
19

20

21

22

23

24

ontarget
luametatex & context lmtx

1

2

Table of contents

1 Introduction 4

2 Eventually 1.0 6

3 A new unit: dk 12

4 Anchoring 14

5 A different approach to math spacing 18

6 The binary 50

7 To the point 52

8 Not all makes sense 64

9 But this does 70

10 The curious case of \over 72

11 Getting rid of jit 74

12 Issues in math fonts 76

13 Gaining performance 90

14 LMTX on a phone 94

15 Running green 96

16 Supporting math in the JMN collection 100

17 Profiles 104

18 Pushing the envelope 112

19 Dealing with math fonts 130

20 Constants 146

21 Active characters 150

22 Accuracy 154

23 Characters in math 158

24 Standardizing math fonts 162

25 Somewhat radical 172

26 Between bars 176

3

Introduction 4

1 Introduction

This is the seventh wrapup of the LuaTEX and LuaMetaTEX development cycle. It is dedicated to all those
users who kept up with developments and are always willing to test the new features. Without them a project
like this would not be possible.

At the time this introduction is written the LuaMetaTEX code base is rather stable and quite a bit of the MkIV
code base has been adapted to new situation. But, as usual, there are always new possibilities to explore, so
I expect that this document will grow over time as did the others. I'm not going to repeat all that has been
done because that's what the previous episodes are about.

As the title suggest, we're still on target. When the LuaMetaTEX project started there actually was no deadline
formulated so in fact we're always on target. The core components TEX, MetaPost, and Lua are all long term
efforts so we're in no hurry at all. However, this is the year that a fast pace will become a slow pace with
respect to the LuaMetaTEX code base. There are still some things on the agenda but in principle the goals
are reached. One problem in today's code development is that useability and quality seems to relate to the
amount of changes in code. No update can mean old, unusable and uninteresting. It's probably why some
sources get this silly yearly copyright year update. However, the update cycle of good old TEX has an decade
interval by now while it is still a pretty useable program. It would be nice to end up in such a long term cycle
with LuaMetaTEX: bug fixes only.

Although ConTEXt has always adapted early to new developments (color, graphics, pdf, MetaPost, �� -TEX,
pdfTEX, LuaTEX, utf, fonts) the effects on the ConTEXt code base are mostly hidden for users. There have
been some changes between MkII and MkIV, simply because there has been a shift from specific eight bit
encodings to utf and Type1 to OpenType fonts. Both had an impact on important subsystems: input en
codings, font definitions and features, language and script support. On other subsystems the impact was
hardly noticeable, like for instance backend related features (these have always been kind of abstract). That
doesn't mean that these haven't changed deep down, they definitely have. Some mechanisms became better
in MkIV, simply because less hackery was needed. My experience is that when users see that it gets better or
easier, they are also willing to adapt the few lines in their document source that benefit from it. Of course the
impact on the MetaPost integration in ConTEXt had a real large impact, especially in terms of performance.

The upgrade to LMTX, the version of ConTEXt for LuaMetaTEX, is even less visible although already some
new mechanisms showed up. This time a couple of engine specific features have been improved and made
more flexible. In fact, the whole code base of the engine has been overhauled. This happened stepwise
because we had to make sure all things kept working. As a first step code was made independent of the
compilation infrastructure and the dependencies, other than a very few small ones, have been removed.
The result is a rather lean and mean setup, even when we consider what has been added at the primitive
level and traditional subsystems. A benefit is that in the meantime the LuaMetaTEX LMTX combination
outperforms LuaTEX with MkIV, something that was not ensured when the built-in pdf backend was removed
and delegated to Lua. By binding development closely to ConTEXt we also hope that the code base stays clean
of arbitrary extensions.

Because in the end, TEX is also a programming language, there have been extensions that make program
ming easier. There is already a stable middle layer of auxiliary macros in ConTEXt that help the user who
likes to program but doesn't like real low level primitives and dirty tricks, but by extending the primitive
repertoire a bit users can now stay closer to the original TEX concepts. Adding more and more layers of
indirectness makes no sense if we can improve the bottom programming layer. It also makes coding a bit
more natural (the TEX look), apart from offering performance benefits. This is where you can see differ
ences between the MkIV and LMTX code base which for that reason is now nearly split completely. The

5 Introduction

MetaPost subsystem has been extended with proper scanners so that we can enhance the interfaces in a
natural way and as a result we also have an upgraded code base there. We also moved to Lua5.4 and will
keep up as long as compatibility is no issue. Some Lua code is likely to remain common between MkIV and
LMTX, for instance font handling and helpers but we'll see where that ends.

The LuaMetaTEX engine provides control over most internals and there are all kind of new interesting fea
tures. Decades of ConTEXt development are behind that. Also, in the days that there were discussions about
extending TEX, ConTEXt was not that much of influence and on the road to and from user group meetings,
Taco and I often discussed what we'd like to see added (and some was actually implemented in eetex but
that only lived on our machines. One can consider LuaTEX to be a follow up on that, and LuaMetaTEX in turn
follows up on that project, which we both liked doing a lot. In some way LuaTEX lowered the boundary for
implementing some of the more intrusive extensions in LuaMetaTEX and the follow up on mplib. And once
you start along that road small steps become large steps and one can as well be try to be as complete as pos
sible. We've come a long way but eventually arrived at the destination. Personally I think we got there by
not being in a hurry.

But even targets that are reached can eventually move,

Hans Hagen
Hasselt NL
August 2021++

Eventually 1.0 6

2 Eventually 1.0

2.1 Reflection

This is just a short reflection on how we came to version 1.0 of LuaMetaTEX. Much has already been said in
articles and history documents. There is nothing in here that is new but I just occasionally like to wrap up
the current state. At the time of writing, which happens to be the ConTEXt 2021 meeting, we're somewhere
between 0.9 and 1.0 and as usual it reflects a current state of mind.

2.2 Introduction

The development on LuaMetaTEX took a bit more time than I had in planned when I started with it. I presume
that it also relates to the way the TEX program is looked at: a finished program that converges to a bugless
state. But, with version 1.0 near by it makes sense to reflect on the process. Before I go into details I want
to remark that when I wrote ConTEXt I looked at this program from the macro end. I had no real reason to
look into the code, and figuring out what happens in a black box is a challenge (and kind of game) in itself.
At the time I started using TEX I had done my share of complex and relatively large scale programming in
Pascal and Modula so it's not that I was afraid of languages. It was before the Internet took off and not being
in academia and connected one had to figure things out anyway. I did have Don's 5 volume TEX series but
stuck to the TEX book. Being on msdos I couldn't compile the program anyway, definitely not without the
source at hand. I did read the first chapters of the MetaFont book, but apart from being intrigued by it, it was
not before I ran into MetaPost that knowing that language took off. Of course I had browsed TEX the program
but not in a systematic way.

I was involved with pdfTEX development but stayed at my end of the line: needs, applications, testing and
suggestions. With LuaTEX that line got crossed, triggered by the Lua interfaces, but while I focussed on the
TEX end, Taco did the C, and we had pleasant and intense daily discussion on how to move forward. I could
not get away any longer with the abstraction but had to deal with nodes and such, which was okay as we
were hit the boundaries of convenience programming solutions in ConTEXt.

When we started our LuaTEX journey the TEX follow-up most widely used, pdfTEX, did have some �� -TEX
extensions but in retrospect only a few of those were of relevance to us, like the concept of \protected
macros1 and the larger set of registers. And the �� -TEX project, in spite of occasional discussions, never
became a continuous effort. The nts project that was related to �� -TEX and had as objective an extensible
successor produced a Java implementation but that one was never useful (as a starter, its performance was
such that it could not be used) and I didn't really look forward to spending time on Java anyway. Taco and I
played with an extended �� -TEX but lack of time made that one end up in the archive.

There were some programmatic additions to pdfTEX but it's main attributes were protrusion, expansion and
a pdf backend (Hàn Thế Thành's thesis subject). Features like position tracking were handy but basically
just a built-in variant of a concept we already had come up with at the dvi level (using a postprocessing script
that later became dvipos). There was Omega with a directional model but this engine was always more of an
academic project, not a production system.2 It was X ETEX that moved the TEX world into the Unicode domain
and opened the engine up to new font technologies. Although utf8 was already doable in earlier engines
(which is why ConTEXt used it already for some internals), native support was way more convenient.

1 In ConTEXt we always had a protection mechanism and from the LuaTEX source I learned that the macro bases solution was basically
the same as the one used in the engine.

2 Aleph was more reliable but never took off, if only because pdfTEX had a backend.

7 Eventually 1.0

It was clear that if we wanted to move on we had to make more fundamental steps, but in such a way that it
still fit in with what people expect from TEX. While it started an a playground by embedding the Lua inter
preter, it quickly became clear that we could open up the internals in fundamental ways, thereby also getting
around the discussion about to what extent TEX could and should be extended: that discussion could be and
was postponed by the opening up. Because we already foresaw some of possibilities it was decided to freeze
ConTEXt for the older engines. It was around the first ConTEXt meeting that the MkII and MkIV tags showed
up, around the same time that LuaTEX became useable. More than a decade later, when LuaTEX basically
had become frozen, at another meeting it was decided to move on with LuaMetaTEX: the LuaTEX project was
pretty much a ConTEXt projects and that follow up would be even more driven by ConTEXt users and usage.
But how does it all feel 15 years later? I'll try to summarize that below. It will also explain why I got more
audacious in extending the LuaTEX engine into what is now LuaMetaTEX. This also related to the fact that at
some point I realized that progress just demands taking decisions, and it happens that we can make these
in the perspective of ConTEXt without side effects for other TEX usage. It is also fun to experiment.

