable	mathematical bold small m
U+1D427	n		variable	mathematical bold small n
U+1D428	0		variable	mathematical bold small o
U+1D429	p		variable	mathematical bold small p
U+1D423	Р q		variable	mathematical bold small q
U+1D42A U+1D42B	ч r		variable	mathematical bold small r
0+1D42B U+1D42C	s		variable	mathematical bold small s
0+1D42C U+1D42D	s t		variable	mathematical bold small t
	•		variable	mathematical bold small u
U+1D42E	u			mathematical bold small v
U+1D42F	v		variable	
U+1D430	W		variable	mathematical bold small w
U+1D431	Х		variable	mathematical bold small x
U+1D432	У		variable	mathematical bold small y
U+1D433	Z		variable	mathematical bold small z
U+1D434	A		variable	mathematical italic capital a
U+1D435	В		variable	mathematical italic capital b
U+1D436	С		variable	mathematical italic capital c
U+1D437	D		variable	mathematical italic capital d
		\mathDitalicshape	differential	
U+1D438	E		variable	mathematical italic capital e
U+1D439	F		variable	mathematical italic capital f
U+1D43A	G		variable	mathematical italic capital g
U+1D43B	H		variable	mathematical italic capital h
U+1D43C	Ι		variable	mathematical italic capital i
U+1D43D	J		variable	mathematical italic capital j
U+1D43E	Κ		variable	mathematical italic capital k
U+1D43F	L		variable	mathematical italic capital l
U+1D440	M		variable	mathematical italic capital m
U+1D441	N		variable	mathematical italic capital n
U+1D442	0		variable	mathematical italic capital o
U+1D443	P		variable	mathematical italic capital p
U+1D444	Q		variable	mathematical italic capital q
U+1D445	R		variable	mathematical italic capital r
U+1D446	S		variable	mathematical italic capital s
U+1D447	Т		variable	mathematical italic capital t
		\transposesymbol	prime	-
U+1D448	U		variable	mathematical italic capital u
U+1D449	V		variable	mathematical italic capital v
U+1D44A	W		variable	mathematical italic capital w
U+1D44B	X		variable	mathematical italic capital x
				······································

U+1D44C	Y		variable	mathematical italic capital y
U+1D44D	Z		variable	mathematical italic capital z
U+1D44E	а		variable	mathematical italic small a
U+1D44F	b		variable	mathematical italic small b
U+1D450	с		variable	mathematical italic small c
U+1D451	d		variable	mathematical italic small d
0.10.101	u	\mathditalicshape	differential	
U+1D452	е	(macharcacreshape	variable	mathematical italic small e
0+10432	e	\ mathaital i ashana		mathematical italic small c
	c	\matheitalicshape	exponential	.1 1 1. 11.0
U+1D453	f		variable	mathematical italic small f
U+1D454	g		variable	mathematical italic small g
U+0210E	h	\Planckconst	variable	planck constant
U+1D456	i		variable	mathematical italic small i
		\mathiitalicshape	imaginary	
U+1D457	j		variable	mathematical italic small j
		\mathjitalicshape	imaginary	
U+1D458	k		variable	mathematical italic small k
U+1D459	l		variable	mathematical italic small l
U+1D45A	т		variable	mathematical italic small m
U+1D45B	n		variable	mathematical italic small n
U+1D45C	0		variable	mathematical italic small o
U+1D45C			variable	mathematical italic small p
0+1D45D U+1D45E	р а		variable	_
	q			mathematical italic small q mathematical italic small r
U+1D45F	r		variable	
U+1D460			variable	mathematical italic small s
U+1D461	t		variable	mathematical italic small t
U+1D462	и		variable	mathematical italic small u
U+1D463	υ		variable	mathematical italic small v
U+1D464	w		variable	mathematical italic small w
U+1D465	x		variable	mathematical italic small x
U+1D466	у		variable	mathematical italic small y
U+1D467	Z		variable	mathematical italic small z
U+1D468	A		variable	mathematical bold italic capital a
U+1D469	B		variable	mathematical bold italic capital b
U+1D46A	С		variable	mathematical bold italic capital c
U+1D46B	D		variable	mathematical bold italic capital d
U+1D46C	E		variable	mathematical bold italic capital e
U+1D46D	F		variable	mathematical bold italic capital f
U+1D46E	G I		variable	mathematical bold italic capital g
			variable	
U+1D46F	H I			mathematical bold italic capital h
U+1D470	I		variable	mathematical bold italic capital i
U+1D471	J		variable	mathematical bold italic capital j
U+1D472	K		variable	mathematical bold italic capital k
U+1D473	L		variable	mathematical bold italic capital l
U+1D474	M		variable	mathematical bold italic capital m
U+1D475	N		variable	mathematical bold italic capital n
U+1D476	0		variable	mathematical bold italic capital o

variable	mathematical bold italic capital p
variable	mathematical bold italic capital q
variable	mathematical bold italic capital r
variable	mathematical bold italic capital s
variable	mathematical bold italic capital t
variable	mathematical bold italic capital u
variable	mathematical bold italic capital v
variable	mathematical bold italic capital w
variable	mathematical bold italic capital x
variable	mathematical bold italic capital y
variable	mathematical bold italic capital z
variable	mathematical bold italic small a
variable	mathematical bold italic small b
variable	mathematical bold italic small c
variable	mathematical bold italic small d
variable	mathematical bold italic small e
variable	mathematical bold italic small f
variable	mathematical bold italic small g
variable	mathematical bold italic small h
variable	mathematical bold italic small i
variable	mathematical bold italic small j
variable	mathematical bold italic small k
variable	mathematical bold italic small l
variable	mathematical bold italic small m
variable	mathematical bold italic small n
variable	mathematical bold italic small o
variable	mathematical bold italic small p
variable	mathematical bold italic small q
variable	mathematical bold italic small r
variable	mathematical bold italic small s
variable	mathematical bold italic small t
variable	mathematical bold italic small u
variable	mathematical bold italic small v
variable	mathematical bold italic small w
variable	mathematical bold italic small x
variable	mathematical bold italic small y
variable	mathematical bold italic small z
variable	mathematical script capital a
variable	script capital b
variable	mathematical script capital c
variable	mathematical script capital d
variable	script capital e
variable	script capital f
variable	mathematical script capital g
variable	script capital h

0+104//	Γ
U+1D478	Q
U+1D479	R
U+1D47A	S
U+1D47B	T
U+1D47C	U
U+1D47D	V
U+1D47E	W
U+1D47F	X
U+1D480	Y
U+1D481	$\boldsymbol{Z}$
U+1D482	а
U+1D483	b
U+1D484	С
U+1D485	d
U+1D486	e
U+1D487	f
U+1D488	g
U+1D489	h
U+1D48A	i
U+1D48B	j
U+1D48C	k
U+1D48D	l
U+1D48E	т
U+1D48F	п
U+1D490	0
U+1D491	р
U+1D492	q
U+1D493	r
U+1D494	<i>S</i>
U+1D495	t
U+1D496	u
U+1D497	v
U+1D498	w
U+1D499	x
U+1D49A	У
U+1D49B	z
U+1D49C	$\mathcal{A}$
U+0212C	$\mathscr{B}$
U+1D49E	${\mathscr C}$
U+1D49F	D
U+02130	E
U+02131	F
U+1D4A2	G
U+0210B	${\mathcal H}$
	~

U+02110 *I* 

U+1D4A5 *J* 

U+1D477 **P** 

variable script capital hvariable script capital ivariable mathematical script capital j

239

U+1D4A6	$\mathcal{K}$	variable	mathematical script capital k
U+02112	$\mathscr{L}$	variable	script capital l
U+02133	М	variable	script capital m
U+1D4A9	${\mathcal N}$	variable	mathematical script capital n
U+1D4AA	0	variable	mathematical script capital o
U+1D4AB	P	variable	mathematical script capital p
U+1D4AC	2	variable	mathematical script capital q
U+0211B	$\mathscr{R}$	variable	script capital r
U+1D4AE	8	variable	mathematical script capital s
U+1D4AF	э Т	variable	mathematical script capital t
U+1D4B0	Ŭ	variable	mathematical script capital u
U+1D4B1	W V	variable	mathematical script capital v
U+1D4B1	W	variable	mathematical script capital w
U+1D4B3	$\mathfrak{X}$	variable	mathematical script capital x
0+1D4B3 U+1D4B4	u Y	variable	mathematical script capital y
0+1D4B4 U+1D4B5	Y Z	variable	mathematical script capital z
			1 1
U+1D4B6	a c	variable	mathematical script small a
U+1D4B7	b	variable	mathematical script small b
U+1D4B8	C C	variable	mathematical script small c
U+1D4B9	đ	variable	mathematical script small d
U+0212F	e	variable	script small e
U+1D4BB	£	variable	mathematical script small f
U+0210A	G	variable	script small g
U+1D4BD	ĥ	variable	mathematical script small h
U+1D4BE	i	variable	mathematical script small i
U+1D4BF	j	variable	mathematical script small j
U+1D4C0	k	variable	mathematical script small k
U+1D4C1	Ł	variable	mathematical script small l
U+1D4C2	m	variable	mathematical script small m
U+1D4C3	n	variable	mathematical script small n
U+02134	<i>N</i>	variable	script small o
U+1D4C5	p	variable	mathematical script small p
U+1D4C6	-q	variable	mathematical script small q
U+1D4C7	$\tilde{r}$	variable	mathematical script small r
U+1D4C8	\$	variable	mathematical script small s
U+1D4C9	t	variable	mathematical script small t
U+1D4CA	u	variable	mathematical script small u
U+1D4CB	v	variable	mathematical script small v
U+1D4CC	w	variable	mathematical script small w
U+1D4CD	x	variable	mathematical script small x
U+1D4CE	y	variable	mathematical script small y
U+1D4CF	z	variable	mathematical script small z
U+1D400	z A	variable	mathematical bold script capital a
U+1D4D0	B Star	variable	mathematical bold script capital b
0+1D4D1 U+1D4D2	SS C	variable	mathematical bold script capital c
0+1D4D2 U+1D4D3	6 D	variable	mathematical bold script capital d
0+1D4D3 U+1D4D4	У Е	variable	mathematical bold script capital e
0710404	o	vallaule	mamematical bolu script capital e

variable

variable variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable variable

variable

variable

variable

variable

variable

variable

mathematical bold script capital f mathematical bold script capital g mathematical bold script capital h mathematical bold script capital i mathematical bold script capital j mathematical bold script capital k mathematical bold script capital l mathematical bold script capital m mathematical bold script capital n mathematical bold script capital o mathematical bold script capital p mathematical bold script capital q mathematical bold script capital r mathematical bold script capital s mathematical bold script capital t mathematical bold script capital u mathematical bold script capital v mathematical bold script capital w mathematical bold script capital x mathematical bold script capital y mathematical bold script capital z mathematical bold script small a mathematical bold script small b mathematical bold script small c mathematical bold script small d mathematical bold script small e mathematical bold script small f mathematical bold script small g mathematical bold script small h mathematical bold script small i mathematical bold script small j mathematical bold script small k mathematical bold script small l mathematical bold script small m mathematical bold script small n mathematical bold script small o mathematical bold script small p mathematical bold script small q mathematical bold script small r mathematical bold script small s mathematical bold script small t mathematical bold script small u mathematical bold script small v mathematical bold script small w mathematical bold script small x mathematical bold script small y

mathematical bold script small z

U+1D4D6	G
U+1D4D7	H
U+1D4D8	I
U+1D4D9	J
U+1D4DA	${\mathcal K}$
U+1D4DB	Ľ
U+1D4DC	$\mathcal{M}$
U+1D4DD	${\mathcal N}$
U+1D4DE	Ø
U+1D4DF	P
U+1D4E0	$\mathcal{Q}$
U+1D4E1	R
U+1D4E2	8
U+1D4E3	${\mathcal T}$
U+1D4E4	U
U+1D4E5	$\mathscr{V}$
U+1D4E6	W
U+1D4E7	x
U+1D4E8	Y
U+1D4E9	Z
U+1D4EA	a
U+1D4EB	đ
U+1D4EC	C
U+1D4ED	đ
U+1D4EE	e
U+1D4EF	f
U+1D4F0	I
U+1D4F1	ĥ
U+1D4F2	i
U+1D4F3	į
U+1D4F4	k
U+1D4F5	ł
U+1D4F6	m
U+1D4F7	n
U+1D4F8	л <b>о</b>
U+1D4F9	p
U+1D4FA	Ą
U+1D4FB	r
U+1D4FC	\$
U+1D4FD	t
U+1D4FE	u
U+1D4FF	v
U+1D500	w
U+1D501	x
U+1D502	¥
U+1D503	$\boldsymbol{z}$

U+1D4D5

F

U+1D504	A		variable	mathematical fraktur capital a
U+1D505	B		variable	mathematical fraktur capital b
U+0212D	C		variable	black-letter capital c
U+1D507	Ð		variable	mathematical fraktur capital d
U+1D508	E		variable	mathematical fraktur capital e
U+1D509	F		variable	mathematical fraktur capital f
U+1D50A	֍		variable	mathematical fraktur capital g
U+0210C	$\mathfrak{H}$		variable	black-letter capital h
U+02111	I	\Im	variable	black-letter capital i
U+1D50D	J		variable	mathematical fraktur capital j
U+1D50E	R		variable	mathematical fraktur capital k
U+1D50F	L		variable	mathematical fraktur capital l
U+1D510	M		variable	mathematical fraktur capital m
U+1D511	N		variable	mathematical fraktur capital n
U+1D512	$\mathfrak{O}$		variable	mathematical fraktur capital o
U+1D513	P		variable	mathematical fraktur capital p
U+1D514	Q		variable	mathematical fraktur capital q
U+0211C	R	∖Re	variable	black-letter capital r
U+1D516	ଞ		variable	mathematical fraktur capital s
U+1D517	L		variable	mathematical fraktur capital t
U+1D518	U		variable	mathematical fraktur capital u
U+1D519	V		variable	mathematical fraktur capital v
U+1D51A	213		variable	mathematical fraktur capital w
U+1D51B	X		variable	mathematical fraktur capital x
U+1D51C	Ŋ		variable	mathematical fraktur capital y
U+02128	3		variable	black-letter capital z
U+1D51E	a		variable	mathematical fraktur small a
U+1D51F	$\mathfrak{b}$		variable	mathematical fraktur small b
U+1D520	C		variable	mathematical fraktur small c
U+1D521	б		variable	mathematical fraktur small d
U+1D522	e		variable	mathematical fraktur small e
U+1D523	f		variable	mathematical fraktur small f
U+1D524	g		variable	mathematical fraktur small g
U+1D525	h		variable	mathematical fraktur small h
U+1D526	t		variable	mathematical fraktur small i
U+1D527	j		variable	mathematical fraktur small j
U+1D528	ť		variable	mathematical fraktur small k
U+1D529	t		variable	mathematical fraktur small l
U+1D52A	m		variable	mathematical fraktur small m
U+1D52B	n		variable	mathematical fraktur small n
U+1D52C	٥		variable	mathematical fraktur small o
U+1D52D	þ		variable	mathematical fraktur small p
U+1D52E	q		variable	mathematical fraktur small q
U+1D52F	r 2		variable	mathematical fraktur small r
U+1D530	\$ 1		variable	mathematical fraktur small s
U+1D531	t		variable	mathematical fraktur small t
U+1D532	u		variable	mathematical fraktur small u

U+1D533	ษ		variable	mathematical fraktur small v
U+1D534	w		variable	mathematical fraktur small w
U+1D535	£		variable	mathematical fraktur small x
U+1D536	ŋ		variable	mathematical fraktur small y
U+1D537	-, 3		variable	mathematical fraktur small z
U+1D538	o A		variable	mathematical double-struck capital
0+10550	~4		variable	a
U+1D539	B		variable	a mathematical double-struck capital
0110555	ų.		variable	b
U+02102	$\mathbb C$		variable	double-struck capital c
0102102	C	\complexes	ordinary	double struck cupitare
U+1D53B	D	(comprexes	variable	mathematical double-struck capital
0-10000	Ш.		vallable	d
U+1D53C	E		variable	u mathematical double-struck capital
0+10320	L.		vallable	e
U+1D53D	F		variable	-
	ſ		variable	mathematical double-struck capital f
U+1D53E	G		variable	mathematical double-struck capital
0.00100	пп		variable	g
U+0210D	Н			double-struck capital h
U+1D540	0		variable	mathematical double-struck capital i
U+1D541	J		variable	mathematical double-struck capital j
U+1D542	K		variable	mathematical double-struck capital
				k
U+1D543	L		variable	mathematical double-struck capital l
U+1D544	M		variable	mathematical double-struck capital
				m
U+02115	N	\naturalnumbers	variable	double-struck capital n
U+1D546	$\mathbb{O}$		variable	mathematical double-struck capital
				0
U+02119	P	\primes	variable	double-struck capital p
U+0211A	$\mathbb{Q}$	\rationals	variable	double-struck capital q
U+0211D	R	\reals	variable	double-struck capital r
U+1D54A	S		variable	mathematical double-struck capital
				S
U+1D54B	T		variable	mathematical double-struck capital t
U+1D54C	$\mathbb{U}$		variable	mathematical double-struck capital
				u
U+1D54D	$\mathbb{V}$		variable	mathematical double-struck capital
				V
U+1D54E	$\mathbb{W}$		variable	mathematical double-struck capital
				W
U+1D54F	$\mathbb{X}$		variable	mathematical double-struck capital
				Х
U+1D550	$\mathbb{Y}$		variable	mathematical double-struck capital
				у
U+02124	$\mathbb{Z}$	\integers	variable	double-struck capital z
U+1D552	а		variable	mathematical double-struck small a

variable

variable variable

variable

variable

variable

variable

variable

variable

variable

variable variable

variable

variable

variable variable

variable

variable

variable

variable

variable

variable variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

U+1D553	Ь
U+1D554	C
U+1D555	d
U+1D556	e
U+1D557	ſ
U+1D558	g
U+1D559	հ
U+1D55A	Ö
U+1D55B	j
U+1D55C	k
U+1D55D	0
U+1D55E	ពារ
U+1D55F	m
U+1D560	0
U+1D561	P
U+1D562	q
U+1D563	ľ
U+1D564	S
U+1D565	t
U+1D566	CJ
U+1D567	V
U+1D568	W
U+1D569	X
U+1D56A	У
U+1D56B	Z
U+1D56C	21
U+1D56D	8
U+1D56E	C
U+1D56F	2
U+1D570	G
U+1D571	F
U+1D572	(S
U+1D573	5
U+1D574	ទ
U+1D575	J
U+1D576	R
U+1D577	2
U+1D578	M
U+1D579	n
U+1D57A	$\mathfrak{D}$
U+1D57B	ф Э
U+1D57C	2 2
U+1D57D	R
U+1D57E	~
U+1D57F	E N
U+1D580	11 D
U+1D581	Ð

mathematical double-struck small b mathematical double-struck small c mathematical double-struck small d mathematical double-struck small e mathematical double-struck small f mathematical double-struck small g mathematical double-struck small h mathematical double-struck small i mathematical double-struck small j mathematical double-struck small k mathematical double-struck small l mathematical double-struck small m mathematical double-struck small n mathematical double-struck small o mathematical double-struck small p mathematical double-struck small q mathematical double-struck small r mathematical double-struck small s mathematical double-struck small t mathematical double-struck small u mathematical double-struck small v mathematical double-struck small w mathematical double-struck small x mathematical double-struck small y mathematical double-struck small z mathematical bold fraktur capital a mathematical bold fraktur capital b mathematical bold fraktur capital c mathematical bold fraktur capital d mathematical bold fraktur capital e mathematical bold fraktur capital f mathematical bold fraktur capital g mathematical bold fraktur capital h mathematical bold fraktur capital i mathematical bold fraktur capital j mathematical bold fraktur capital k mathematical bold fraktur capital l mathematical bold fraktur capital m mathematical bold fraktur capital n mathematical bold fraktur capital o mathematical bold fraktur capital p mathematical bold fraktur capital q mathematical bold fraktur capital r mathematical bold fraktur capital s mathematical bold fraktur capital t mathematical bold fraktur capital u mathematical bold fraktur capital v

	m	• 11	
U+1D582	213	variable	mathematical bold fraktur capital w
U+1D583	X	variable	mathematical bold fraktur capital x
U+1D584	Ð	variable	mathematical bold fraktur capital y
U+1D585	3	variable	mathematical bold fraktur capital z
U+1D586	a	variable	mathematical bold fraktur small a
U+1D587	Ь	variable	mathematical bold fraktur small b
U+1D588	r c	variable	mathematical bold fraktur small c
U+1D589	с Ъ	variable	mathematical bold fraktur small d
	-		
U+1D58A	e	variable	mathematical bold fraktur small e
U+1D58B	f	variable	mathematical bold fraktur small f
U+1D58C	g	variable	mathematical bold fraktur small g
U+1D58D	h	variable	mathematical bold fraktur small h
U+1D58E	i	variable	mathematical bold fraktur small i
U+1D58F	İ	variable	mathematical bold fraktur small j
U+1D590	f	variable	mathematical bold fraktur small k
U+1D591	ľ	variable	mathematical bold fraktur small l
U+1D592	m	variable	mathematical bold fraktur small m
U+1D593	n	variable	mathematical bold fraktur small n
		variable	mathematical bold fraktur small o
U+1D594	0		
U+1D595	Þ	variable	mathematical bold fraktur small p
U+1D596	9	variable	mathematical bold fraktur small q
U+1D597	r	variable	mathematical bold fraktur small r
U+1D598	S	variable	mathematical bold fraktur small s
U+1D599	t	variable	mathematical bold fraktur small t
U+1D59A	u	variable	mathematical bold fraktur small u
U+1D59B	υ	variable	mathematical bold fraktur small v
U+1D59C	w	variable	mathematical bold fraktur small w
U+1D59D	£	variable	mathematical bold fraktur small x
U+1D59E	r hj	variable	mathematical bold fraktur small y
U+1D59E		variable	mathematical bold fraktur small z
	3	variable	
U+1D5A0	A		mathematical sans-serif capital a
U+1D5A1	В	variable	mathematical sans-serif capital b
U+1D5A2	C	variable	mathematical sans-serif capital c
U+1D5A3	D	variable	mathematical sans-serif capital d
U+1D5A4	E	variable	mathematical sans-serif capital e
U+1D5A5	F	variable	mathematical sans-serif capital f
U+1D5A6	G	variable	mathematical sans-serif capital g
U+1D5A7	Н	variable	mathematical sans-serif capital h
U+1D5A8	1	variable	mathematical sans-serif capital i
U+1D5A9	J	variable	mathematical sans-serif capital j
U+1D5AA	K	variable	mathematical sans-serif capital k
U+1D5AB	L	variable	mathematical sans-serif capital l
	—		-
U+1D5AC	M	variable	mathematical sans-serif capital m
U+1D5AD	N	variable	mathematical sans-serif capital n
U+1D5AE	0	variable	mathematical sans-serif capital o
U+1D5AF	Р	variable	mathematical sans-serif capital p
U+1D5B0	Q	variable	mathematical sans-serif capital q

11.10501	D		mothermotical same same for the la
U+1D5B1	R	variable	mathematical sans-serif capital r
U+1D5B2	S	variable	mathematical sans-serif capital s
U+1D5B3	Т	variable	mathematical sans-serif capital t
U+1D5B4	U	variable	mathematical sans-serif capital u
U+1D5B5	V	variable	mathematical sans-serif capital v
U+1D5B6	W	variable	mathematical sans-serif capital w
U+1D5B7	Х	variable	mathematical sans-serif capital x
U+1D5B8	Y	variable	mathematical sans-serif capital y
U+1D5B9	Z	variable	mathematical sans-serif capital z
U+1D5BA	а	variable	mathematical sans-serif small a
U+1D5BB	b	variable	mathematical sans-serif small b
U+1D5BC	с	variable	mathematical sans-serif small c
U+1D5BD	d	variable	mathematical sans-serif small d
U+1D5BE	e	variable	mathematical sans-serif small e
U+1D5BF	f	variable	mathematical sans-serif small f
U+1D5C0	g	variable	mathematical sans-serif small g
U+1D5C1	h	variable	mathematical sans-serif small h
U+1D5C2	i	variable	mathematical sans-serif small i
	j	variable	mathematical sans-serif small j
U+1D5C4	j k	variable	mathematical sans-serif small k
U+1D5C5	l	variable	mathematical sans-serif small l
U+1D5C5	m	variable	mathematical sans-serif small m
U+1D5C0		variable	mathematical sans-serif small n
	n	variable	mathematical sans-serif small o
U+1D5C8	0		
U+1D5C9	р	variable	mathematical sans-serif small p
U+1D5CA	q	variable	mathematical sans-serif small q
U+1D5CB	r	variable	mathematical sans-serif small r
U+1D5CC	S	variable	mathematical sans-serif small s
U+1D5CD	t	variable	mathematical sans-serif small t
U+1D5CE	u	variable	mathematical sans-serif small u
U+1D5CF	V	variable	mathematical sans-serif small v
U+1D5D0	W	variable	mathematical sans-serif small w
U+1D5D1	х	variable	mathematical sans-serif small x
U+1D5D2	У	variable	mathematical sans-serif small y
U+1D5D3	Z	variable	mathematical sans-serif small z
U+1D5D4	Α	variable	mathematical sans-serif bold capital
			a
U+1D5D5	В	variable	mathematical sans-serif bold capital
			b
U+1D5D6	С	variable	mathematical sans-serif bold capital
			c
U+1D5D7	D	variable	mathematical sans-serif bold capital
			d
U+1D5D8	E	variable	mathematical sans-serif bold capital
0.10000	-		e
U+1D5D9	F	variable	mathematical sans-serif bold capital
J. 10000		, an autore	f
			±

U+1D5DA	G	variable	mathematical sans-serif bold capital
U+1D5DB	н	variable	g mathematical sans-serif bold capital h
U+1D5DC	1	variable	mathematical sans-serif bold capital
U+1D5DD	J	variable	mathematical sans-serif bold capital
U+1D5DE	к	variable	nathematical sans-serif bold capital k
U+1D5DF	L	variable	mathematical sans-serif bold capital l
U+1D5E0	М	variable	mathematical sans-serif bold capital m
U+1D5E1	Ν	variable	mathematical sans-serif bold capital
U+1D5E2	0	variable	mathematical sans-serif bold capital
U+1D5E3	Ρ	variable	mathematical sans-serif bold capital
U+1D5E4	Q	variable	p mathematical sans-serif bold capital q
U+1D5E5	R	variable	ч mathematical sans-serif bold capital r
U+1D5E6	S	variable	mathematical sans-serif bold capital
U+1D5E7	т	variable	mathematical sans-serif bold capital
U+1D5E8	U	variable	mathematical sans-serif bold capital u
U+1D5E9	V	variable	mathematical sans-serif bold capital
U+1D5EA	W	variable	w mathematical sans-serif bold capital w
U+1D5EB	X	variable	mathematical sans-serif bold capital x
U+1D5EC	Y	variable	mathematical sans-serif bold capital
U+1D5ED	z	variable	y mathematical sans-serif bold capital z
U+1D5EE	а	variable	mathematical sans-serif bold small a
U+1D5EF	b	variable	mathematical sans-serif bold small b
U+1D5F0	- C	variable	mathematical sans-serif bold small c
U+1D5F1	d	variable	mathematical sans-serif bold small d
U+1D5F2	e	variable	mathematical sans-serif bold small e
U+1D5F3	f	variable	mathematical sans-serif bold small f
U+1D5F4	g	variable	mathematical sans-serif bold small g
			e e