2.3 Extending necessary parts

The pdfTEX program, having a backend built in already supports the usage of wide TrueType but it was X ETEX
that first provided using them directly in the frontend. But that happened within the concept of traditional
TEX, especially when it comes to math. There are some extra primitives to deal with scripts and languages
but (and this is personally) I decided that these didn't really fit in the way ConTEXt looks at things so MkII
doesn't support anything beyond the fonts. The X ETEX program first was available on Apple computers and
font support was closely related to its technology as well as technologies that relate to where the program
originates. Later other operating systems became supported too.

We decided in LuaTEX to delegate ‘everything fonts’ to Lua, for a good reason: we didn't want to be platform
dependent. And using libraries has the danger of periodical enforced fundamental changes because in these
times software politics and fashion have short cycles. The fact that X ETEX later changed the font engine
proved that this was a good decision. At some point LATEX decided to use a special version of LuaTEX that
uses a font library as alternative, which is fine, but that also introduces a dependency (and frequent updating
of the binary). The LuaTEX engine has a slim variant of the FontForge library built in for reading various font
formats and its backend can embed subsets of OpenType, Type1 and traditional bitmap fonts. At some point
ConTEXt switched to its own Lua based font file interpreter and experimented with a Lua based backend that
later became exclusive for LuaMetaTEX. It became clear that we could do with less code in the engine and
thereby less dependencies.

In this perspective it is also good to notice that the LuaTEX engine has no real concept of Unicode: it just
expects utf8 and that's it. All internals provide enough granularity to support Unicode. The rest has to come
from the macro package, as we know that each one does it its own way. There are no dependencies on Uni
code libraries. You only have to look at what ends up on your system when you install a program that just
juggles bytes to notice that by including one library a whole lot gets drawn in, most of which is not relevant
to the program and we don't want that. It might start small but who knows where one ends up. If we want
users to be able to compile the program, we don't want to end up in dependency hell.

The LuaTEX project was, apart from curiosity and potential usage in ConTEXt, initially also driven by the
Oriental TEX project that aimed at high quality bidirectional typesetting. There the focus was on fonts as
well as processing paragraphs. That triggered all kinds of opening up of internals and once ConTEXt started
swapping (and adding) mechanisms using Lua more came to fruit. In the end it took a decade to reach
version 1.0 and we could have stopped there knowing that we're quite prepared for the future.

Although the whole TEX concept didn't change, there were some fundamental changes. From the documen
tation by Don Knuth it becomes clear that interpreting is closely interwoven with typesetting: the so called

Eventually 1.0 8

main interpretation loop calls out to font processing, ligature building, hyphenation, kerning, breaking
lines, processing pages, etc. In LuaTEX these steps became more independent simply because the process
ing of fonts (via Lua) came down to feeding a linked list of nodes to a callback function. That list should be
hyphenated if needed (a now separated step) and if needed the traditional font processing could be applied
(ligature building and kerning). But, although one can say that we already got away from the way TEX works
internally, most documentation to the original program still applied, simply because the fundamental ap
proach was the same. We didn't feel too guilty about it and I don't think anyone objected. By the way, the
same is true for the math subsystem: we had to adapt it to OpenType parameters and formula construction
and although that was inspired by TEX it definitely was different, even to the extend that the math fonts that
evolved in the community are now a strange hybrid of old and new.

2.4 Getting around the frozen machinery

So why did the LuaMetaTEX project started at all? There has been plenty written on how LuaTEX evolved and
the same is true for LuaMetaTEX so I'm not going to repeat that here. It is enough to know that the demand
for a stable and frozen LuaTEX by other users than ConTEXt simply doesn't go well with further experiments
and we still had plenty ideas. Because at some point Taco had no time I was already responsible for quite
some additions to the LuaTEX program so it was no big deal to switch to a an even more extensive mix of
working with “TEX the macro language” and “TEX the program”.

The first priorities were with some basic cleanup: remove unused font code, get rid of some ever changing
libraries and remove the backend related code. I could do that because I already had a Lua driven backend
in MkIV (which was removed later on) and font handling was already all done in Lua. The idea was to go lean
and mean, and indeed, even with all kind of extensions, the binary is much smaller than its predecessor,
which is nice because it is also a Lua engine. Simplifying the build so that users can easily compile them
selves was also of high priority because I considered the rather large and complex setup as a time bomb.
And I also had my doubts if we could prevent the LuaTEX engine to evolve over time in a way that made it
less useable for ConTEXt.

But, interestingly all this extending and pruning didn't feel like I was violating the concept of a long term
stable engine. In fact, original TEX has no backend either, just a simple binary serialization of output (dvi).
And by removing some font related frontend code we actually came closer to the original. I suppose that
these decisions slowly made me aware of the fact that there was no reason to not consider more drastic
extensions. After all, wasn't the �� -TEX project also about extending.3

When we look at LuaMetaTEX 1.0 we still see the expected machinery there but many subsystems have been
extended. Once I made the decision that it's now or never, each subsystem got evaluated against my long
term wish list and usage in ConTEXt. Now, let's be clear: I basically can do all I want in LuaTEX but that doesn't
mean it's always a pretty solution. And to make the ConTEXt code base better to understand for users, even
if it is already rather consistent and set up to be readable, is one of my objectives. I spend a lot of time on
readability: I cannot stand a bad looking source and over time the look and feel is also determined by the
way the ConTEXt interfaces and related syntax highlighting evolved, especially the TEX, MetaPost, Lua mix.
This is why LuaMetaTEX has some extensions to the macro language.

So, while some might argue that “It can already be done.” I decided to ignore that argument when the actual
solutions came too close to “See how well I can do this using dirty tricks!”. If we can do better, without
harming the system, let's do it: Lua did it, C did it and even Don Knuth switched from Pascal to C. If we want
we can put all the extensions under the “TEX is meant to be extended” umbrella, as long as we call it different,

3 Although non of the ideas that Taco and I discussed on our numerous trips to meetings all over the world ever made it into that engine.

9 Eventually 1.0

which is what we do. But I admit that one has to (emotionally) cross a boundary of feeling comfortable with
fundamental additions to a program like TEX. But I've been around long enough to not feel guilty about it.

So in the end that means that for instance marks were extended, inserts got more options, glyphs and boxes
have way more properties, (the result and handling of) paragraphs can be better controlled, page breaking
got hooks (and might be extended), local boxes got redone, adjustments were extended, the math machinery
has been completely opened up, hyphenation became more powerful, the font mechanism got more control
and new scaling features, alignments got some extensions, we can do more with boxes, etc. But often I still
first had to convince myself that it's okay to do so. After all, none of this had happened before and to my
knowledge also has not been considered in ways that resulted in an implementation (but I might be wrong
here). It helps that I can test out experiments in production versions of LMTX and that users are quite willing
to test.

2.5 Extending the macro language

In the previous section some mechanisms were mentioned, but before TEX even ends up there macros and
primitives come into play. The LuaTEX engine already has some handy extras, like ways to prepend and
append tokens and a limited so called ‘local control’ mechanism (think of nested main loops). There are
some new look head and expansions related primitives and csname related tricks. There are a few more
conditionals too. Details can be found in manual and articles.

In LuaMetaTEX some more got added and some of these mechanism could be improved and the reason
again is that I aim at readable code. Most programming languages for instance have conditionals with some
kind of continuation (like elseif) and so I added that to TEX too \orelse. Actually, there are even more
new conditionals than in LuaTEX. Yes, we don't really need these, especially because in LuaMetaTEX we can
now extend the primitive language via Lua, but I wanted to improve readability deep down in ConTEXt. It
also reduces the clutter when logging, although logging itself has been quite a bit overhauled. There is less
need for intermediate (often not that natural) intermediate layers when we can do it properly in primitive
TEX lingua.

More fundamental was extending the way TEX deals with macro arguments. Although the extensions to
parsing them are using specifiers that make them upward compatible I admit that even I have to consult
a list of possibilities every now and then but in the end they make things better (performance wise with
less code). As a side effect the macro machinery could be optimized a bit (expansion as well as the save
stacking).

There are a few more ways to store integers and dimensions (these fit in nicely), there are new into grouping,
some primitives have more keywords and therefore scanners have been extended, the �� -TEX expression
handlers have alternative variants.

Although this is a sensitive aspect of TEX when it comes to compatibility, at some point I decided that it
made no sense to not expose more details about nodes, input, and nesting states. The grouping and input
related stacks had been optimized in the meantime so reporting in that area was already not compatible.
Improving logging is an ongoing effort and I don't really loose sleep over it not being compatible, as long as
it gets better. There is now also some tracing for marks, inserts, math and alignments.