U+1D5F5	h	variable	mathematical sans-serif bold small h
U+1D5F6	i	variable	mathematical sans-serif bold small i
		variable	
U+1D5F7	J		mathematical sans-serif bold small j
U+1D5F8	k	variable	mathematical sans-serif bold small k
U+1D5F9	l	variable	mathematical sans-serif bold small l
U+1D5FA	m	variable	mathematical sans-serif bold small
UTIDJIA		variable	
			m
U+1D5FB	n	variable	mathematical sans-serif bold small n
U+1D5FC	0	variable	mathematical sans-serif bold small o
U+1D5FD	р	variable	mathematical sans-serif bold small p
	•		-
U+1D5FE	q	variable	mathematical sans-serif bold small q
U+1D5FF	r	variable	mathematical sans-serif bold small r
U+1D600	s	variable	mathematical sans-serif bold small s
U+1D601	t	variable	mathematical sans-serif bold small t
	-		
U+1D602	u	variable	mathematical sans-serif bold small u
U+1D603	V	variable	mathematical sans-serif bold small v
U+1D604	w	variable	mathematical sans-serif bold small
			W
U+1D605	x	variable	mathematical sans-serif bold small x
U+1D606	У	variable	mathematical sans-serif bold small y
U+1D607	Z	variable	mathematical sans-serif bold small z
U+1D608	A	variable	mathematical sans-serif italic capital
			a
11.10000	D	variable	
U+1D609	В	variable	mathematical sans-serif italic capital
			b
U+1D60A	С	variable	mathematical sans-serif italic capital
			c
U+1D60B	D	variable	mathematical sans-serif italic capital
0+10000	D	vallable	-
			d
U+1D60C	Ε	variable	mathematical sans-serif italic capital
			e
U+1D60D	F	variable	mathematical sans-serif italic capital
0+10000	1	variable	-
			f
U+1D60E	G	variable	mathematical sans-serif italic capital
			g
U+1D60F	Н	variable	mathematical sans-serif italic capital
0110001		variable	
			h
U+1D610	1	variable	mathematical sans-serif italic capital
			i
U+1D611	J	variable	mathematical sans-serif italic capital
0.10011	5	variable	
			j
U+1D612	K	variable	mathematical sans-serif italic capital
			k
U+1D613	L	variable	mathematical sans-serif italic capital
			1
U. 1001 (		11	•
U+1D614	Μ	variable	mathematical sans-serif italic capital
			m

U+1D615	Ν	variable	mathematical sans-serif italic capital
U+1D616	0	variable	n mathematical sans-serif italic capital
U+1D617	Р	variable	o mathematical sans-serif italic capital
U+1D618	Q	variable	p mathematical sans-serif italic capital
U+1D619	R	variable	q mathematical sans-serif italic capital
U+1D61A	S	variable	r mathematical sans-serif italic capital
U+1D61B	Τ	variable	s mathematical sans-serif italic capital
U+1D61C	U	variable	t mathematical sans-serif italic capital
U+1D61D	V	variable	u mathematical sans-serif italic capital
U+1D61E	W	variable	v mathematical sans-serif italic capital w
U+1D61F	X	variable	mathematical sans-serif italic capital x
U+1D620	Ŷ	variable	mathematical sans-serif italic capital
U+1D621	Ζ	variable	y mathematical sans-serif italic capital z
U+1D622	а	variable	mathematical sans-serif italic small a
U+1D623	Ь	variable	n mathematical sans-serif italic small b
U+1D624	с	variable	mathematical sans-serif italic small c
U+1D625	d	variable	mathematical sans-serif italic small d
U+1D626	е	variable	mathematical sans-serif italic small e
U+1D627	f	variable	mathematical sans-serif italic small f
U+1D628	g	variable	mathematical sans-serif italic small
	8		g
U+1D629	h	variable	mathematical sans-serif italic small h
U+1D62A	i	variable	mathematical sans-serif italic small i
U+1D62B	i	variable	mathematical sans-serif italic small j
U+1D62C	k	variable	mathematical sans-serif italic small
			k
U+1D62D	l	variable	mathematical sans-serif italic small l
U+1D62E	т	variable	mathematical sans-serif italic small

			m
U+1D62F	n	variable	mathematical sans-serif italic small
			n
U+1D630	0	variable	mathematical sans-serif italic small
			0
U+1D631	р	variable	mathematical sans-serif italic small
			р
U+1D632	<i>q</i>	variable	mathematical sans-serif italic small
11.10000			q
0.10000	r	variable variable	mathematical sans-serif italic small r mathematical sans-serif italic small s
U+1D634 U+1D635	s t	variable	mathematical sans-serif italic small t
	L U	variable	mathematical sans-serif italic small
0+10050	ŭ	variable	u
U+1D637	V	variable	mathematical sans-serif italic small
			V
U+1D638	W	variable	mathematical sans-serif italic small
			W
U+1D639	X	variable	mathematical sans-serif italic small
			х
U+1D63A	у	variable	mathematical sans-serif italic small
			У
U+1D63B	Ζ	variable	mathematical sans-serif italic small
11.10626			
U+1D63C	A	variable	mathematical sans-serif bold italic
U+1D63D	В	variable	capital a mathematical sans-serif bold italic
0+10020	D	variable	capital b
U+1D63E	С	variable	mathematical sans-serif bold italic
	-		capital c
U+1D63F	D	variable	mathematical sans-serif bold italic
			capital d
U+1D640	Ε	variable	mathematical sans-serif bold italic
			capital e
U+1D641	F	variable	mathematical sans-serif bold italic
			capital f
U+1D642	G	variable	mathematical sans-serif bold italic
11.10040			capital g
U+1D643	н	variable	mathematical sans-serif bold italic
U+1D644	1	variable	capital h mathematical sans-serif bold italic
0+10044	1	Variable	capital i
U+1D645	J	variable	mathematical sans-serif bold italic
	-		capital j
U+1D646	Κ	variable	mathematical sans-serif bold italic
			capital k
U+1D647	L	variable	mathematical sans-serif bold italic

			capital l
U+1D648	М	variable	mathematical sans-serif bold italic capital m
U+1D649	Ν	variable	mathematical sans-serif bold italic
U+1D64A	0	variable	capital n mathematical sans-serif bold italic
U+1D64B	Р	variable	capital o mathematical sans-serif bold italic
U. 1D64C	0	variable	capital p mathematical sans-serif bold italic
U+1D64C	Q	variable	capital q
U+1D64D	R	variable	mathematical sans-serif bold italic capital r
U+1D64E	S	variable	mathematical sans-serif bold italic capital s
U+1D64F	Τ	variable	mathematical sans-serif bold italic
U+1D650	U	variable	capital t mathematical sans-serif bold italic
	V	variable	capital u mathematical sans-serif bold italic
U+1D651	V	variable	capital v
U+1D652	W	variable	mathematical sans-serif bold italic capital w
U+1D653	X	variable	mathematical sans-serif bold italic capital x
U+1D654	Ŷ	variable	mathematical sans-serif bold italic
U+1D655	Z	variable	capital y mathematical sans-serif bold italic
U+1D656	a	variable	capital z mathematical sans-serif bold italic
0+10050	ŭ		small a
U+1D657	Ь	variable	mathematical sans-serif bold italic small b
U+1D658	c	variable	mathematical sans-serif bold italic small c
U+1D659	d	variable	mathematical sans-serif bold italic
U+1D65A	e	variable	small d mathematical sans-serif bold italic
U+1D65B	f	variable	small e mathematical sans-serif bold italic
	,		small f
U+1D65C	g	variable	mathematical sans-serif bold italic small g
U+1D65D	h	variable	mathematical sans-serif bold italic small h
U+1D65E	i	variable	mathematical sans-serif bold italic
			small i

U+1D65F	j	variable	mathematical sans-serif bold italic small j
U+1D660	k	variable	mathematical sans-serif bold italic
U+1D661	l	variable	small k mathematical sans-serif bold italic
U+1D662	m	variable	small l mathematical sans-serif bold italic
U+1D663	n	variable	small m mathematical sans-serif bold italic
U+1D664	0	variable	small n mathematical sans-serif bold italic
U+1D665	р	variable	small o mathematical sans-serif bold italic
U+1D666	q	variable	small p mathematical sans-serif bold italic
U+1D667	r	variable	small q mathematical sans-serif bold italic
U+1D668	S	variable	small r mathematical sans-serif bold italic
U+1D669	t	variable	small s mathematical sans-serif bold italic
U+1D66A	u	variable	small t mathematical sans-serif bold italic
U+1D66B	v	variable	small u mathematical sans-serif bold italic
			small v
U+1D66C	W	variable	mathematical sans-serif bold italic small w
U+1D66D	X	variable	mathematical sans-serif bold italic small x
U+1D66E	у	variable	mathematical sans-serif bold italic small y
U+1D66F	z	variable	mathematical sans-serif bold italic small z
U+1D670	А	variable	mathematical monospace capital a
U+1D671	В	variable	mathematical monospace capital b
U+1D672	С	variable	mathematical monospace capital c
U+1D673	D	variable	mathematical monospace capital d
U+1D674	E	variable	mathematical monospace capital e
U+1D675	F	variable	mathematical monospace capital f
U+1D676	G	variable	mathematical monospace capital g
U+1D677	Н	variable	mathematical monospace capital h
U+1D678	I	variable	mathematical monospace capital i
U+1D679	J	variable	mathematical monospace capital j
U+1D67A	ĸ	variable	mathematical monospace capital k
U+1D67B	L	variable	mathematical monospace capital l
U+1D67C	L M	variable	mathematical monospace capital m
0.100/C		variable	mathematical monospace capital III

U+1D67D	Ν		variable	mathematical monospace capital n
U+1D67E	0		variable	mathematical monospace capital o
U+1D67F	Ρ		variable	mathematical monospace capital p
U+1D680	Q		variable	mathematical monospace capital q
U+1D681	R		variable	mathematical monospace capital r
U+1D682	S		variable	mathematical monospace capital s
U+1D683	Т		variable	mathematical monospace capital t
U+1D684	U		variable	mathematical monospace capital u
U+1D685	V		variable	mathematical monospace capital v
U+1D686	W		variable	mathematical monospace capital w
U+1D687	Х		variable	mathematical monospace capital x
U+1D688	Y		variable	mathematical monospace capital y
U+1D689	Ζ		variable	mathematical monospace capital z
U+1D68A	а		variable	mathematical monospace small a
U+1D68B	b		variable	mathematical monospace small b
U+1D68C	С		variable	mathematical monospace small c
U+1D68D	d		variable	mathematical monospace small d
U+1D68E	е		variable	mathematical monospace small e
U+1D68F	f		variable	mathematical monospace small f
U+1D690	g		variable	mathematical monospace small g
U+1D691	h		variable	mathematical monospace small h
U+1D692	i		variable	mathematical monospace small i
U+1D693	j		variable	mathematical monospace small j
U+1D694	k		variable	mathematical monospace small k
U+1D695	1		variable	mathematical monospace small l
U+1D696	m		variable	mathematical monospace small m
U+1D697	n		variable	mathematical monospace small n
U+1D698	0		variable	mathematical monospace small o
U+1D699	р		variable	mathematical monospace small p
U+1D69A	q		variable	mathematical monospace small q
U+1D69B	r		variable	mathematical monospace small r
U+1D69C	S L		variable variable	mathematical monospace small s mathematical monospace small t
U+1D69D U+1D69E	t		variable	1
0+1D69E U+1D69F	u		variable	mathematical monospace small u mathematical monospace small v
U+1D69P U+1D6A0	V		variable	mathematical monospace small w
U+1D6A0	W		variable	mathematical monospace small x
U+1D6A1 U+1D6A2	X		variable	mathematical monospace small y
U+1D6A2	y z		variable	mathematical monospace small z
U+1D6A3	2 1	\imath	ordinary	mathematical italic small dotless i
U+1D6A5	-	\jmath	ordinary	mathematical italic small dotless j
U+1D6A5	ј <b>А</b>	\jma tri	variable	mathematical bold capital alpha
U+1D6A8	B		variable	mathematical bold capital appla
U+1D6A9	Б		variable	mathematical bold capital gamma
U+1D6AB	Δ		variable	mathematical bold capital gamma mathematical bold capital delta
U+1D6AC	E		variable	mathematical bold capital denta
	Z		variable	mathematical bold capital zeta
0 · 10 0AD	-		variable	maniemanical bola capital Deta

U+1D6AE	н	variable	mathematical bold capital eta
U+1D6AF	Θ	variable	mathematical bold capital theta
U+1D6B0	I	variable	mathematical bold capital iota
U+1D6B1	K	variable	mathematical bold capital kappa
U+1D6B2	Λ	variable	mathematical bold capital lamda
U+1D6B3	Μ	variable	mathematical bold capital mu
U+1D6B4	Ν	variable	mathematical bold capital nu
U+1D6B5	Ξ	variable	mathematical bold capital xi
U+1D6B6	0	variable	mathematical bold capital omicron
U+1D6B7	Π	variable	mathematical bold capital pi
U+1D6B8	Ρ	variable	mathematical bold capital rho
U+1D6B9	θ	variable	mathematical bold capital
			theta symbol
U+1D6BA	Σ	variable	mathematical bold capital sigma
U+1D6BB	Т	variable	mathematical bold capital tau
U+1D6BC	Y	variable	mathematical bold capital upsilon
U+1D6BD	Φ	variable	mathematical bold capital phi
U+1D6BE	X	variable	mathematical bold capital chi
U+1D6BF	Ψ	variable	mathematical bold capital psi
U+1D6C0	Ω	variable	mathematical bold capital omega
U+1D6C1	$\nabla$	differential	mathematical bold nabla
U+1D6C2	α	variable	mathematical bold small alpha
U+1D6C3	β	variable	mathematical bold small beta
U+1D6C4	γ	variable	mathematical bold small gamma
U+1D6C5	δ	variable	mathematical bold small delta
U+1D6C6	ε	variable	mathematical bold small epsilon
U+1D6C7	ζ	variable	mathematical bold small zeta
U+1D6C8	ŋ	variable	mathematical bold small eta
U+1D6C9	θ	variable	mathematical bold small theta
U+1D6CA	ι	variable	mathematical bold small iota
U+1D6CB	κ	variable	mathematical bold small kappa
U+1D6CC	λ	variable	mathematical bold small lamda
U+1D6CD	μ	variable	mathematical bold small mu
U+1D6CE	ν	variable	mathematical bold small nu
U+1D6CF	ξ	variable	mathematical bold small xi
U+1D6D0	0	variable	mathematical bold small omicron
U+1D6D1	π	variable	mathematical bold small pi
U+1D6D2	e	variable	mathematical bold small rho
U+1D6D3	S	variable	mathematical bold small final sigma
U+1D6D4	σ	variable	mathematical bold small sigma
U+1D6D5	τ	variable	mathematical bold small tau
U+1D6D6	υ	variable	mathematical bold small upsilon
U+1D6D7	φ	variable	mathematical bold small phi
U+1D6D8	x	variable	mathematical bold small chi
U+1D6D9	ψ	variable	mathematical bold small psi
U+1D6DA	ω	variable	mathematical bold small omega
U+1D6DB	9	differential	mathematical bold partial differen-
			L

U+1D6DC	e	
U+1D6DD	୫	
U+1D6DE	x	
U+1D6DF	ф	
U+1D6E0	Ş	
U+1D6E1	ω	
U+1D6E2	Α	
U+1D6E3	В	
U+1D6E4	Г	
U+1D6E5	Δ	
U+1D6E6	E	
U+1D6E7	Z	
U+1D6E8	H	
U+1D6E9	Θ	
U+1D6EA	Ι	
U+1D6EB	Κ	
U+1D6EC	Λ	
U+1D6ED	M	
U+1D6EE	N	
U+1D6EF	Ξ	
U+1D6F0	0	
U+1D6F1	П	
U+1D6F2	Р	
	θ	
U+1D6F3	0	
U+1D6F3	U	
U+1D6F3 U+1D6F4	Σ	
	-	
U+1D6F4	Σ	
U+1D6F4 U+1D6F5	$rac{\Sigma}{T}$	
U+1D6F4 U+1D6F5 U+1D6F6	$\Sigma$ T Y	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7	Σ Τ Υ Φ	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8	Σ Τ Υ Φ Χ	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8 U+1D6F9	Σ Τ Υ Φ Χ Ψ	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6FA	Σ Τ Υ Φ Χ Ψ	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6FA U+1D6FB	Σ Τ Υ Φ Χ Ψ Ω ∇	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6FA U+1D6FB U+1D6FC	Σ Τ Υ Φ Χ Ψ Ω ∇ α	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8 U+1D6F8 U+1D6FA U+1D6FB U+1D6FC U+1D6FD	Σ Τ Υ Φ Χ Ψ Ω ∇ α β	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6FA U+1D6FB U+1D6FC U+1D6FD U+1D6FE	$\Sigma$ T $\Upsilon$ $\Phi$ X $\Psi$ $\Omega$ $\nabla$ $\alpha$ $\beta$ $\gamma$	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8 U+1D6F8 U+1D6F8 U+1D6FB U+1D6FC U+1D6FE U+1D6FE	Σ Τ Υ Φ Χ Ψ Ω ∇ α β Υ δ ε	
U+1D6F4 U+1D6F5 U+1D6F6 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6F8 U+1D6FB U+1D6FC U+1D6FC U+1D6FF U+1D6FF U+1D700	Σ Τ Υ Φ Χ Ψ Ω ∇ α β Υ δ ε ζ	
U+1D6F4 U+1D6F5 U+1D6F7 U+1D6F7 U+1D6F8 U+1D6F8 U+1D6F8 U+1D6FB U+1D6FC U+1D6FE U+1D6FF U+1D700 U+1D701	Σ Τ Υ Φ Χ Ψ Ω ∇ α β Υ δ ε	
U+1D6F4 U+1D6F5 U+1D6F7 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6FA U+1D6FB U+1D6FC U+1D6FE U+1D6FF U+1D6FF U+1D700 U+1D701 U+1D702	Σ Τ Υ Φ Χ Ψ Ω ∇ α β Υ δ ε ζ η	
U+1D6F4 U+1D6F5 U+1D6F7 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6FA U+1D6FB U+1D6FC U+1D6FC U+1D6FF U+1D701 U+1D701 U+1D701 U+1D703 U+1D703 U+1D704	Σ Τ Υ Φ Χ Ψ Ω ∇ α β Υ δ ε ζ ηθι	
U+1D6F4 U+1D6F5 U+1D6F7 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6F8 U+1D6FB U+1D6FC U+1D6FC U+1D6FF U+1D700 U+1D701 U+1D701 U+1D703 U+1D704 U+1D705	Σ Τ Υ Φ Χ Ψ Ω ∇ α β Υ δ ε ζ η θ ι κ	
U+1D6F4 U+1D6F5 U+1D6F7 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6F8 U+1D6F8 U+1D6FC U+1D6FC U+1D6FF U+1D701 U+1D701 U+1D701 U+1D703 U+1D703 U+1D704 U+1D705 U+1D706	Σ Τ Υ Φ Χ Ψ Ω ∇ α β Υ δ ε ζ ηθι κ λ	
U+1D6F4 U+1D6F5 U+1D6F7 U+1D6F7 U+1D6F8 U+1D6F9 U+1D6F8 U+1D6FB U+1D6FC U+1D6FC U+1D6FF U+1D700 U+1D701 U+1D701 U+1D703 U+1D704 U+1D705	Σ Τ Υ Φ Χ Ψ Ω ∇ α β Υ δ ε ζ η θ ι κ	

tial

variable

variable

variable

variable

variable

variable

variable

variable variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable

variable variable

variable

variable variable

variable

variable

variable

variable

variable variable

mathematical bold epsilon symbol mathematical bold theta symbol mathematical bold kappa symbol mathematical bold phi symbol mathematical bold rho symbol mathematical bold pi symbol mathematical italic capital alpha mathematical italic capital beta mathematical italic capital gamma mathematical italic capital delta mathematical italic capital epsilon mathematical italic capital zeta mathematical italic capital eta mathematical italic capital theta mathematical italic capital iota mathematical italic capital kappa mathematical italic capital lamda mathematical italic capital mu mathematical italic capital nu mathematical italic capital xi mathematical italic capital omicron mathematical italic capital pi mathematical italic capital rho mathematical italic capital theta symbol mathematical italic capital sigma mathematical italic capital tau mathematical italic capital upsilon mathematical italic capital phi mathematical italic capital chi mathematical italic capital psi mathematical italic capital omega differential mathematical italic nabla mathematical italic small alpha mathematical italic small beta mathematical italic small gamma mathematical italic small delta mathematical italic small epsilon mathematical italic small zeta mathematical italic small eta mathematical italic small theta mathematical italic small iota mathematical italic small kappa mathematical italic small lamda mathematical italic small mu mathematical italic small nu

	۲		• 1 1	.1 1 1. 11 .
U+1D709	ξ		variable	mathematical italic small xi
U+1D70A	0		variable	mathematical italic small omicron
U+1D70B	$\pi$	\mathpiitalicshape	variable	mathematical italic small pi
U+1D70C	ρ		variable	mathematical italic small rho
U+1D70D	5		variable	mathematical italic small fi-
0110700	5		variable	
				nal sigma
U+1D70E	σ		variable	mathematical italic small sigma
U+1D70F	τ		variable	mathematical italic small tau
U+1D710	υ		variable	mathematical italic small upsilon
U+1D711	$\varphi$		variable	mathematical italic small phi
U+1D712	X		variable	mathematical italic small chi
U+1D713	$\psi$		variable	mathematical italic small psi
	•		variable	-
U+1D714	ω			mathematical italic small omega
U+1D715	9		differential	mathematical italic partial differen-
				tial
U+1D716	e		variable	mathematical italic epsilon symbol
U+1D717	θ	\vartheta	variable	mathematical italic theta symbol
U+1D718	х	\varkappa	variable	mathematical italic kappa symbol
U+1D719	$\phi$	(van kappa	variable	mathematical italic phi symbol
		A companying a		· ·
U+1D71A	ę	\varrho	variable	mathematical italic rho symbol
U+1D71B	ω		ordinary	mathematical italic pi symbol
U+1D71C	A		variable	mathematical bold italic capi-
				tal alpha
U+1D71D	B		variable	mathematical bold italic capital beta
U+1D71E	Г		variable	mathematical bold italic capi-
0.10,15	-		Variable	tal gamma
	Δ		maniahla	-
U+1D71F	Δ		variable	mathematical bold italic capi-
				tal delta
U+1D720	E		variable	mathematical bold italic capi-
				tal epsilon
U+1D721	$\boldsymbol{Z}$		variable	mathematical bold italic capital zeta
U+1D722	H		variable	mathematical bold italic capital eta
U+1D723	Θ		variable	mathematical bold italic capi-
0110725	U		variable	tal theta
1.10704	T			
U+1D724	I		variable	mathematical bold italic capital iota
U+1D725	K		variable	mathematical bold italic capi-
				tal kappa
U+1D726	Λ		variable	mathematical bold italic capi-
				tal lamda
U+1D727	M		variable	mathematical bold italic capital mu
U+1D728	N		variable	mathematical bold italic capital nu
U+1D720	Ξ		variable	mathematical bold italic capital xi
				-
U+1D72A	0		variable	mathematical bold italic capi-
				tal omicron
U+1D72B	Π		variable	mathematical bold italic capital pi
U+1D72C	P		variable	mathematical bold italic capital rho
U+1D72D	θ		variable	mathematical bold italic capital
				<b>r</b>

			theta symbol
U+1D72E	Σ	variable	mathematical bold italic capi-
•••••	-		tal sigma
U+1D72F	Τ	variable	mathematical bold italic capital tau
U+1D730	r	variable	mathematical bold italic capi-
			tal upsilon
U+1D731	$\Phi$	variable	mathematical bold italic capital phi
U+1D732	X	variable	mathematical bold italic capital chi
U+1D733	Ψ	variable	mathematical bold italic capital psi
U+1D734	Ω	variable	mathematical bold italic capi-
U+1D735	$\nabla$	differential	tal omega mathematical bold italic nabla
U+1D735	α α	variable	mathematical bold italic small alpha
U+1D737	β	variable	mathematical bold italic small beta
U+1D738	γ	variable	mathematical bold italic small
	,		gamma
U+1D739	δ	variable	mathematical bold italic small delta
U+1D73A	ε	variable	mathematical bold italic small
			epsilon
U+1D73B	ζ	variable	mathematical bold italic small zeta
U+1D73C	η	variable	mathematical bold italic small eta
U+1D73D	θ	variable	mathematical bold italic small theta
	ι	variable	mathematical bold italic small iota
U+1D73F	κ	variable	mathematical bold italic small kappa
U+1D740	λ	variable	mathematical bold italic small
0.10,10		variable	lamda
U+1D741	μ	variable	mathematical bold italic small mu
U+1D742	ν	variable	mathematical bold italic small nu
U+1D743	ξ.	variable	mathematical bold italic small xi
U+1D744	0	variable	mathematical bold italic small
			omicron
U+1D745	$\pi$	variable	mathematical bold italic small pi
U+1D746	ρ	variable	mathematical bold italic small rho
U+1D747	5	variable	mathematical bold italic small final sigma
U+1D748	σ	variable	mathematical bold italic small sigma
U+1D749	τ	variable	mathematical bold italic small tau
U+1D74A	υ	variable	mathematical bold italic small
			upsilon
U+1D74B	arphi	variable	mathematical bold italic small phi
U+1D74C	χ	variable	mathematical bold italic small chi
U+1D74D	$\psi$	variable	mathematical bold italic small psi
U+1D74E	ω	variable	mathematical bold italic small
	2	1.00	omega
U+1D74F	9	differential	mathematical bold italic par-
			tial differential