2.6 Refactoring the code base

This is again an emotionally laden decision: what to touch and keep. For sure we keep the original comments
but that doesn't make it literate. We started out with a C base that came from converted Pascal web.

Eventually 1.0 10

The input machinery is a bit different due to the fact that Lua can (and often has to) kick in. In LuaMetaTEX
it's even more different because even more goes via Lua. We cannot even run the engine without a basic
set of callbacks assigned: if you don't like that, use LuaTEX. Does this violate the TEX concept? Not really,
because system dependencies are explicitly mentioned as such in the source code. We have to adapt to the
way an operating system sees files anyway (eight bit, utf8, utf16).

We still have many global variables (a practical Knuth thing I guess) but now they are grouped into structures
so that we can more clearly see where they belong. This involved quite a but of shuffling and editing but I got
there. In LuaMetaTEX all constants (coded in macros) became enumerations, and all hard coded values too
which was quite a bit of work too. Probably no one will notice or realize that, but starting from an existing
code base is more work than starting from scratch, which is what I always did so far. When possible we use
case statements. Most macros became (inline) functions. Complex functions got better variable names. All
functions are in name spaces. This was (and is) a stepwise process that takes lots of time, especially because
ConTEXt users expect a reasonable stable system and changes like that are sensitive for errors.

Talking of errors, the error and reporting system has been overhauled, so for instance we have now a dedi
cated string formatter. This all happened in several steps: normalization, consistency, abstraction, format
ters, etc. Keep in mind that we not only have the original messages but also new ones. And we have TEX, Lua
and MetaPost communicating with the user. Where in LuaTEX we have to conform more to the traditional
engine, because that is what other macro packages rely on, In ConTEXt we have more freedom, so we can
make it better and more detailed. Of course it could all be controlled by configurations but at some point I
decided to kick out variables doing that because it made no sense to complicate the code base.

Memory management has been overhauled (more dynamic) as has dumping to the (more efficient) format
file. With what is mentioned in the previous paragraphs we can safely say that in the meantime back porting
to LuaTEX (which I had in mind) makes no sense any longer. There is occasionally some pressure to let Lua
TEX do the same as other engines (new common features) and that doesn't always fit into the model. There
is no need for LuaMetaTEX to follow up on that because often we already have plenty of possibilities. There
is of course still work todo, for instance I still have to make some variable names in functions more verbose
but that is not fundamental. I also have to go over the documentation in the code. I might make some inter
faces more consistent anyway, so that also would demand adaptations. And of course the documentation in
general always lags behind.

So far I only mentioned dealing with TEX, but keep in mind that in LuaMetaTEX we also have an upgraded
MetaPost: only a Lua backend (we can produce pdf from that other output), no font code, a couple of ex
tensions, more callbacks, io via Lua. Scanners make extending the language possible and injectors make
for efficient piping back to MetaPost. Such extensions are also possible in TEX and the LuaMetaTEX scan
ning interfaces have been improved and extended too. We have extra callbacks (but some were dropped),
more helpers (most noticeable in the node namespace), libraries that improve dealing with binary files, a
reworked token library (which in turn lead to a reorganization of command codes in the TEX engine), a few
more extensions if Lua file handling and string manipulations. We got decimal math, complex math, new
compression libraries, better (Lua) memory management, a few optional library interfaces, etc. Fortunately
that all didn't bloat the binary.

So, because in the meantime LuaMetaTEX is quite different from LuaTEX, we can consider the last one to be
a prototype for the real deal.

2.7 Simplifying the build

This was one of the first things I did. It was a curious process of removing more and more of the original
build (all kind of dependencies) which is not entirely trivial because of the way the LuaTEX build is set up. I

11 Eventually 1.0

admit that I did try to stay within the regular source build concept but after a while I realized that this made
no sense so we (Mojca was involved in that) made the move to cmake. Shortly after that I started using Visual
Studio as editing environment (which saves time and is rather convenient) and native compilation under
MS Windows became possible without any special measures (in fact, setting up the build for arm processors
was more work).

A side effect is that right from the start we could provide binaries for various platforms via the compile farm
on the ConTEXt garden maintained by Mojca, who also does daily TEX live builds there. On my machine I use
the Windows Linux Subsystem for cross compilation but we can also do native builds. And, with my laptop
being a robust 2013 old timer I force myself to make sure that LuaMetaTEX keeps performing well.

2.8 Because it just makes sense

So, in the end LuaMetaTEX is likely the engine most different from the Knuthian original but from the above
one can conclude that this was a graduate process where I got more audacious over time. In the end the only
thing that matters (and I believe that Don Knuth agrees with this) that you like writing the code, feel confident
that the code is all right, explore the possibilities, try to improve the quality and understanding and that
successive rewrites can reduce obscurity. And in my opinion we didn't loose the TEX look and feel and still
can operate well within the established boundaries of the TEX ecosystem. The fact that most ConTEXt users
in the meantime use LuaMetaTEX and the related LMTX variant is an indication that they are okay with it,
and that is what matters most.

A new unit: dk 12

3 A new unit: dk

At the ConTEXt 2021 meeting I mixed my TEX talks with showing some of the (upcoming) LuaMetaTEX source
code. One evening we had a extension party where a new unit was implemented, the dk. This event was
triggered by a remark Hraban [Ramm] made on the participants list in advance of the meeting, where he
pointed to a Wikipedia article from which we quote:

“In issue 33, Mad published a partial table of the “Potrzebie System of Weights and Measures”, devel
oped by 19-year-old Donald E. Knuth, later a famed computer scientist. According to Knuth, the ba
sis of this new revolutionary system is the potrzebie, which equals the thickness of Mad issue 26, or
2.2633484517438173216473 mm [��].””

So, as the result of that session, the source code now has this comment:

“We support the Knuthian Potrzebie, cf. en.wikipedia.org/wiki/Potrzebie, as the dk unit. It was
added on 2021-09-22 exactly when we crossed the season during an evening session at the 15th Con
TEXt meeting in Bassenge (Boirs) Belgium. It took a few iterations to find the best numerator and de
nominator, but Taco Hoekwater, Harald Koenig and Mikael Sundqvist figured it out in this interactive
session. The error messages have been adapted accordingly and the scanner in the Lua tex library
also handles it. One dk is 6.43985pt. There is no need to make MetaPost aware of this unit because
there it is just a numeric multiplier in a macro package.””

When compared to the already present units the dk nicely fills a gap:

unit points scaled visual
sp 0.00002 1
pt 1.0 65536
bp 1.00374 65781
dd 1.07 70124
mm 2.84526 186467
dk 6.43985 422042
pc 12.0 786432
cc 12.8401 841489
cm 28.45274 1864679
in 72.26999 4736286

Deep down, the unit scanner uses a numerator and denominator in order to map the given value onto the
internally used scaled points, so the relevant snippet of C is:

*num = 49838; // 152940;
*denom = 7739; // 23749;
return normal_unit_scanned;

The impact on performance of scanning an additional unit can be neglected because the scanning code is
a bit different from the code in LuaTEX and (probably the) other engines anyway.

Under consideration are a few extra units in the relative_unit_scanned category that we see in css: vw
(relative to the \hsize), vh (relative to the \vsize), maybe a percentage (but of what) and ch (width of the
current zero digit character). As usual with TEXies, once it's there it will be (ab)used.

13 A new unit: dk

Anchoring 14

4 Anchoring

4.1 Introduction

It is valid to question what functionality should be in the engine and what can best be implemented using
callbacks and postprocessing of lists (and boxes) relying for instance on attributes as signals. In LuaTEX we
are rather strict in this and assume that the second method is used. In LuaMetaTEX we still promote this but
at the same time some (lightweight) functionality has been added to the engine that helps implementing
some features more efficiently. Reasons are that it can be handy to carry (fundamental) properties around
that are bound to nodes and that we can set them using primitives, especially for glyphs and boxes. That
way they become part of the formal functionality that one can argue should be present in a modern engine.
Examples for glyph nodes are scales, offsets and hyphenation, detailed ligature and kerning control. For
box nodes we have for instance offsets and orientation. Most of these are always taken into account by core
mechanisms like breaking paragraphs into lines, where dimensions matter in which case it really makes
sense for them to be part of the engine design.

Some properties are just passed on to for instance a font handler or the backend but still they belong to the
core functionality. An example of the later is a (new) simple mechanism for anchoring boxes. This is not
really a fundamental feature, because one can just move content around using a combination of kerning
and boxing, either or not with offsets. But because we already have features like offsets to boxes it was
not that much work to add anchoring as a more fundamental property. The frontend is agnostic to this
feature because dimensions are kind of virtual here: the backend however carries the real burden. Because
backends are written in Lua it might have a performance hit simply because at least we need to check if this
feature is used. Normally that can compensated when this feature is used because less work and shuffling
around happens in the frontend. And when this feature is no longer experimental (and stays) we can gain
some back by using it in existing scenarios. It sounds worse than it is because for orientations we already
have to do some usage checking and we can share that check; in most situations nothing needs to be done
anyway.

4.2 The low level approach

When we anchor, a box can be a source and/or a target. Both are represented by a number and can be
assigned via a keyword. These numbers can be picked up by the backend. Here is an example:

\def\TestMe#1{%
\setbox \scratchbox \ruledvbox

source 123
orientation #1
\bgroup

\hsize7cm
\samplefile{zapf}
\hbox to 0pt

source 124 target 123
xoffset 20pt yoffset -30pt
{\darkred \bfc TEST1}%

\hbox to 0pt
source 125 target 124
xoffset 10pt yoffset -20pt
{\darkblue \bfc TEST2}%

15 Anchoring

\egroup
\box \scratchbox

}

This example also uses a few offsets. The ‘origin’ is at the left edge of the baseline. Now, we could have
passed the source and target as attribute and intercepting an attribute in the backend can work pretty well.
However, the code that deals with the final result of the typesetting and thereby flushes it to for instance a
pdf file is, at least that is the setup we use in ConTEXt, attribute agnostic. Mixing in attributes at that stage,
except for user nodes and whatsits that are effectively plugins, is counter intuitive and all is already pretty
complex so a clear separation of functionality makes a lot of sense. Of course the ConTEXt approach is not the
only one when it comes to generic engine functionality. Not that many fundamental (conceptual) extensions
showed up over the last few decades so no one will bother if in LuaMetaTEX we have new stuff that is only
used by ConTEXt. The example code shown here gives:

Coming back to the use of typefaces in elec
tronic publishing: many of the new typog
raphers receive their knowledge and infor
mation about the rules of typography from
books, from computer magazines or the in
struction manuals which they get with the
purchase of a PC or software. There is not
so much basic instruction, as of now, as there
was in the old days, showing the differences
between good and bad typographic design.
Many people are just fascinated by their PC's
tricks, and think that a widely--praised pro
gram, called up on the screen, will make
everything automatic from now on.

TEST1
TEST2

Com
ing back to the use of typefaces in elec

tronic publishing: m
any of the new

 typog
raphers receive their know

ledge and infor
m

ation about the rules of typography from
books, from

 com
puter m

agazines or the in
struction m

anuals w
hich they get w

ith the
purchase of a PC or softw

are. There is not
so m

uch basic instruction, as of now
, as there

w
as in the old days, show

ing the differences
betw

een good and bad typographic design.
M

any people are just fascinated by their PC's
tricks, and think that a w

idely--praised pro
gram

, called up on the screen, w
ill m

ake
everything autom

atic from
 now

 on.

TEST1
TEST2

Coming back to the use of typefaces in elec
tronic publishing: many of the new typog
raphers receive their knowledge and infor
mation about the rules of typography from
books, from computer magazines or the in
struction manuals which they get with the
purchase of a PC or software. There is not
so much basic instruction, as of now, as there
was in the old days, showing the differences
between good and bad typographic design.
Many people are just fascinated by their PC's
tricks, and think that a widely--praised pro
gram, called up on the screen, will make
everything automatic from now on.

TEST1
TEST2

Co
m

in
g

ba
ck

 to
 th

e
us

e
of

 ty
pe

fa
ce

s i
n

el
ec

tr

on
ic

 p
ub

lis
hi

ng
: m

an
y

of
 th

e
ne

w
 ty

po
g

ra
ph

er
s

re
ce

iv
e

th
ei

r k
no

w
le

dg
e

an
d

in
fo

r
m

at
io

n
ab

ou
t t

he
 r

ul
es

 o
f t

yp
og

ra
ph

y
fr

om
bo

ok
s,

 fr
om

 co
m

pu
te

r m
ag

az
in

es
 o

r t
he

 in

st
ru

ct
io

n
m

an
ua

ls
 w

hi
ch

 th
ey

 g
et

 w
ith

 th
e

pu
rc

ha
se

 o
f a

 P
C

or
 s

of
tw

ar
e.

 T
he

re
 is

 n
ot

so
 m

uc
h

ba
si

c i
ns

tr
uc

tio
n,

 a
s o

f n
ow

, a
s t

he
re

w
as

 in
 th

e
ol

d
da

ys
, s

ho
w

in
g

th
e

di
ffe

re
nc

es
be

tw
ee

n
go

od
 a

nd
 b

ad
 ty

po
gr

ap
hi

c
de

si
gn

.
M

an
y

pe
op

le
 a

re
 ju

st
 fa

sc
in

at
ed

 b
y

th
ei

r P
C'

s
tr

ic
ks

, a
nd

 th
in

k
th

at
 a

 w
id

el
y-

-p
ra

is
ed

 p
ro

gr

am
, c

al
le

d
up

 o
n

th
e

sc
re

en
, w

ill
 m

ak
e

ev
er

yt
hi

ng
 a

ut
om

at
ic

 fr
om

 n
ow

 o
n.

TE
ST

1
TE

ST
2

orientation 0 orientation 1 orientation 2 orientation 3

In order to avoid additional shifting around, which then might involve copying and injecting boxes as well
as repackaging, two additional keys are available and these deal with the way boxes get anchored.

\vbox
source 123
\bgroup

\offinterlineskip
\blackrule[width=4cm,height=2cm,depth=0cm,color=darkred]\par
\blackrule[width=4cm,height=0cm,depth=1cm,color=darkblue]\par
\setbox\scratchboxtwo\hbox

anchors "0004 "0001
% anchor "00040001
target 123
orientation 1
{\blackrule[width=2cm,height=1cm,depth=0cm,color=darkgreen]%
\hskip-2cm
\blackrule[width=2cm,height=0cm,depth=1cm,color=darkyellow]}%

%
\smash{\box\scratchboxtwo}%

\egroup

The anchor is just an number but with the plural keyword we can scan it as two because that is a bit easier
on usage. The two numbers four byte numbers control the source to target anchoring and there is plenty
room for future extensions because not all bits are used.

Anchoring 16

0x001 left origin
0x002 left height
0x003 left depth
0x004 right origin
0x005 right height
0x006 right depth
0x007 center origin
0x008 center height
0x009 center depth
0x00A halfway total
0x00B halfway height
0x00C halfway depth
0x00D halfway left
0x00E halfway right

The target and source are handled in a way that sort of naturally binds them which involves a little juggling
with dimensions in the backend. There is some additional control over this but usage is not advertized here
because it might change.

One can set these anchoring related properties with keywords but there are also primitive box manipulators:
\boxanchor, \boxanchors, \boxsource and \boxtarget that take a box number and value.

There are some helpers at the Lua end but I haven't completely made up my mind about them. Normally
that evolves with usage.

4.3 A first higher level interface

Exploring this here in more detail makes no sense because it is still experimental and also rather ConTEXt
specific. As a teaser an interface that hooks into layers is shown:

\defineanchorboxoverlay[framed]

\def\DemoAnchor#1#2#3#4%
{\setanchorbox

[#1]%
[target={#3},source={#4}]%
\hbox{\backgroundline[#2]{\white\smallinfofont\setstrut\strut target=#3

source=#4}}}

\def\DemoAnchorX#1#2%
{\DemoAnchor{#1}{darkred} {#2}{left,top}%
\DemoAnchor{#1}{darkblue} {#2}{left,bottom}%
\DemoAnchor{#1}{darkgreen} {#2}{right,bottom}%

17 Anchoring

\DemoAnchor{#1}{darkyellow}{#2}{right,top}%
}%

\startsetups framed:demo
\DemoAnchorX{framed:background}{left,top}%
\DemoAnchorX{framed:background}{right,top}%
\DemoAnchorX{framed:background}{left,bottom}%
\DemoAnchorX{framed:background}{right,bottom}%
\DemoAnchorX{framed:foreground}{middle}%

\stopsetups

\midaligned\bgroup
\framed
[align=normal,
width=.7\textwidth,
backgroundcolor=gray,
background={color,framed:background,foreground,framed:foreground}]
\bgroup
\samplefile{zapf}\par
\directsetup{framed:demo}%
\samplefile{zapf}%

\egroup
\egroup

Those familiar with ConTEXt will recognize the approach. This one basically is a more low level variant of
layers and a high level variant of the primitives. Performance wise (in terms of memory usage and runtime)
it sits in a sweet spot.

target=left,top source=left,top

target=left,top source=left,bottomtarget=left,top source=right,bottom

target=left,top source=right,top target=right,top source=left,top

target=right,top source=left,bottomtarget=right,top source=right,bottom

target=right,top source=right,top

target=left,bottom source=left,top

target=left,bottom source=left,bottomtarget=left,bottom source=right,bottom

target=left,bottom source=right,top target=right,bottom source=left,top

target=right,bottom source=left,bottomtarget=right,bottom source=right,bottom

target=right,bottom source=right,top

Coming back to the use of typefaces in electronic publishing: many of the
new typographers receive their knowledge and information about the rules
of typography from books, from computer magazines or the instruction
manuals which they get with the purchase of a PC or software. There is not
so much basic instruction, as of now, as there was in the old days, showing
the differences between good and bad typographic design. Many people
are just fascinated by their PC's tricks, and think that a widely--praised pro
gram, called up on the screen, will make everything automatic from now
on.
Coming back to the use of typefaces in electronic publishing: many of the
new typographers receive their knowledge and information about the rules
of typography from books, from computer magazines or the instruction
manuals which they get with the purchase of a PC or software. There is not
so much basic instruction, as of now, as there was in the old days, showing
the differences between good and bad typographic design. Many people
are just fascinated by their PC's tricks, and think that a widely--praised pro
gram, called up on the screen, will make everything automatic from now
on.

target=middle source=left,top

target=middle source=left,bottomtarget=middle source=right,bottom

target=middle source=right,top

I played a bit with a mechanism that can store the embedded (to be anchored) content in a more independent
way and it actually works okay. However, I'm not entirely sure if that solution is the best so for now it's
commented. As usual it is also up to users to come up with demands.