#### MATHEMATICAL ALPHANUMERIC SYMBOLS « UNICODE SYMBOLS

U+1D750	E	variable	mathematical bold italic ep- silon symbol
U+1D751	θ	variable	mathematical bold italic theta
U+1D752	×	variable	symbol mathematical bold italic kappa
U+1D753	4	variable	symbol mathematical bold italic phi symbol
U+1D753 U+1D754	<i>φ</i>	variable	mathematical bold italic rho symbol
U+1D755	९ ज्र	variable	mathematical bold italic pi symbol
U+1D755		variable	10
0+10/20	Α	variable	mathematical sans-serif bold capital
	<b>D</b>		alpha
U+1D757	В	variable	mathematical sans-serif bold capital
	-		beta
U+1D758	Г	variable	mathematical sans-serif bold capital
			gamma
U+1D759	Δ	variable	mathematical sans-serif bold capital
			delta
U+1D75A	E	variable	mathematical sans-serif bold capital
			epsilon
U+1D75B	Z	variable	mathematical sans-serif bold capital
			zeta
U+1D75C	н	variable	mathematical sans-serif bold capital
			eta
U+1D75D	Θ	variable	mathematical sans-serif bold capital
			theta
U+1D75E	1	variable	mathematical sans-serif bold capital
0.10,01		Variabie	iota
U+1D75F	K	variable	mathematical sans-serif bold capital
0110751	K	variable	kappa
U+1D760	٨	variable	mathematical sans-serif bold capital
0+10/00	Λ	vallable	-
11.10701	м		lamda
U+1D761	Μ	variable	mathematical sans-serif bold capital
			mu
U+1D762	Ν	variable	mathematical sans-serif bold capital
	_		nu
U+1D763	Ξ	variable	mathematical sans-serif bold capital
			xi
U+1D764	0	variable	mathematical sans-serif bold capital
			omicron
U+1D765	п	variable	mathematical sans-serif bold capital
			pi
U+1D766	Ρ	variable	mathematical sans-serif bold capital
			rho
U+1D767	θ	variable	mathematical sans-serif bold capital
			theta symbol
U+1D768	Σ	variable	mathematical sans-serif bold capital
			sigma
			0

U+1D769	т	variable	mathematical sans-serif bold capital tau
U+1D76A	Y	variable	mathematical sans-serif bold capital upsilon
U+1D76B	Φ	variable	mathematical sans-serif bold capital phi
U+1D76C	x	variable	mathematical sans-serif bold capital chi
U+1D76D	Ψ	variable	mathematical sans-serif bold capital
U+1D76E	Ω	variable	psi mathematical sans-serif bold capital
U+1D76F	V	differential	omega mathematical sans-serif bold nabla
U+1D770	α	variable	mathematical sans-serif bold small
			alpha
U+1D771	β	variable	mathematical sans-serif bold small
			beta
U+1D772	γ	variable	mathematical sans-serif bold small
U+1D773	δ	variable	gamma mathematical sans-serif bold small
0+10775	0	Vallaule	delta
U+1D774	٤	variable	mathematical sans-serif bold small
			epsilon
U+1D775	ζ	variable	mathematical sans-serif bold small zeta
U+1D776	η	variable	mathematical sans-serif bold small eta
U+1D777	θ	variable	mathematical sans-serif bold small theta
U+1D778	ι	variable	mathematical sans-serif bold small
			iota
U+1D779	к	variable	mathematical sans-serif bold small kappa
U+1D77A	λ	variable	mathematical sans-serif bold small lamda
U+1D77B	μ	variable	mathematical sans-serif bold small mu
U+1D77C	ν	variable	mathematical sans-serif bold small
			nu
U+1D77D	ξ	variable	mathematical sans-serif bold small xi
U+1D77E	ο	variable	mathematical sans-serif bold small omicron
U+1D77F	π	variable	mathematical sans-serif bold small pi
U+1D780	ρ	variable	mathematical sans-serif bold small rho

#### MATHEMATICAL ALPHANUMERIC SYMBOLS « UNICODE SYMBOLS

U+1D781	ς	variable	mathematical sans-serif bold small
U+1D782	σ	variable	final sigma mathematical sans-serif bold small
U+1D783	τ	variable	sigma mathematical sans-serif bold small
U+1D784	U	variable	tau mathematical sans-serif bold small
U+1D785	φ	variable	upsilon mathematical sans-serif bold small
0110703	Ψ	variable	phi
U+1D786	X	variable	mathematical sans-serif bold small chi
U+1D787	ψ	variable	mathematical sans-serif bold small psi
U+1D788	ω	variable	mathematical sans-serif bold small
U+1D789	6	differential	omega mathematical sans-serif bold partial
		• 1 1	differential
U+1D78A	E	variable	mathematical sans-serif bold epsilon symbol
U+1D78B	9	variable	mathematical sans-serif bold theta
			symbol
U+1D78C	x	variable	mathematical sans-serif bold kappa symbol
U+1D78D	φ	variable	mathematical sans-serif bold phi
			symbol
U+1D78E	ę	variable	mathematical sans-serif bold rho symbol
U+1D78F	ω	variable	mathematical sans-serif bold
U+1D790	A	variable	pi symbol mathematical sans-serif bold italic
			capital alpha
U+1D791	В	variable	mathematical sans-serif bold italic capital beta
U+1D792	Г	variable	mathematical sans-serif bold italic
U+1D793	Δ	variable	capital gamma mathematical sans-serif bold italic
0110755		variable	capital delta
U+1D794	Ε	variable	mathematical sans-serif bold italic
U+1D795	Ζ	variable	capital epsilon mathematical sans-serif bold italic
			capital zeta
U+1D796	Н	variable	mathematical sans-serif bold italic capital eta
U+1D797	Θ	variable	mathematical sans-serif bold italic
11.10700	,	waniak 1-	capital theta
U+1D798	I	variable	mathematical sans-serif bold italic

			capital iota
U+1D799	К	variable	mathematical sans-serif bold italic
U+1D79A	Λ	variable	capital kappa mathematical sans-serif bold italic
			capital lamda
U+1D79B	М	variable	mathematical sans-serif bold italic capital mu
U+1D79C	Ν	variable	mathematical sans-serif bold italic capital nu
U+1D79D	Ξ	variable	mathematical sans-serif bold italic capital xi
U+1D79E	0	variable	mathematical sans-serif bold italic capital omicron
U+1D79F	П	variable	mathematical sans-serif bold italic capital pi
U+1D7A0	Р	variable	mathematical sans-serif bold italic capital rho
U+1D7A1	θ	variable	mathematical sans-serif bold italic capital theta symbol
U+1D7A2	Σ	variable	mathematical sans-serif bold italic capital sigma
U+1D7A3	Т	variable	mathematical sans-serif bold italic
U+1D7A4	Y	variable	capital tau mathematical sans-serif bold italic
U+1D7A5	Φ	variable	capital upsilon mathematical sans-serif bold italic
1.10740	v		capital phi
U+1D7A6	X	variable	mathematical sans-serif bold italic capital chi
U+1D7A7	Ψ	variable	mathematical sans-serif bold italic capital psi
U+1D7A8	Ω	variable	mathematical sans-serif bold italic capital omega
U+1D7A9	7	differential	mathematical sans-serif bold italic nabla
U+1D7AA	α	variable	mathematical sans-serif bold italic
U+1D7AB	β	variable	small alpha mathematical sans-serif bold italic
U+1D7AC	Ŷ	variable	small beta mathematical sans-serif bold italic
U+1D7AD	δ	variable	small gamma mathematical sans-serif bold italic
U+1D7AE	c	variable	small delta mathematical sans-serif bold italic
UTID/AE	c	variaule	small epsilon
U+1D7AF	ζ	variable	mathematical sans-serif bold italic small zeta

U+1D7B0	η	variable	mathematical sans-serif bold italic small eta
U+1D7B1	θ	variable	mathematical sans-serif bold italic
U+1D7B2	ι	variable	small theta mathematical sans-serif bold italic
U+1D7B3	к	variable	small iota mathematical sans-serif bold italic
U+1D7B4	λ	variable	small kappa mathematical sans-serif bold italic
U+1D7B5		variable	small lamda mathematical sans-serif bold italic
0+10103	μ	vallable	small mu
U+1D7B6	ν	variable	mathematical sans-serif bold italic small nu
U+1D7B7	ξ	variable	mathematical sans-serif bold italic
		• 11	small xi
U+1D7B8	0	variable	mathematical sans-serif bold italic small omicron
U+1D7B9	π	variable	mathematical sans-serif bold italic
			small pi
U+1D7BA	ρ	variable	mathematical sans-serif bold italic small rho
U+1D7BB	ς	variable	mathematical sans-serif bold italic
0.10,00	`	variable	small final sigma
U+1D7BC	σ	variable	mathematical sans-serif bold italic
	_	moniahla	small sigma mathematical sans-serif bold italic
U+1D7BD	τ	variable	small tau
U+1D7BE	U	variable	mathematical sans-serif bold italic
			small upsilon
U+1D7BF	arphi	variable	mathematical sans-serif bold italic small phi
U+1D7C0	X	variable	mathematical sans-serif bold italic
U+1D7C1	ψ	variable	small chi mathematical sans-serif bold italic
••••••	r		small psi
U+1D7C2	ω	variable	mathematical sans-serif bold italic small omega
U+1D7C3	9	differential	mathematical sans-serif bold italic
1.15764	_		partial differential
U+1D7C4	e	variable	mathematical sans-serif bold italic epsilon symbol
U+1D7C5	9	variable	mathematical sans-serif bold italic
			theta symbol
U+1D7C6	×	variable	mathematical sans-serif bold italic
U+1D7C7	φ	variable	kappa symbol mathematical sans-serif bold italic
	•		

			phi symbol
U+1D7C8	ę	variable	mathematical sans-serif bold italic
	,		rho symbol
U+1D7C9	ធ	variable	mathematical sans-serif bold italic
			pi symbol
U+1D7CA	F	variable	mathematical bold capital digamma
	F	variable	mathematical bold small digamma
U+1D7CE	0	digit	mathematical bold digit zero
U+1D7CF	1	digit	mathematical bold digit one
U+1D7D0	2	digit	mathematical bold digit two
U+1D7D1		digit	mathematical bold digit three
U+1D7D2		digit	mathematical bold digit four
U+1D7D3		digit	mathematical bold digit five
U+1D7D4	6	digit	mathematical bold digit six
U+1D7D5	7	digit	mathematical bold digit seven
U+1D7D6	8	digit	mathematical bold digit eight
U+1D7D7		digit	mathematical bold digit nine
U+1D7D8	0	digit	mathematical double-struck digit
1.10700	1	11.14	zero
U+1D7D9	1	digit	mathematical double-struck digit
	0	diait	one mathematical dauble struck digit
U+1D7DA	2	digit	mathematical double-struck digit
	1	diait	two
U+1D7DB	3	digit	mathematical double-struck digit three
U+1D7DC	4	digit	
0+10/00	식	digit	mathematical double-struck digit four
U+1D7DD	5	digit	mathematical double-struck digit
0+10700	J	uigit	five
U+1D7DE	6	digit	mathematical double-struck digit six
U+1D7DE	7	digit	mathematical double-struck digit
0110701	1	uigit	seven
U+1D7E0	8	digit	mathematical double-struck digit
	-		eight
U+1D7E1	9	digit	mathematical double-struck digit
		C	nine
U+1D7E2	0	digit	mathematical sans-serif digit zero
U+1D7E3	1	digit	mathematical sans-serif digit one
U+1D7E4	2	digit	mathematical sans-serif digit two
U+1D7E5	3	digit	mathematical sans-serif digit three
U+1D7E6	4	digit	mathematical sans-serif digit four
U+1D7E7	5	digit	mathematical sans-serif digit five
U+1D7E8	6	digit	mathematical sans-serif digit six
U+1D7E9	7	digit	mathematical sans-serif digit seven
U+1D7EA	8	digit	mathematical sans-serif digit eight
U+1D7EB	9	digit	mathematical sans-serif digit nine
U+1D7EC	0	digit	mathematical sans-serif bold digit

			zero
U+1D7ED	1	digit	mathematical sans-serif bold digit
			one
U+1D7EE	2	digit	mathematical sans-serif bold digit
			two
U+1D7EF	3	digit	mathematical sans-serif bold digit
			three
U+1D7F0	4	digit	mathematical sans-serif bold digit
			four
U+1D7F1	5	digit	mathematical sans-serif bold digit
			five
U+1D7F2	6	digit	mathematical sans-serif bold digit
			six
U+1D7F3	7	digit	mathematical sans-serif bold digit
			seven
U+1D7F4	8	digit	mathematical sans-serif bold digit
			eight
U+1D7F5	9	digit	mathematical sans-serif bold digit
			nine
U+1D7F6	Θ	digit	mathematical monospace digit zero
U+1D7F7	1	digit	mathematical monospace digit one
U+1D7F8	2	digit	mathematical monospace digit two
U+1D7F9	3	digit	mathematical monospace digit three
U+1D7FA	4	digit	mathematical monospace digit four
U+1D7FB	5	digit	mathematical monospace digit five
U+1D7FC	6	digit	mathematical monospace digit six
U+1D7FD	7	digit	mathematical monospace
			digit seven
U+1D7FE	8	digit	mathematical monospace digit eight
U+1D7FF	9	digit	mathematical monospace digit nine

### **12.12 Letterlike Symbols**

U+02102	$\mathbb{C}$	\complexes	variable ordinary	double-struck capital c
U+02107	3	\Eulerconst	variable	euler constant
U+0210A	g	(Euror conse	variable	script small g
U+0210B	ъ Н		variable	script capital h
U+0210C	5		variable	black-letter capital h
U+0210D	~ H		variable	double-struck capital h
U+0210E	h	<b>\Planckconst</b>	variable	planck constant
U+0210F	ħ		variable	planck constant over two pi
		\hbar	variable	r i i i i i i i i i i i i i i i i i i i
		\hslash	variable	
U+02110	F		variable	script capital i
U+02111	J	\Im	variable	black-letter capital i
U+02112	$\mathscr{L}$		variable	script capital l
U+02113	l	\ell	variable	script small l

#### UNICODE SYMBOLS » MISCELLANEOUS TECHNICAL

U. 00115	NI	\		
U+02115	N	\naturalnumbers	variable	double-struck capital n
U+02118	$\wp$	/wp	variable	script capital p
U+02119	P	\primes	variable	double-struck capital p
U+0211A	Q	\rationals	variable	double-struck capital q
U+0211B	$\mathscr{R}$		variable	script capital r
U+0211C	R	\Re	variable	black-letter capital r
U+0211D	R	\reals	variable	double-struck capital r
U+02124	$\mathbb{Z}$	\integers	variable	double-struck capital z
U+02128	3		variable	black-letter capital z
U+02129	1	\turnediota	variable	turned greek small letter iota
U+0212C	${\mathscr B}$		variable	script capital b
U+0212D	C		variable	black-letter capital c
U+0212F	e		variable	script small e
U+02130	E		variable	script capital e
U+02131	${\mathcal F}$		variable	script capital f
U+02133	$\mathcal{M}$		variable	script capital m
U+02134	Л		variable	script small o
U+02135	х	\aleph	variable	alef symbol
U+02136	ב	\beth	variable	bet symbol
U+02137	ג	\gimel	variable	gimel symbol
U+02138	٦	\daleth	variable	dalet symbol
U+0213C	π		variable	double-struck small pi
U+0213D	V		variable	double-struck small gamma
U+0213E	Г		variable	double-struck capital gamma
U+0213F	Π		variable	double-struck capital pi
U+02140	$\Sigma$		variable	double-struck n-ary summation
U+02141	ē	\Game	variable	turned sans-serif capital g
U+02142	٦		variable	turned sans-serif capital l
U+02143	Г		variable	reversed sans-serif capital l
U+02144	Y		variable	turned sans-serif capital y
U+02145	D		variable	double-struck italic capital d
		\differentialD	differential	L
U+02146	đ		variable	double-struck italic small d
		\differentiald	differential	
U+02147	e		variable	double-struck italic small e
	-	\exponentiale	exponential	
U+02148	Ĩ	(	variable	double-struck italic small i
	2	∖imaginaryi	imaginary	
U+02149	ĵ	(	variable	double-struck italic small j
	J	∖imaginaryj	imaginary	sete set con traine sittain j
U+0214B	zz	\upand	binary	turned ampersand
0.02170	0	(aparta	onnar y	tarife amperound

### **12.13 Miscellaneous Technical**

ſ	\lceil	open	left ceiling
]	\rceil	close	right ceiling
L	\lfloor	open	left floor
]	\rfloor	close	right floor
	[ ] [ ]	\rceil   ∖lfloor	\rceil     close       \lfloor     open

	ſ			
U+02320			ordinary	top half integral
U+02321	J		ordinary	bottom half integral
U+0237C	≸		ordinary	right angle with downwards zigzag arrow
U+0239B	(		ordinary	left parenthesis upper hook
U+0239C			ordinary	left parenthesis extension
U+0239D	l		ordinary	left parenthesis lower hook
U+0239E	)		ordinary	right parenthesis upper hook
U+0239F			ordinary	right parenthesis extension
U+023A0	J		ordinary	right parenthesis lower hook
U+023A1	Γ		ordinary	left square bracket upper corner
U+023A2	I		ordinary	left square bracket extension
U+023A3	L		ordinary	left square bracket lower corner
U+023A4	]		ordinary	right square bracket upper corner
U+023A5	ļ		ordinary	right square bracket extension
U+023A6			ordinary	right square bracket lower corner
U+023A7	ſ		ordinary	left curly bracket upper hook
U+023A8	ł		ordinary	left curly bracket middle piece
U+023A9	l		ordinary	left curly bracket lower hook
U+023AA	I		ordinary	curly bracket extension
U+023AB	)		ordinary	right curly bracket upper hook
U+023AC	ł		ordinary	right curly bracket middle piece
U+023AD	J		ordinary	right curly bracket lower hook
U+023AE	I		ordinary	integral extension
U+023AF	-		ordinary	horizontal line extension
U+023B0	<b>}</b>	\lmoustache	open	upper left or lower right curly bracket section
U+023B1	ſ	\rmoustache	close	upper right or lower left curly bracket
	_			section
U+023B2	V.		ordinary	summation top
U+023B3	L		ordinary	summation bottom
U+023B4	-	\overbracket	topaccent	top square bracket
U+023B5	L J	\underbracket	botaccent	bottom square bracket
U+023B7	1		ordinary	radical symbol bottom vertical line extension
U+023D0 U+023DC	і О	\overparent	ordinary topaccent	top parenthesis
0+023DC U+023DD		\underparent	botaccent	bottom parenthesis
U+023DE	) ~	\overbrace	topaccent	top curly bracket
U+023DF	<b>~~</b>	\underbrace	botaccent	bottom curly bracket

U+023E0		topaccent	top tortoise shell bracket
U+023E1	<u> </u>	botaccent	bottom tortoise shell bracket
U+023E2		ordinary	white trapezium

## **13 Setups**

#### **13.1 Mathematics**

```
\definemathematics [ \begin{array}{c} 1 \\ \cdots \end{array} ] \begin{array}{c} [ \begin{array}{c} 2 \\ \cdots \end{array} ] \begin{array}{c} [ \begin{array}{c} 2 \\ \cdots \end{array} ] \begin{array}{c} [ \begin{array}{c} -1 \\ \cdots \end{array} ] \begin{array}{c} 3 \\ \cdots \end{array} ] \begin{array}{c} 3 \\ \cdots \end{array} ] 
1 NAME
2 NAME
3 inherits: \setupmathematics
\setupmathematics [\ldots, 1, \ldots, J] [\ldots, \ldots, 2^2, \ldots, \ldots]
1 NAME
2 openup
       openup
symbolset
functionstyle
                                                                 = yes <u>no</u>
                                                               = blackboard-to-bold mikaels-favourites NAME
                                                             = STYLE COMMAND
        compact
                                                             = yes <u>no</u>
        align
                                                             = <u>l2r</u> lefttoright r2l righttoleft

      align
      <td
                                                              = default NAME
        domain
                                                     = STYLE COMMAND
        textstyle
textcolor
        functioncolor = COLOR
integral = bori
                                                              = COLOR
                                                                = horizontal vertical auto autolimits limits nolimits
        integral
        stylealternative = NAME
       default= normal italiccollapsing= 0 1 2 3 default tex list all none resetkernpairs= yes no
       kernpairs=yes nomathconstants=italicuprightdifferentiald=italicuprightexponentiale=italicuprightimaginaryi=italicuprightimaginaryj=italicuprightoi=italicupright
       imaginaryi
imaginaryj
pi
                                                             = <u>italic</u>upright
                                                               = yes no
        snap
        snap
textdistance
                                                        = DIMENSION
= none small medium big DIMENSION
        threshold
                                                             = display text script scriptscript cramped uncramped normal
        mathstyle
                                                                     packed small big
                                                             = COLOR
        color
       autospacing = yes no
autonumbers = yes no
autofencing = yes no
= ves no
                                                          = yes no
= yes no NUMBER
                                                              = yes no
        hz
       hz = yes no
alignscripts = yes no always empty
interscriptfactor = NUMBER
autointervals = yes no
```

```
limitstretch = yes no
```

\mathematics [.1] {.2.} OPT 1 default i: default i: half i: tight i: fixed NAME 2 CONTENT

```
\im {...}
* CONTENT
```

```
\dm {...}
* CONTENT
```

#### 13.2 Displayed formulas

```
\startformula [....,*...] ... \stopformula
OPT
* packed tight middle depth line halfline -line -halfline frame small DIMENSION
```

\startnamedformula [.¹.] [...,²...] ... \stopnamedformula OPT

2 packed tight middle depth line halfline -line -halfline frame small DIMENSION

```
\startnamedformula [ \stackrel{1}{\ldots} ] \quad [ \dots, \stackrel{2}{\ldots} \stackrel{2}{=} \dots ] \dots \stopnamedformula
```

1 NAME

2 inherits: \setupformulas

```
\defineformula [ \begin{array}{c} 1 \\ \cdots \end{array} ] \begin{array}{c} \left[ \begin{array}{c} 2 \\ \cdots \end{array} \right] \begin{array}{c} \left[ \begin{array}{c} 2 \\ \cdots \end{array} \right] \begin{array}{c} \left[ \begin{array}{c} 1 \\ \cdots \end{array} \right] \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \end{array} \right] \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \end{array} 
1 NAME
```

- 2 NAME
- 3 inherits: \setupformulas

```
\setupformula [..., 1, ...] [..., ...]
```

- 1 NAME
- 2 inherits: \setupformulas

\setupformulas $[,] [,] =,]$						
1	NAME	1				
2	NAME location align split strut numberstrut left right spacebefore spaceafter spaceinbetween numbercommand numberstyle	<pre>= left <u>right</u> atleftmargin atrightmargin = left middle right flushleft flushright slanted = yes <u>no</u> line NAME = <u>yes</u> no = <u>yes</u> no always = COMMAND = COMMAND = none inherits: \blank = none inherits: \blank = inherits: \setupwhitespace = \#1 = STYLE COMMAND</pre>				
	numbercolor option	<ul> <li>COLOR</li> <li>packed tight middle depth line halfline -line -halfline frame small DIMENSION</li> </ul>				
	margin leftmargin rightmargin margindistance leftmargindistance rightmargidistance alternative indentnext grid referenceprefix numberthreshold order numberlocation numbermethod textmargin	<pre>= yes no standard DIMENSION = yes no standard DIMENSION = yes no standard DIMENSION = number DIMENSION = number DIMENSION = default single multi NAME = yes no auto = inherits: \snaptogrid = + - TEXT = DIMENSION = reverse = overlay = down = DIMENSION</pre>				
	penalties interlinespace	= NAME = DIMENSION				

textdistance	=	DIMENSION
splitmethod	=	first last both
setups	=	NAME
snap	=	yes <u>no</u>
snapstep	=	reset small <u>medium</u> big line
bodyfont	=	inherits: \setupbodyfont
style	=	STYLE COMMAND
color	=	COLOR
functionstyle	=	STYLE COMMAND
functioncolor	=	COLOR
width	=	DIMENSION
numberdistance	=	DIMENSION
inherits: \setupcounter		

```
\startplaceformula [..., ..] { ? ... } ... \stopplaceformula
1 title = TEXT
reference = + - REFERENCE
bookmark = TEXT
list = TEXT
suffix = TEXT
2 TEXT
```

 $\verb|placecurrentformulanumber||$ 

```
\formulanumber [...,*...]
* REFERENCE
```

#### **13.3** Inside displayed formulas

**\alignhere** 

\breakhere [.1] {.2] OPT OPT 1 left right before after page samepage 2 TEXT

**\texthere**  $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ 1 left right before after inbetween

2 CONTENT

#### **13.4 Subformulas**

\definesubformula [.1] [.2] [..,.3] ...] 1 NAME 2 NAME 3 inherits: \setupsubformula

\setupsubformulas 
$$[\dots, \uparrow, \dots]$$
  $[\dots, \dots, \stackrel{2}{=} \dots, \dots]$   
1 NAME  
2 indentnext = yes no auto

```
\startformulas [...,<sup>*</sup>,...] ... \stopformulas
OPT
* +-REFERENCE
```

\startnamedsubformulas [...,¹...] {²...} ... \stopnamedsubformulas
1 + - REFERENCE
2 TEXT

\startsubnumberinghere ... \stopsubnumberinghere

#### **13.5 Building blocks**

\definemathaccent [.1] [.2] [..,.3]...]
OPT OPT
I NAME
NAME
NAME
NAME
inherits: \setupmathaccent

\setupmathaccents			$\begin{bmatrix} \dots & 1 \\ \dots & \dots \end{bmatrix} \begin{bmatrix} \dots & \dots & 2 \\ \dots & \dots & \dots \end{bmatrix}$
1	NAME		001 001
2	mathstyle packed small big	=	display text script scriptscript cramped uncramped normal
	scale	=	yes <u>no</u> keep
	plugin	=	mp
	mp	=	NAME
	color	=	COLOR
	textcolor	=	COLOR
	symbolcolor	=	COLOR
	align	=	middle
	stretch	=	yes <u>no</u>
	shrink	=	yes <u>no</u>
	snap	=	yes
	alignsymbol	=	<u>yes</u> no
	offset	=	auto
	i	=	auto

\definemathalignment [...] [...] [...,.....] OPT 0PT 0PT

- 2 NAME
- 3 inherits: \setupmathalignment

\setupmathalignment		$[\ldots, \stackrel{1}{,} \ldots, ]  [\ldots, \ldots, \stackrel{2}{=} \ldots, \ldots]$	
1	NAME		
2	n	NUMBER	
	m	NUMBER	
	distance	DIMENSION	
	number	auto	
	numberdistance	DIMENSION	
	separator	= TEXT	
	align	<pre>e left middle right flushleft flushright normal auto NUMBER:lef</pre>	
		NUMBER:middle NUMBER:right NUMBER:flushleft NUMBER:flushrig	ht
	location	top center bottom left middle right packed <u>formula</u>	
	mathstyle	display text script scriptscript cramped uncramped normal	
		packed small big	
	textstyle	STYLE COMMAND	
	textstyle:NUMBER	STYLE COMMAND	
	textcolor	COLOR	
	textcolor:NUMBER	= COLOR	