A different approach to math spacing 18

5 A different approach to math spacing

Introduction

The TEX engine is famous for its rendering of math and even after decades there is no real contender. And
so there also is no real pressure to see if we can do better. However, when Mikael Sundqvist ran into a
Swedish math rendering specification and we started discussing a possible support for that in ConTEXt,
it quickly became clear that the way TEX does spacing is a bit less flexible than one wishes for. We already
have much of what is needed in place but it also has to work well with how TEX sees things:

1. Math is made from a sequence of atoms: a quantity with a nucleus, superscript subscript.4 Atoms are
spaced by \thinmuskip, \medmuskip and \thickmuskip or nothing, and that is sort of hard coded.

2. Atoms are organized by class and there are seven (or eight, depending on how you look at it) of them visi
ble: binary symbols, relations, etc. The invisible ones, composites like fractions and fenced material (we
call them molecules) are at some point mapped onto the core set. Molecules like fences have a different
class left and right of the fenced material.

3. In addition the engine itself has all kind of spacing related parameters and these kick in automatically
and sometimes have side effects. The same is true for penalties.

The normal approach to spacing other than imposed by the engine is to use correction space, like \, and I
think that quite some TEX users think that this is how it is supposed to be. The standard way to enter math
relates to scientific publishing and there the standards are often chiseled in stone so why should users tweak
anyway. However, in ConTEXt we tend to start from the users and not the publishers end so there we can
decide to follow different routes. Users can always work around something they don't like but we focus on
reliable input giving predictable output. Also, when reading on, it is good to realize that it is all about the user
experience here: it should look nice (which then of course makes one become aware of issues elsewhere)
and we don't care much about specific demands of publishers in the scientific field: the fact that they often
re-key content doesn't go well with users paying attention themselves, let alone the fact that nowadays they
can demand word processor formats.

The three mentioned steps are fine for the average case but sometimes make no sense. It was definitely the
best approach given time and resources but when LuaTEX went OpenType a lot of parameters were added
and at that time we therefore added spacing by class pair. That not only decoupled the relation between
the three (configurable) muskip parameters but also made it possible to use plenty of them. Now it must be
said that for consistency having these three skips works great but given the tweaking expected from users
consistency is not always what comes out.

This situation is very well comparable to the proclaimed qualities of the typesetting of text by TEX. Yes, it
can do a great job, and often does, but users can mess up quite well. I remember that when we did tests with
hz the outcomes were pretty unimpressive. When you give an audience a set of sample renderings, where
each sample is slightly different and each user gets a randomized subset, the sudden lack of being able to
compare (and agree) with another TEXie makes for interesting conclusions. They look for the opposites of
what is claimed to be perfect. So, two lines with hyphens rate low, even if not doing it would look worse. The
same for a few short words in the last line of a paragraph. Excessive spacing is also seen as bad. So, when
asked why some paragraphs looked okay noticing (excessive and troublesome) expansion was not seen as
a problem; instead it were hyphens that got the attraction.

4 I suddenly realize why in the engine noads have a nucleus field: they are atoms . . . but what does that make super and subscripts.

19 A different approach to math spacing

The same is probably true for math: the input with lots of correction spaces or commands where characters
would do can be horrible but it's just the way it is supposed to be. The therefore expected output can only
be perfect, right, independent of how one actually messed up spacing. But personally I think that it is often
spacing messed up by users that make a TEX document recognizable. It compares to word processor results
that one can sometimes identify by multiple consecutive spaces in the typeset text instead of using a glue
model like TEX. Reaching perfection is not always trivial, but fortunately we can also find plenty of nice
looking documents done with TEX.

The TEXbook has an excellent and intriguing chapter on the fine points of math and it definitely shows why
Don Knuth wrote TEX as a tool for his books. He pays a lot of attention to detail and that is also why it all
works out so well. If you need to render from unseen sources (as happens in an xml workflow) coming from
several authors and have time nor money to check everything, you're off worse. And I'm not even talking
of input where invisible Unicode spacing characters are injected. It is the TEX book(s) that has drawn me
to this program and believe it or not, in the first project I was involved in that demanded typeset (quantum
mechanics) math the ibm typewriter with changing bulbs ruled the scenery. In fact, our involvement was
quickly cut off when we dared to show a chapter done in TEX that looked better.

Apart from an occasional tweak, in ConTEXt we never really used this opened up math atom pair spacing
mechanism available in LuaTEX extensively. So, when I was pondering how to proceed it stroke me that it
would make sense to generalize this mechanism. It was already possible (via a mode parameter) to bypass
the second step mentioned above, but we definitely needed more than the visible classes that the engine had.
In ConTEXt we already had more classes but those were meant for assigning characters and commands to
specific math constructs (think of fences, fractions and radicals) so in the end they were not really classes.
Considering this option was made easier by the fact that Mikael would do the testing and help configuring
the defaults, which all will result in a new math user manual.

There are extensions introduced in LuaTEX and later LuaMetaTEX that are not discussed here. In this expose
we concentrate on the features that were explored, extended and introduced while we worked on updating
math support in LMTX.

An example

Before we go into details, let's give an example of unnoticed spacing effects. We use three simple formulas
all using fractions:

\ruledhbox{$\frac{x^2}{a+1}$}

and:

\ruledhbox{$x + \frac{x^2}{a+1} = 10$}

as well as:

\ruledhbox{$\frac{1}{2}\frac{1}{2}x$}

��

��

��������������������

�� �	 �

�� �	

��

��

��������������������

�� �	 �

�� ���

�

������

��

�

������

��

��

If you look closely you see that the fraction has a little space at the left and right. Where does that come from?
Because we normally don't put a tight frame around a fraction, we are not really aware of it. The spacing

A different approach to math spacing 20

between what are called ordinary, operator, binary, relation and other classes of atoms is explained in the
TEXbook (or “TEX by Topic” if you want a summary) and basically we have a class by class matrix that is built
into TEX. The engine looks at successive items and spacing depends on their (perceived) class. Because
the number of classes is limited, and because the spacing pairs are hard coded, the engine cheats a little.
Depending on what came before or comes next the class of an atom is adapted to suit the spacing matrix.
One can say that a “reading mathematician” is built in. And most of the decisions are okay. If needed one
can always wrap something in e.g. \mathrel but of course that also can interfere with grouping. All this is
true for TEX, pdfTEX, X ETEX and LuaTEX, but a bit different in LuaMetaTEX as we will see.

The little spacing on both edges of the fraction is a side effect of the way they are built internally: fractions are
actually a generalized form of “stuff put on top of other stuff” and they can have left and/or right delimiters:
this is driven by primitives that have names like \atop and \atopwithdelims. The way the components
are placed is (especially in the case of OpenType) driven by lots of parameters and I will leave that out of the
discussion.

When there are no delimiters, a so called \nulldelimiterspace will be injected. That parameter is set to
1.2 points and I have to admit that in ConTEXt I never considered letting that one adapt to the body font size,
which means that, as we default to a 12 point body font, the value there should have been 1.44 points: mea
culpa. When we set this parameter to zero point, we get this:

��

��

��������������������

�� �	 �

�� �	

��

��

��������������������

�� �	 �

�� ���

�

������

��

�

������

��

��

As intermezzo and moment of contemplation I show some examples of fractions mixed into text. When we
have the delimiter space set we get this:

test �

������

�

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������������

�
��

test �

������������

�
�

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test
�

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test
�

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test
�

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������������

�
����

While with zero it looks like this, quite a different outcome:

test �

������

�

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������

��

test �

������������

�
��

test �

������������

�
�

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

�
��

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test
�

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test
�

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

���

test �

������������

����

test �

������������

����

test �

������������

����

test
�

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������

����

test �

������������������

�
����

A little tracing shows it more clearly:

test �
H__
������

H__

�
H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
�
H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__

test �
H__
������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test

21 A different approach to math spacing

�
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__

test �
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test

�
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__

test �
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test

�
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������������

H__

�
����H__
__VH__H__

You can zoom in and see where it interferes with margin alignment.

test �
H__
������

H__

�
H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������

H__

��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
�
H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__

test �
H__
������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

�
��H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test

�
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__

test �
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test

�
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__

test �
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

���
H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test

�
H__
������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������

H__

����H__
__VH__H__ test �
H__

������������������

H__

�
����H__
__VH__H__

So, if you ever meet a user who claims perfection and superiority of typesetting, check out her/his work
which might have inline fractions done the spacy way. It might make other visually typesetting claims less
trustworthy. And yes, one can wonder if margin kerning could help here but as this content is wrapped in
boxes it is unlikely to work out well (and not worth the effort).

In order to get a better picture of the spacing, two more renderings are shown. This time we show the bound
ing boxes of the characters too (you might need to zoom in to see it):

��

��

�� �� �� �� �� �� �� �� �� ��

�� �	 �

�� �	

��

��

�� �� �� �� �� �� �� �� �� ��

�� �	 �

�� � ��

�

�� �� ��

��

�

�� �� ��

��

��

Again we also show the zero case

��

��

�� �� �� �� �� �� �� �� �� ��

�� �	 �

�� �	

��

��

�� �� �� �� �� �� �� �� �� ��

�� �	 �

�� � ��

�

�� �� ��

��

�

�� �� ��

��

��

This makes clear why there actually is this extra space around a fraction: regular operators have side bear
ings and thereby have some added space. And when we put a fraction in front of a symbol we need that little
extra space. Of course a proper class pair spacing value could do the job but there is no fraction class. The
engine cheats by changing the class depending on what follows or came before and this is why on the av
erage it looks okay. However, these examples demonstrate that there are some assumptions with regard to
for instance fonts and this is one of the reasons why the more or less official expected OpenType behavior
as dictated by the Cambria font doesn't always work out well for fonts that evolved from the ones used in the
TEX community. Also imagine how this interferes with the fact that traditional TEX fonts and the machin
ery do magic with cheating about width combined with italic correction (all plausible and quite clever but
somewhat tricky with respect to OpenType).

Because here we discuss the way LuaMetaTEX and ConTEXt deal with this, the following examples show a
probably unexpected outcome. Again first the non-zero case:

A different approach to math spacing 22

��

��

�� �� �� �� �� �� �� �� �� ��

��

ordbin
�	

bindig
�

��

ordbin
�	

binfra

��

��

�� �� �� �� �� �� �� �� �� ��

��

ordbin
�	

bindig
�

frarel
��

reldig
� ��

�

�� �� ��

��

frafra

�

�� �� ��

��

fraord
��

And here the zero case:

��

��

�� �� �� �� �� �� �� �� �� ��

��

ordbin
�	

bindig
�

��

ordbin
�	

binfra

��

��

�� �� �� �� �� �� �� �� �� ��

��

ordbin
�	

bindig
�

frarel
��

reldig
� ��

�

�� �� ��

��

frafra

�

�� �� ��

��

fraord
��

I will not go into details about the way fractions are supported in the engine because some extensions are
already around for quite a while. The main observation here is that in LuaMetaTEX we have alternative
primitives that assume forward scanning, as if the numerator and denominator are arguments. The engine
also supports skewed (vulgar) fractions natively where numerator and denominator are raised and lowered
relative to the (often) slash. Many aspects of the rendering can be tuned in the so called font goodie files,
which is also the place where we define the additional font parameters.

Atom spacing

If you are familiar with traditional TEX you know that there is some built in ordbin spacing. But there is no
such pair for a fraction and a relation, simply because there is no fraction class. However, in LuaMetaTEX
there is one, and we'd better set it up if we zero the margins of a fraction.

It is worth noticing that fractions are sort of special anyway. The official syntax is n \over m and numerator
and denominator can be sub formulas. This is the one case where the parser sort of has to look back, which
is tricky because the machinery is a forward looking one. Therefore, in order to get the expected styling
(or avoid unexpected side effects) one will normally wrap all in braces as in: { {n} \over{m} } which
of course kind defeats the simple syntax which probably is supported for 1\over2 kind of usage, so a next
challenge is to make 1/2 come out right. All this means that in practice we have wrappers like \fracwhich
accidentally in LuaMetaTEX can be defined using forward looking primitives with plenty extra properties
driven by keywords. It also means that fractions as expected by the engine due to wrapping actually can be a
different kind of atom, which can have puzzling side effects with respect to spacing (because the remapping
happens unseen).

Interesting is that adapting LuaMetaTEX to a more extensive model was quite doable, also because the code
base had already been made more configurable. Of course it involved quite a bit of tedious editing and
throwing out already nice and clean code that had taken some effort, but that's the way it is. Of course
more classes also means that some storage properties had to be adapted within the available space but by
sacrificing families that was possible. With 64 potential classes we now are back to 64 families compared
to 7 classes and 256 families in LuaTEX and 7 classes and 16 families in traditional TEX.

Also interesting is that the new implementation is actually somewhat simpler and therefore the binary is a
tad smaller too. But does all that mean that there were no pitfalls? Sure there were! It is worth noticing that
doing all this reminded me of the early days of LuaTEX development, where Taco and I exchanged binaries
and TEX code in a more or less constant way using Skype. For LuaMetaTEX we used good old mail for files and
Mojca's build farm for binaries and Mikael and I spent many months exchanging information and testing out
alternatives on a daily basis: it is in my opinion the only way to do this and it's fun too. It has been a lot

23 A different approach to math spacing

of work but once we got going there was nothing that could stop us. A side effect was that there were no
updates during this period, which was something users noticed.

In the spacing matrix there is inner and internally there's also some care to be taken of vcenter. The
inner class is actually shared with the variable class which is not so much a real class but more a signal
to the engine that when an alphabetic or numeric character is included it has to come from a specific family:
upright family zero or math italic family one in traditional speak. But, what if we don't have that setup? Well,
then one has to make sure that this special class number is not associated (which is no big deal). It does
mean that when we extend the repertoire of classes we cannot use slot seven. Always keep in mind that
classes (and thereby signals) get assigned to characters (some defaults by the engine, others by the macro
package). It is why in ConTEXt we use abstract class numbers, just in case the engine gets adapted.

We also cannot use slot eight because that one is a signal too: for a possible active math character, a feature
somewhat complicated by the fact that it should not interfere with passing around such active characters
in arguments. In math mode where we have lots of macros passing around content, this special class works
around these side effects. We don't need this feature in ConTEXt because contrary to other macro packages
we don't handle primes, pseudo superscripts potentially followed by other super and subscripts by making
the ' an active character and thereby a macro in math mode. This trickery again closely relates to preferable
input, font properties, and limitations of memory and such at the time TEX showed up (much has to fit into
8, 16 or 32 bits, so there is not much room for e.g. more than 8 classes). Since we started with MkIV the way
math is dealt with is a bit different than normally done in TEX anyway.

Atom rules

We can now control the spacing between every atom but unfortunately that is not good enough. Therefore,
we arrive at yet another feature built into the engine: turning classes into other classes depending on neigh
bors. And this is precisely why we have certain classes. Let's quote “TEX by Topic”: The cases * (in the atom
spacing matrix) cannot occur, because a bin object is converted to ord if it is the first in the list, preceded by bin, op,
open, punct, rel, or followed by close, punct, or rel; also, a rel is converted to ordwhen it is followed by close
or punct.

We can of course keep these hard coded heuristics but can as well make that bit of code configurable, which
we did. Below is demonstrated how one can set up the defaults at the TEX end. We use symbolic names for
the classes.

\setmathatomrule \mathbegincode \mathbinarycode % old
\allmathstyles \mathordinarycode \mathordinarycode % new

\setmathatomrule \mathbinarycode \mathbinarycode
\allmathstyles \mathbinarycode \mathordinarycode

\setmathatomrule \mathoperatorcode \mathbinarycode
\allmathstyles \mathoperatorcode \mathordinarycode

\setmathatomrule \mathopencode \mathbinarycode
\allmathstyles \mathopencode \mathordinarycode

\setmathatomrule \mathpunctuationcode \mathbinarycode
\allmathstyles \mathpunctuationcode \mathordinarycode

\setmathatomrule \mathrelationcode \mathbinarycode
\allmathstyles \mathrelationcode \mathordinarycode

\setmathatomrule \mathbinarycode \mathclosecode

A different approach to math spacing 24

\allmathstyles \mathordinarycode \mathclosecode
\setmathatomrule \mathbinarycode \mathpunctuationcode
\allmathstyles \mathordinarycode \mathpunctuationcode

\setmathatomrule \mathbinarycode \mathrelationcode
\allmathstyles \mathordinarycode \mathrelationcode

\setmathatomrule \mathrelationcode \mathclosecode
\allmathstyles \mathordinarycode \mathclosecode

\setmathatomrule \mathrelationcode \mathpunctuationcode
\allmathstyles \mathordinarycode \mathpunctuationcode

Watch the special class with \mathbegincode. This is actually class 62 so you don't need much fantasy to
imagine that class 63 is \mathendcode, but that one is not yet used. In a similar fashion we can initialize
the spacing itself:5

\setmathspacing \mathordcode \mathopcode \allmathstyles \thinmuskip
\setmathspacing \mathordcode \mathbincode \allsplitstyles \medmuskip
\setmathspacing \mathordcode \mathrelcode \allsplitstyles \thickmuskip
\setmathspacing \mathordcode \mathinnercode \allsplitstyles \thinmuskip