#### SETUPS » BUILDING BLOCKS

text	=	TEXT
text:NUMBER	=	TEXT
fences	=	cases sesac tekcarb parenthesis bracket brace bar doublebar triplebar angle doubleangle solidus ceiling floor moustache uppercorner lowercorner group openbracket mirroredparenthesis mirroredbracket mirroredbrace mirroredbar mirroreddoublebar mirroredtriplebar mirroredangle mirroreddoubleangle mirroredsolidus mirroredceiling mirroredfloor mirroredmoustache mirroreduppercorner mirroredlowercorner mirroredgroup mirroredopenbracket interval openinterval closedinterval leftopeninterval rightopeninterval varopeninterval varleftopeninterval varrightopeninterval integerinterval tupanddownarrows tupdownarrows tdownuparrows tuparrow tdownarrow abs innerproduct integerpart norm set sequence tuple
adapative	=	yes <u>no</u>
spaceinbetween	=	inherits: \setupwhitespace
reference	=	+ - REFERENCE
suffix	=	TEXT
numberthreshold	=	DIMENSION

- 1 NAME
- 2 NAME
- 3 inherits: \setupmathsimplealign

١s	setupmathsimpleal	Lig	<b>n</b> $[\dots, \frac{1}{2}, \dots]$ $[\dots, \dots, \frac{2}{2}, \dots]$
1	NAME		
2	strut	=	<u>yes</u> no
	align	=	normal flushright left right flushleft middle NUMBER:normal
			NUMBER:flushright NUMBER:left
			NUMBER:right NUMBER:flushleft NUMBER:middle
	location	=	top bottom center middle left right packed formula
	distance	=	math DIMENSION
	spaceinbetween	=	inherits: \setupwhitespace
	leftmargin	=	DIMENSION
	rightmargin	=	DIMENSION
	left	=	COMMAND
	right	=	COMMAND
	fences	=	cases sesac tekcarb parenthesis bracket brace bar doublebar
			triplebar angle doubleangle solidus ceiling floor moustache
			uppercorner lowercorner group openbracket mirroredparenthesis
			mirroredbracket mirroredbrace mirroredbar mirroreddoublebar
			mirroredtriplebar mirroredangle mirroreddoubleangle
			mirroredsolidus mirroredceiling mirroredfloor mirroredmoustache
			mirroreduppercorner mirroredlowercorner mirroredgroup
			mirroredopenbracket interval openinterval closedinterval
			leftopeninterval rightopeninterval varopeninterval
			varleftopeninterval varrightopeninterval integerinterval
			tupanddownarrows tupdownarrows tdownuparrows tuparrow tdownarrow
			abs innerproduct integerpart norm set sequence tuple
	text	=	техт

```
textdistance= DIMENSIONalternative= equationsystemsimplecommand= NAME
```

```
\definebar [.<sup>1</sup>.] [.<sup>2</sup>.] [..,.<sup>3</sup>...]
OPT OPT
1 NAME
2 NAME
```

3 inherits: \setupbar

\setupbar		$[\ldots,\ldots]^2$
1 NAME	0PT	
2 color	=	COLOR
continue	=	yes <u>no</u> all always
empty	=	yes <u>no</u>
unit	=	<u>ex</u> em pt in cm mm sp bp pc dd cc nc
order	=	<u>foreground</u> background
rulethickno	ess =	DIMENSION
method	=	NUMBER
offset	=	NUMBER DIMENSION
height	=	DIMENSION
depth	=	DIMENSION
dy	=	NUMBER
max	=	NUMBER
foreground	style =	STYLE COMMAND
foreground	color =	COLOR
mp	=	NAME
left	=	TEXT
right	=	TEXT
repeat	=	yes <u>no</u>
text	=	TEXT

```
\definemathcases [.<sup>1</sup>.] [.<sup>2</sup>.] [...,.<sup>3</sup>=...]
OPT OPT OPT
```

- I NAME
- 2 NAME
- 3 inherits: \setupmathcases

\setupmathcases		$\begin{bmatrix} \dots & 1 \\ \dots & \dots \end{bmatrix}  \begin{bmatrix} \dots & \dots & 2 \\ \dots & \dots & \dots \end{bmatrix}$
1	NAME	
2	left right strut mathstyle	<ul> <li>COMMAND</li> <li>COMMAND</li> <li><u>yes</u> no</li> <li>display text script scriptscript cramped uncramped normal packed small big</li> </ul>
	distance numberdistance	= DIMENSION = DIMENSION

#### SETUPS » BUILDING BLOCKS

simplecommand	=	NAME
lefttext	=	TEXT
righttext	=	TEXT
leftmargin	=	DIMENSION
rightmargin	=	DIMENSION
fences	=	cases sesac tekcarb parenthesis bracket brace bar doublebar
		triplebar angle doubleangle solidus ceiling floor moustache
		uppercorner lowercorner group openbracket mirroredparenthesis
		mirroredbracket mirroredbrace mirroredbar mirroreddoublebar
		mirroredtriplebar mirroredangle mirroreddoubleangle
		mirroredsolidus mirroredceiling mirroredfloor mirroredmoustache
		mirroreduppercorner mirroredlowercorner mirroredgroup
		mirroredopenbracket interval openinterval closedinterval
		leftopeninterval rightopeninterval varopeninterval
		varleftopeninterval varrightopeninterval integerinterval
		tupanddownarrows tupdownarrows tdownuparrows tuparrow tdownarrow
		abs innerproduct integerpart norm set sequence tuple
spaceinbetween	=	inherits: \setupwhitespace

## \definemathcommand $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} 3 \\ \cdots \end{bmatrix} \{ \frac{4}{\cdots} \}$

- 1 NAME
- 2 all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation
- 3 one
- 4 \...#1

# \definemathcommand $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \{ \frac{3}{\cdots} \}$

- 1 NAME
- 2 all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation
- 3 COMMAND

## \definemathcommand $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} 3 \\ \cdots \end{bmatrix} \{ \cdots \}$

- 1 NAME
- 2 all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation
- 3 two
- 4 \...#1#2

```
\definemathcommand [ \stackrel{1}{\ldots} ] \quad [ \stackrel{2}{\ldots} ] \quad [ \stackrel{3}{\ldots} ] \quad \{ \stackrel{4}{\ldots} \}
```

- 1 NAME
- 2 all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation
- 3 all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation

4 COMMAND

\definemathfence 
$$[ \begin{array}{c} 1 \\ \cdots \end{array} ] \begin{bmatrix} 2 \\ \cdots \end{array} ] \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

- 1 NAME
- 2 NAME
- 3 inherits: \setupmathfences

```
\setupmathfence [\dots, 1, \dots] [\dots, 2^2, \dots]
1 NAME
```

```
2 inherits: \setupmathfences
```

\setupmathfences		$\begin{bmatrix} \dots & 1 \\ \dots & \dots \end{bmatrix} \begin{bmatrix} \dots & \dots & 2 \\ \dots & \dots & \dots \end{bmatrix}$
1	NAME	
1 2	NAME define left middle right mathstyle color leftcolor middlecolor rightcolor symbolcolor state method size factor overflow mathclass	<ul> <li>yes <u>no</u></li> <li>NUMBER</li> <li>NUMBER</li> <li>NUMBER</li> <li>display text script scriptscript cramped uncramped normal packed small big</li> <li>COLOR</li> <li>COLOR</li> <li>COLOR</li> <li>COLOR</li> <li>COLOR</li> <li>COLOR</li> <li>COLOR</li> <li>auto</li> <li>auto</li> <li>big Big bigg Bigg NUMBER</li> <li>none auto NUMBER</li> <li>non auto</li> <li>all begin end unset ordinary operator binary relation open close</li> </ul>
		punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit

	di	vision factorial wrapped construct dimension unary
	te	extpunctuation unspaced experimental
	fa	ke numbergroup continuation
height	= D]	MENSION
depth	= D]	MENSION
plugin	= mp	
mp	= NA	ME
displayfactor	= NL	IMBER
inlinefactor	= NL	IMBER
mathmeaning	= TE	XT
topspace	= D]	MENSION
bottomspace	= D]	MENSION
snap	= ye	es no
alternative	= sn	nall big
setups	= NA	ME
source	= NU	IMBER
leftsource	= NU	IMBER
middlesource	= NU	IMBER
rightsource	= NU	IMBER
leftstyle	= S1	YLE COMMAND
rightstyle	= S1	YLE COMMAND
leftclass	= NL	IMBER
middleclass	= NL	IMBER
rightclass	= NL	IMBER
distance	= D]	MENSION
text	= ye	es no

- 1 NAME
- 2 NAME
- 3 inherits: \setupmathframed

\setupmathframed  $[\dots, 1, \dots]$   $[\dots, 2^2, \dots]$ NAME 2 inherits: \setupframed

\definemathfraction [.¹.] [.².] [..,..³=..,..] OPT OPT 1 NAME 2 NAME

3 inherits: \setupmathfraction

\setupmathfractions [..., 1, ...] [..., 2] OPT [..., 2] 1 NAME 2 topdistance = DIMENSION bottomdistance = DIMENSION

margin	=	DIMENSION
color	=	COLOR
textcolor	=	COLOR
symbolcolor	=	COLOR
topcolor	=	COLOR
bottomcolor	=	COLOR
strut	=	<u>yes</u> no tight text math
alternative	=	<u>inner</u> outer both
rule	=	yes no <u>auto</u> hidden symbol
left	=	NUMBER
right	=	NUMBER
middle	=	NUMBER
symbol	=	NUMBER
rulethickness	=	font DIMENSION
mathstyle	=	STYLE COMMAND
mathnumeratorstyle	=	STYLE COMMAND
mathdenominatorstyle	=	STYLE COMMAND
distance	=	no <u>none</u> top bottom both overlay <b>DIMENSION</b>
threshold	=	DIMENSION
inlinethreshold	=	auto NUMBER
displaythreshold	=	auto NUMBER
fences	=	
mathmeaning	=	binom limits
mathclass	=	all begin end unset ordinary operator binary relation open
		close punctuation variable active inner under over fraction
		radical middle prime accent fenced ghost vcenter explicit
		imaginary differential exponential integral ellipsis
		function digit division factorial wrapped construct
		dimension unary textpunctuation unspaced experimental
		fake numbergroup continuation
hfactor	=	NUMBER
method	=	horizontal <u>vertical</u> line
plugin	=	mp
mp	=	NAME
vfactor	=	NUMBER
source	=	NAME
topalign	=	left right middle flushleft
		flushright split:flushleft split:flushright
bottomalign	=	left right middle flushleft
		flushright split:flushleft split:flushright

\setupmathfraction  $[\ldots, 1, \ldots]$   $[\ldots, 2, \ldots]$ 

- 1 NAME
- 2 inherits: \setupmathfractions

3 inherits: \setupmathfunctions

\setupmathfunctions $[\ldots, 1, \ldots]$ $[\ldots, \ldots]^2 = \ldots, \ldots]$						
1	NAME	UPI				
2	color style class	<ul> <li>COLOR</li> <li>STYLE COMMAND</li> <li>all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation</li> </ul>				
	left right mathlimits method command	<pre>= COMMAND = COMMAND = yes no auto = limits = \#1</pre>				

```
\mfunction [\dots, \dots, \frac{1}{2}, \dots, \dots] = [\dots, \frac{2}{0^{\text{PT}}}

1 inherits: \setupmathfunctions
```

- 2 NAME

\definemathmatrix 
$$[.1] [.2] [..., ..3] [..., ..]$$

- 2 NAME
- 3 inherits: \setupmathmatrix

\setupmathmatrix		$\dots, \stackrel{1}{,} \dots \stackrel{1}{,} [\dots, \dots \stackrel{2}{=} \dots, \dots]$	
1	NAME	OPT	
2	left	COMMAND	
	right	COMMAND	
	strut	yes no NUMBER	
	align	left <u>middle</u> right flushleft flushright normal auto NUMBER:left	
		NUMBER:middle NUMBER:right NUMBER:flushleft NUMBER:flushright	
	mathstyle	display text script scriptscript cramped uncramped normal	
		packed small big	
	distance	DIMENSION	
	simplecommand	TEXT	
	location	top bottom high low lohi center <u>normal</u>	
rulethickness rulecolor		DIMENSION	
		COLOR	
	moffset	DIMENSION	
	toffset	DIMENSION	
	boffset	DIMENSION	
	leftmargin	DIMENSION	
	rightmargin	DIMENSION	
	fences	cases sesac tekcarb parenthesis bracket brace bar doublebar	
		triplebar angle doubleangle solidus ceiling floor moustache	
		uppercorner lowercorner group openbracket mirroredparenthesis	

	mirroredbracket mirroredbrace mirroredbar mirroreddoublebar mirroredtriplebar mirroredangle mirroreddoubleangle mirroredsolidus mirroredceiling mirroredfloor mirroredmoustache mirroreduppercorner mirroredlowercorner mirroredgroup mirroredopenbracket interval openinterval closedinterval
	leftopeninterval rightopeninterval varopeninterval
	varleftopeninterval varrightopeninterval integerinterval
	tupanddownarrows tupdownarrows tdownuparrows tuparrow tdownarrow
	abs innerproduct integerpart norm set sequence tuple
leftedge	= none DIMENSION
rightedge	= none DIMENSION

- 1 NAME
- 2 NAME
- 3 inherits: \setupmathnesting

- 1 NAME
- 2 NAME
- 3 inherits: \setupmathoperators

symbolcolor

```
\setupmathoperators [\dots, 1, \dots] [\dots, 2^2, \dots]
1 NAME
```