\setmathspacing \mathopcode \mathordcode \allmathstyles \thinmuskip
\setmathspacing \mathopcode \mathopcode \allmathstyles \thinmuskip
\setmathspacing \mathopcode \mathrelcode \allsplitstyles \thickmuskip
\setmathspacing \mathopcode \mathinnercode \allsplitstyles \thinmuskip

\setmathspacing \mathbincode \mathordcode \allsplitstyles \medmuskip
\setmathspacing \mathbincode \mathopcode \allsplitstyles \medmuskip
\setmathspacing \mathbincode \mathopencode \allsplitstyles \medmuskip
\setmathspacing \mathbincode \mathinnercode \allsplitstyles \medmuskip

\setmathspacing \mathrelcode \mathordcode \allsplitstyles \thickmuskip
\setmathspacing \mathrelcode \mathopcode \allsplitstyles \thickmuskip
\setmathspacing \mathrelcode \mathopencode \allsplitstyles \thickmuskip
\setmathspacing \mathrelcode \mathinnercode \allsplitstyles \thickmuskip

\setmathspacing \mathclosecode \mathopcode \allmathstyles \thinmuskip
\setmathspacing \mathclosecode \mathbincode \allsplitstyles \medmuskip
\setmathspacing \mathclosecode \mathrelcode \allsplitstyles \thickmuskip
\setmathspacing \mathclosecode \mathinnercode \allsplitstyles \thinmuskip

\setmathspacing \mathpunctcode \mathordcode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathopcode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathrelcode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathopencode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathclosecode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathpunctcode \allsplitstyles \thinmuskip
\setmathspacing \mathpunctcode \mathinnercode \allsplitstyles \thinmuskip

\setmathspacing \mathinnercode \mathordcode \allsplitstyles \thinmuskip

5 Constant, engine specific, numbers like these are available in tables at the Lua end so we can change them and users can check that.

25 A different approach to math spacing

\setmathspacing \mathinnercode \mathopcode \allmathstyles \thinmuskip
\setmathspacing \mathinnercode \mathbincode \allsplitstyles \medmuskip
\setmathspacing \mathinnercode \mathrelcode \allsplitstyles \thickmuskip
\setmathspacing \mathinnercode \mathopencode \allsplitstyles \thinmuskip
\setmathspacing \mathinnercode \mathpunctcode \allsplitstyles \thinmuskip
\setmathspacing \mathinnercode \mathinnercode \allsplitstyles \thinmuskip

And because we have a few more atom classes this also needs to happen:

\letmathspacing \mathactivecode \mathordinarycode
\letmathspacing \mathvariablecode \mathordinarycode
\letmathspacing \mathovercode \mathordinarycode
\letmathspacing \mathundercode \mathordinarycode
\letmathspacing \mathfractioncode \mathordinarycode
\letmathspacing \mathradicalcode \mathordinarycode
\letmathspacing \mathmiddlecode \mathopencode
\letmathspacing \mathaccentcode \mathordinarycode

\letmathatomrule \mathactivecode \mathordinarycode
\letmathatomrule \mathvariablecode \mathordinarycode
\letmathatomrule \mathovercode \mathordinarycode
\letmathatomrule \mathundercode \mathordinarycode
\letmathatomrule \mathfractioncode \mathordinarycode
\letmathatomrule \mathradicalcode \mathordinarycode
\letmathatomrule \mathmiddlecode \mathopencode
\letmathatomrule \mathaccentcode \mathordinarycode

With \resetmathspacing we get an all-zero state but that might become more refined in the future. What
is not clear from the above is that there is also an inheritance mechanism. The three special muskip reg
isters are actually shortcuts so that changing the register value is reflected in the spacing. When a regular
muskip value is (verbose or as register) that value is sort of frozen. However, the \inherited prefix will
turn references to registers and constants into a delayed value: as with the predefined we now have a more
dynamic behavior which means that we can for instance use reserved muskip registers as we can use the
predefined. A bonus is that one can also use regular glue or dimensions, just in case one wants the same
spacing in all styles (a muskip adapts to the size).

When you look at all of the above you might wonder how users are supposed to deal with math spacing.
The answer is that often they can just assume that TEX does the right thing. If something somehow doesn't
feel right, looking at solutions by others will probably lead a new user to just copy a trick, like injecting
a \thinmuskip. But it can be that atoms depend on the already applied (or not) spacing, which in turn
depends on values in the atom spacing matrix that probably only a few users have seen. So, in the end it all
boils down to trust in the engine and one's eyesight combined with hopefully some consistency in adding
space directives and often with TEX it is consistency that makes documents look right. In ConTEXt we have
many more classes even if only a few characters fit in, like differential, exponential and imaginary.

Fractions again

We now return to the fraction molecule. With the mechanisms at our disposal we can change the fixed
margins to more adaptive ones:

\inherited\setmathspacing \mathbinarycode \mathfractioncode

A different approach to math spacing 26

\allmathstyles \thickermuskip
\inherited\setmathspacing \mathfractioncode \mathbinarycode

\allmathstyles \thickermuskip
\nulldelimiterspace\zeropoint
$x + \frac{1}{x+2} + x$

Here \thickermuskip is defined as 7mu plus 5mu where the stretch is the same as a \thickmuskip and
the width 2mu more. We start out with three variants, where the last two have \nulldelimiterspace set
to 0pt and the first one uses the 1.2pt.

�� �	

�

��������������������

�� �	 ��

�	 ��

�� �	

�

��������������������

�� �	 ��

�	 ��

�� �	

�

��������������������

�� �	 ��

�	 ��

When we now apply the new settings to the last one, and overlay them we get the following output: the first
and last case are rather similar which is why this effort was started in the first place.

�� �	

�

��������������������

�� �	 ��

�	 ���� �	

�

��������������������

�� �	 ��

�	 ���� �	

�

��������������������

�� �	 ��

�	 ��

Of course these changes are not upward compatible but as they are tiny they are not that likely to change
the number of lines in a paragraph. In display mode changes in horizontal dimensions also have little effect.

Penalties

An inline formula can be broken across lines, and for sure there are places where you don't want to break or
prefer to break. In TEX line breaks can be influenced by using penalties. At the outer level of an inline math
formula, we can have a specific penalty before and after a binary and/or relation. The defaults are such that
there are no penalties set, but most macro packages set the so called \relpenalty and \binoppenalty
(the op in this name does not relate to the operator class) so a value between zero and 1000. In LuaTEX we
also have \pre variants of these, so we have four penalties that can be set, but that is not enough in our new
approach.

These penalties are class bound and don't relate to styles, like atom spacing does. That means that while
atom spacing involves ���� �� ���� �� �� potential values, an amount that we can manage by using the discussed
inheritance. The inheritance takes less values because which store 4 style values per class in one number.
For penalties we only need to keep ���� �� �� in mind, plus a range of inheritance numbers. Therefore it was

27 A different approach to math spacing

decided to also generalize penalties so that each class can have them. The magic commands are shown with
some useless examples:

\letmathparent \mathdigitcode
\mathbincode % pre penalty
\mathbincode % post penalty
\mathdigitcode % options
\mathdigitcode % reserved

By default the penalties are on their own, like:

\letmathparent \mathdigitcode
\mathdigitcode % pre penalty
\mathdigitcode % post penalty
\mathdigitcode % options
\mathdigitcode % reserved

The options and reserved parent mapping are not (yet) discussed here. Unless values are assigned they are
ignored.

\setmathprepenalty \mathordcode 100
\setmathpostpenalty \mathordcode 600
\setmathprepenalty \mathbincode 200
\setmathpostpenalty \mathbincode 700
\setmathprepenalty \mathrelcode 300
\setmathpostpenalty \mathrelcode 800

As with spacing, when there is no known value, the parent will be consulted. An unset penalty has a value
of 10000.

After discussing the implications of inline math crossing lines, Mikael and I decided there can be two solu
tions. Both can of course be implemented in Lua, but on the other hand, they make good extensions, also
because it sort of standardized it. The first advanced control feature tweaks penalties:

\mathforwardpenalties 2 200 100
\mathbackwardpenalties 2 100 50

This will add 200 and 100 to the first two math related penalties, and 100 and 50 to the last two (watch out:
the 100 will be assigned to the last one found, the 50 to the one before it). As with all things penalty and line
break related, you need to have some awareness of how non-linear the badness calculation is as well of the
fact that the tolerance and stretch related parameters play a role here.

The second tweak is setting \maththreshold to some value. When set to for instance 40pt, formulas that
take less space than this will be wrapped in a \hbox and thereby will never break across a page.6 Actually
that second tweak has a variant so we have three tweaks! Say that we have this sample formula wrapped in
some bogus text and repeat that snippet a lot of times:

x xx xxx xxxx $1 + x$ x xx xxx xxxx

Now look at the example on the next page. You will notice that the red and blue text have different line breaks.
This is because we have given the threshold some stretch and shrink. The red text has a zero threshold so
it doesn't do any magic at all, while the second has this setup:

6 A future version might inject severe penalties instead, time will learn.

A different approach to math spacing 28

\setupmathematics[threshold=medium]

That setting set the threshold to 4em plus 0.75em minus 0.50em and when the formula size exceeds the
four quads the line break code will use the real formula width but with the given stretch and shrink. Even
tually the calculated size will be used to repackage the formula. In the future we will also provide a way to
define slack more relative to the size and/or number of atoms.