2 mathclass = all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation

Symbolcolor	=	COLOR
method	=	horizontal vertical auto autolimits limits nolimits
size	=	auto DIMENSION
top	=	TEXT
topcolor	=	COLOR
bottom	=	TEXT
bottomcolor	=	COLOR
textcolor	=	COLOR
color	=	COLOR
numbercolor	=	COLOR
left	=	NUMBER

\definemathstackers  $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \text{PT} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \text{PT} \end{bmatrix}$ 

- 1 NAME
- 2 NAME
- 3 inherits: \setupmathstackers

∖s	\setupmathstackers $[\dots, 1, \dots]$ $[\dots, 2^2, \dots]$						
1	NAME						
2	left right	=	COMMAND COMMAND				
	topcommand bottomcommand middlecommand	= =	\#1 \#1				
	topstyle bottomstyle middlestyle	= =	STYLE COMMAND STYLE COMMAND STYLE COMMAND				
	topcolor bottomcolor middlecolor	=	COLOR COLOR COLOR				
	plugin mp mpheight	=	NAME DIMENSION				
	mpdepth mpoffset color	=	DIMENSION DIMENSION COLOR				
	symbolcolor topoffset hoffset	=	COLOR DIMENSION DIMENSION				
	voffset minheight mindepth	=	DIMENSION DIMENSION DIMENSION				
	mathclass		all begin end unset ordinary operator binary relation open close punctuation variable active inner under over fraction radical middle prime accent fenced ghost vcenter explicit imaginary differential exponential integral ellipsis function digit division factorial wrapped construct dimension unary textpunctuation unspaced experimental fake numbergroup continuation				
	offset location	= =	min max <u>normal</u> <u>top</u> bottom high low middle NUMBER				
	strut alternative	=	normal default mp				
	minwidth distance order	= = =	DIMENSION normal reverse				
	mathlimits lt rt	= =	yes <u>no</u> DIMENSION DIMENSION DIMENSION				
	lb rb shrink stretch	= =	DIMENSION DIMENSION yes no				
	stretch sample		yes no NUMBER				

\definemathdouble [.¹.] [..., ²=..., ] [.³.] [.⁴.] [.⁵.]
1 both vfenced NAME
2 inherits: \setupmathstackers
3 NAME

- 4 NUMBER
- . ..........
- 5 NUMBER

\definemathunder  $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} 3 \\ \cdots \end{bmatrix}$ 

- 1 bottom vfenced NAME
- 2 NAME
- 3 NUMBER

\definemathover  $\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} 3 \\ \cdots \end{bmatrix}$ 

- 1 top vfenced NAME
- 2 NAME
- 3 NUMBER

3 inherits: \setupmathradical

```
\setupmathradical [\ldots, 1, \ldots] [\ldots, \ldots]^2 = \ldots, \ldots]
                                           0PT
1 NAME
2 color
                            = COLOR
    color = COLOR
textcolor = COLOR
    numbercolor = COLOR
symbolcolor = COLOR
plugin = mp
mp
                               = NAME
     mp
     left
                              = NUMBER
                           = NUMBER
= NUMBER
     right
     top
                            = TEXT
     n
    n = TEXT

height = none DIMENSION

depth = none DIMENSION

mindepth = DIMENSION

leftmargin = DIMENSION

rightmargin = DIMENSION

rule = yes no symbol bottom
                  = yesn
= NAME
     source
```

mathstyle	= display text script scriptscript cramped uncramped normal
strut	<pre>packed small big = yes no height depth math</pre>

#### 13.6 Not really math

```
\defineenumeration \begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\
 1 NAME
2 NAME
3 inherits: \setupenumeration
 \setupenumeration [\ldots, 1, \ldots] [\ldots, \ldots]^2 = \ldots, \ldots]
 1 NAME
2 title
                                                                                                                                                                                                                                                    = yes <u>no</u>
                           number=yesnonumbercommand=\...#1numberstyle=STYLE COMMANDnumbercolor=COLORtitledistance=DIMENSIONtitlestyle=STYLE COMMANDtitlecolor=COLORtitlecolor=COLORtitlecommand=\...#1titleleft=COMMANDtitleright=COMMANDleft=COMMANDsymbol=COMMANDstarter=COMMANDstopper=COMMANDcoupling=NAME
                                 number
                                                                                                                                                                                                                                              = <u>yes</u> no
                                                                                                                                                                                                                                       = NAME
                                   coupling
                                                                                                                                                                                                                                              = NAME
                                   counter
                                 define
                                                                                                                                                                                                                                        = <u>yes</u> no
                                 level
                                                                                                                                                                                                                                        = NUMBER
                                                                                                                                                                                                                                          = TEXT
                                   text
                                 headcommand
                                                                                                                                                                                                                                   = \...#1
                                 before
                                                                                                                                                                                                                                       = COMMAND
                                 after
                                                                                                                                                                                                                                          = COMMAND
                                 inbetween
                                                                                                                                                                                                                                          = COMMAND
                                 inbetween
alternative
                                                                                                                                                                                                                                        = left right inmargin inleft inright margin leftmargin rightmargin
                                                                                                                                                                                                                                                                                 innermargin outermargin serried hanging top empty command NAME
                                                                                                                                                                                                                                       = inherits: \setupalign
                                 align
                                headalign
indenting
                                                                                                                                                                                                                              = inherits: \setupalign
                                                                                                                                                                                                                                     = inherits: \setupindenting
                                 display
                                                                                                                                                                                                                                          = <u>yes</u> no
                                 indentnext
                                                                                                                                                                                                                                     = yes no auto
                                                                                                                                                                                                                                          = fit broad line DIMENSION
                                 width
                                   distance
                                                                                                                                                                                                                                   = none DIMENSION
                                   stretch
                                                                                                                                                                                                                                     = NUMBER
                                   shrink
                                                                                                                                                                                                                                     = NUMBER
                                                                                                                                                                                                                                        = fit broad none margin NUMBER
                                   hang
                                 closesymbol
                                                                                                                                                                                                                                       = COMMAND
                                   closesymbol = COMMAN
closecommand = \...#1
```

expansion	=	yes <u>no</u> xml
referenceprefix	=	+ - TEXT
sample	=	TEXT
margin	=	yes no standard DIMENSION
style	=	STYLE COMMAND
color	=	COLOR
headstyle	=	STYLE COMMAND
headcolor	=	COLOR
aligntitle	=	<u>yes</u> no
headindenting	=	yes <u>no</u>
inherits: \setupcoun	ter	

\definereferenceformat 
$$\begin{bmatrix} 1 \\ \cdots \end{bmatrix} \begin{bmatrix} 2 \\ \cdots \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \cdots \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- 1 NAME
- 2 NAME
- 3 inherits: \setupreferenceformat

```
\setupreferenceformat [...1,...] [...,.2]....]
1 NAME
2 label = * NAME
left = COMMAND
right = COMMAND
type = default text title number page realpage
setups = NAME
autocase = yes no
text = TEXT
style = STYLE COMMAND
color = COLOR
```

\definesymbol [.¹.] [.².] [.³.] 1 NAME 2 NAME

3 COMMAND

\defineconversionset [.1] [...,2] [.3]
I NAME SECTIONBLOCK:NAME
NAME PROCESSOR->NAME
NAME PROCESSOR->NAME

```
\defineseparatorset [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ]
```

- **1** NAME SECTIONBLOCK:NAME
- 2 COMMAND PROCESSOR->COMMAND
- 3 COMMAND PROCESSOR->COMMAND

# **Bibliography**

[CBB54] T.W. Chaundy, P.R. Barrett, and C. Batey, *The printing of mathematics: Aids for authors and editors and rules for compositors and readers at the University Press, Oxford* (Oxford University Press, London, 1954).

[DH21] M.J. Downes and M. Høgholm, *The breqn package*, https://ctan.org/pkg /breqn (2021).

[Hag16] H. Hagen, *Still going on*, http://www.pragma-ade.com/general/manuals/still.pdf (2016).

[Hag17] H. Hagen, *MetaFun. Context mkiv*, https://www.pragma-ade.com /general/manuals/metafun-p.pdf (2017).

[Hag18] H. Hagen, *Math*, http://www .pragma-ade.com/general/manuals/math -mkiv.pdf (2018).

[Knu99] D.E. Knuth, *Digital typography*, Vol. 78, p.. xvi+685 (CSLI Publications, Stanford, CA, 1999).

[Lan61] W.N. Lansburgh, *Almqvist & Wiksells sättningsregler* (Almqvist & Wiksell, Stockholm, Göteborg, Uppsala, 1961).

[LS17] M. Letourneau and J.W. Sharp, *AMS Style Guide*, https://www.ams.org /publications/authors/mit-2.pdf (2017).

[Mah99] A. Mahajan, *Using* *startalign and friends* (*MyWay*), https://wiki .contextgarden.net/images/b/b4/Mathalign .pdf (2006/2010).

[Mad11] L. Madsen, *Introduktion till La-TeX: noget for alle*, https://data.math.au .dk/latex/bog/version3/beta/ltxb-2011-09 -13-20-10.pdf (2011).

[Swa99] E. Swanson, *Mathematics into Type*, https://www.ams.org/publications /authors/mit-2.pdf (1999).

[Uni17] University of Chicago Press, *The Chicago manual of style*, 17 ed. (University of Chicago Press, Chicago, IL, 2017).

[SS98] P.N. de Souza and J.-N. Silva, *Berkeley problems in mathematics*, p.. xiv+443 (Springer-Verlag, New York, 1998).

[Wei80] J. Weidmann, *Linear operators in Hilbert spaces*, Vol. 68, p. xiii+402 (Springer-Verlag, New York-Berlin, 1980).

[Wil95] A. Wiles, Modular elliptic curves and Fermat's last theorem, *Ann. of Math.* (2) **141**(3), 443–551 (1995).

## Index

#### a

accents 37 keywords 67 setups 274 accessibility 191 aligning chain formulas 131 multiple formulas 134 with alignments 136 with brace 135 alignments 136 cases keywords 75 setups 276 keywords 69 matrices 56 keywords 100 setups 281 setups 274 simple 136 keywords 109 setups 275 alphabets 23 styles 23 antykwa font setup 167 antykwa-cond font setup 169 antykwa-light font setup 168 Asymptote 157

#### b

bars 207 setups 276 big operators 46 binomial coefficients 53 blackboard bold alphabet 23 bold math 25 bonum font setup 170 braces 29 brackets 29

#### С

calligraphic alphabet 23 replace 165 cambria font setup 171 cases keywords 75 setups 276 chain formulas 131 chancery alphabet 23 concrete font setup 172 continued fractions 54 counters setups 286

#### d

dejavu font setup 173 delimiters 29 keywords 78 setups 278 dictionaries 192 displayed formulas 11, 129 chain 131 keywords 82 multiple 133 setups 270 simple 129 types of 129 doublestruck bold alphabet 23 drawing diagrams 160 geometry 159 graphs 157

### e

ebgaramond font setup 174 enunciations AMS style 149 Chicago style 155 enumerations setup 285 equations labels 139 setups 286 referring to 139 equationsystems 203 erewhon font setup 175

#### f

factorials 62

fences 29 keywords 78 setups 278 fonts 165 fractions 50 continued 54 90 keywords setups 279 slashing 125 split 55 fraktur alphabet 23 framed formulas 206 setups 279 functions 25 keywords 95 setups 280

#### g

Greek alphabet 24

#### i,

inline formulas 11, 119
instances 67
integrals 46
keywords 105
placement of limits 47
italic alphabet 23
iwona font setup 176
iwona-light font setup 177

#### k

keywords 67 koeieletters font setup 178 kpfonts font setup 179 kurier font setup 180 kurier-light font setup 181

#### I

libertinus font setup 182 line breaking 119 lucida font setup 183

#### m

mathematics converted to text 193 framed 206 keywords 96

setups 269 mathfonts 165 antykwa 167 antykwa-cond 169 antykwa-light 168 bonum 170 cambria 171 concrete 172 dejavu 173 ebgaramond 174 erewhon 175 iwona 176 iwona-light 177 koeieletters 178 kpfonts 179 kurier 180 kurier-light 181 libertinus 182 lucida 183 modern 184 pagella 185 schola 186 stixtwo 187 termes 188 xcharter 189 matrices 56 keywords 100 manipulating 201 setups 281 mechanisms 67 MetaFun 157 modern font setup 184 multiple formulas 133 multiscripts 34

#### n

non-alphabetic symbols 25 numbering one equation 139 several lines 139 several equations 140 subequations 142

#### 0

operators 46 keywords 105 setups 282

#### р

pagella font setup 185 paragraphs and math 119 parentheses 29 polynomial long division 204 primes 36 profiling lines 124 punctuation in formulas 63

#### r

radicals 48 keywords 106 setups 284 referring to equations 139 setups 286 roundhand alphabet 23

#### S

sans alphabet 23 schola font setup 186 script alphabet 23 replace 165 scripts multiscripts 34 serif alphabet 23 simple alignments keywords 109 setups 275 simple formulas 129 slashing fractions 125 splitfractions 55 square roots 48 keywords 106 setups 284 stackers 40 keywords 113 setups 282 stixtwo font setup 187 subequations labels 142 subscripts 33 superscripts 33 symbols 25 systems of equations 203

#### t

tagged pdf 191 tensors 34 termes font setup 188 text in formulas 65 theorems 149 enumerations setup 285 TikZ 157 typewriter alphabet 23

#### u

unicode symbols list 209

#### X

xcharter font setup 189