Another way to influence line breaks is to use the two inline math related penalties that have been added at
Mikael's suggestion:

\setupalign [verytolerant]
{\dorecurse{25}{test $\darkred #1^{#1} + x_{#1}^{#1}$ test }\blank}
{\preinlinepenalty 500 \postinlinepenalty -500
\dorecurse{25}{test $\darkgreen #1^{#1} + x_{#1}^{#1}$ test }\blank}
{\postinlinepenalty 500 \preinlinepenalty -500
\dorecurse{25}{test $\darkblue #1^{#1} + x_{#1}^{#1}$ test }\blank}

To get an example that shows the effect takes a bit of trial and error because TEX does a very good job in line
breaking. This is why we've set the tolerance and also use negative penalties.

In addition to the \mathsurround (kern) and \mathsurroundskip (glue) parameters this is a property of
the nodes that mark the beginning and end of an inline math formula.

test �

�

�	 ��

�

�

test test ��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test
��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test �

��

�	 ��

��

��

test test ���

�
��

�	 ��

�
��

�
��

test test ��

�
�

�	 ��

�
�

�
�

test test ���

�
��

�	 ��

�
��

�
��

test test ���

�
��

�	 ��

�
��

�
��

test test ���

�
��

�	 ��

�
��

�
��

test test ���

�
��

�	 ��

�
��

�
��

test test ���

�
��

�	 ��

�
��

�
��

test test ���

�
��

�	 ��

�
��

�
��

test
test ���

�
��

�	 ��

�
��

�
��

test test ��

�
��

�	 ��

�
��

�
��

test test ����

����

�	 ��

����

����

test test ���

���

�	 ��

���

���

test test ����

����

�	 ��

����

����

test test
����

����

�	 ��

����

����

test test ���� ����

�	 ��

����

����

test test ���� ����

�	 ��

����

����

test

test � �

�	 ��

�

�

test test �� ��

�	 ��

��

��

test test �� ��

�	 ��

��

��

test test �� ��

�	 ��

��

��

test test �� ��

�	 ��

��

��

test test �� ��

�	 ��

��

��

test test �� ��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test �

��

�	 ��

��

��

test test ���

�
��

�	 ��

�
��

�
��

test test ��

�
�

�	 ��

�
�

�
�

test test ���

�
��

�	 ��

�
��

�
��

test test
���

�
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��

�
��

�	 ��

�
��

�
��

test test ����

����

�	 ��

����

����

test test ���

���

�	 ��

���

���

test test ����

����

�	 ��

����

����

test test ����

����

�	 ��

����

����

test
test ���� ����

�	 ��

����

����

test test ���� ����

�	 ��

����

����

test

test �

�

�	 ��

�

�

test test ��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test ��

��

�	 ��

��

��

test test
��

��

�	 ��

��

��

test test �� ��

�	 ��

��

��

test test � ��

�	 ��

��

��

test test ��� �
��

�	 ��

�
��

�
��

test test �� �
�

�	 ��

�
�

�
�

test test ��� �
��

�	 ��

�
��

�
��

test test
���

�
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test ��� �
��

�	 ��

�
��

�
��

test test �� �
��

�	 ��

�
��

�
��

test test ���� ����

�	 ��

����

����

test test ��� ���

�	 ��

���

���

test test ���� ����

�	 ��

����

����

test test ���� ����

�	 ��

����

����

test test
����

����

�	 ��

����

����

test test ���� ����

�	 ��

����

����

test

Flattening

The traditional engine has some code for flattening math constructs that in the end are just one character.
So in the end, \tilde{u} and \tilde {uu} become different objects even if both are in fact accents. In
fact, when an accent is constructed there is a special code path for single characters so that script placement
adapts to the shape of that character.

However because of interaction with primes, which themselves are sort of superscripts and due to the some
what weird way fonts provide them when it comes to positioning and sizes, in ConTEXt we already are fooling

29 A different approach to math spacing

x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx
xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx
xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x
xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 ��
x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx
� �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx
xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx
xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x
xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx
xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx

x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx
x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx x xx xxx xxxx � �	 �� x xx xxx xxxx

around a bit with these characters. For understandable reasons of memory usage, complexity and eightbit
ness primes are not a native TEX thing but more something that is handled at the macro level (although not
in MkIV and LMTX).

In the end it was script placements on (widely) accented math characters that made us introduce a dedicated
\Umathprime primitive that adds a prime to a math atom. It permits an uninterupted treatment of scripts
while in the final assembly of the molecule the prime, superscript, subscript and maybe even prescripts
that prime gets squeezed in. Because the concept of primes is missing in OpenType math an additional font
parameter PrimeTopRaisePercent has been introduced as well as an \Umathprimeraise primitive. In
retrospect I should have done that earlier but one tends to stick to the original as much as possible. However,
at some point Mikael and I reached a state where we decided that proper (clean) engine extensions make
way more sense than struggling with border cases and explaining users why things are so complicated.

The input $ X \Uprimescript{'} ^2 _3 $ gives this:

𝑋2H__

3H____V

′
H__ 𝑋2H__

3H____V

′
H__ 𝑋2H__

3H____V

′
H__ 𝑋2H__

3H____V

′
H__

Latin Modern Cambria Pagella Dejavu

With \tracingmath = 1 this nicely traces as:

> \inlinemath=
\noad[ord][...]
.\nucleus
..\mathchar[ord] family "0, character "58
.\superscript
..\mathchar[dig] family "0, character "32
.\subscript
..\mathchar[dig] family "0, character "32
.\primescript
..\mathchar[ord] family "0, character "27

Of course this feature can also be used for other prime like ornaments and who knows how it will evolve
over time.

You can influence the positioning with \Umathprimesupshiftwhich adds some kern between a prime and
superscript. The \Umathextraprimeshiftmoves a prime up. The \Umathprimeraise is a font parameter
that defaults to 25 which means a raise of 25%of the height. These are all (still) experimental parameters.

A different approach to math spacing 30

Fences

Fences can be good for headaches. Because the math that I (or actually my colleague) deal with is mostly
school math encoded in presentation MathML (sort or predictable) or some form of sequential ascii based
input (often rather messy and therefore unpredictable due to ambiguity) fences are a pain. A TEXie can make
sure that left and right fences are matched. A TEXie also knows when something is an inline parenthesis or
when a more high level structure is needed, for instance when parentheses have to scale with what they
wrap. In that case the \left and \right mechanism is used. In arbitrary input missing one of those is
fatal. Therefore, handling of fences in ConTEXt is one of the more complex sub mechanisms: we not only
need to scale when needed, but also catch asymmetrical usage.

A side effect of the encapsulating fencing construct is that it wraps the content in a so called inner (as in
\mathinner) which means that we get a box, and it is a well known property of boxes that they don't break
across lines. With respect to fences, a way out is to not really fence content, but do something like this:

\left(\strut\right. x + 1 \left.\strut\right)

and hope for the best. Both pairs are coupled in the sense that their sizes will match and the strut is what
determines the size. So, as long as there is a proper match of struts all is well, but it is definitely a decent
hack. The drawback is in the size of the strut: if a formula needs a higher one, larger struts have to be used.
This is why in plain TEX we have these commands:

\def\bigl {\mathopen \big } \def\bigm {\mathrel\big } \def\bigr {\mathclose\big }
\def\Bigl {\mathopen \Big } \def\Bigm {\mathrel\Big } \def\Bigr {\mathclose\Big }
\def\biggl{\mathopen \bigg} \def\biggm{\mathrel\bigg} \def\biggr{\mathclose\bigg}
\def\Biggl{\mathopen \Bigg} \def\Biggm{\mathrel\Bigg} \def\Biggr{\mathclose\Bigg}

\def\big #1{{\hbox{$\left#1\vbox to 8.5pt{}\right.\nomathspacing$}}}
\def\Big #1{{\hbox{$\left#1\vbox to 11.5pt{}\right.\nomathspacing$}}}
\def\bigg#1{{\hbox{$\left#1\vbox to 14.5pt{}\right.\nomathspacing$}}}
\def\Bigg#1{{\hbox{$\left#1\vbox to 17.5pt{}\right.\nomathspacing$}}}

\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt} % renamed

The middle is kind of interesting because it has relation properties, while the \middle introduced in �� -TEX
got open properties, but we leave that aside.

In ConTEXt we have plenty of alternatives, including these commands, but they are defined differently. For
instance they adapt to the font size. The hard coded point sizes in the plain TEX code relates to the font and
steps available in there (either by next larger or by extensible). The values thereby need to be adapted to the
chosen body font as well as the body font size. In MkIV and even better in LMTX we can actually consult the
font and get more specific sizes.

But, this section is not about how to get these fixed sizes. Actually, the need to choose explicitly is not what
we want, especially because TEX can size delimiters so well. So, take this code snippet:

$ x = \left(\dorecurse{40}{\frac{x}{x+#1} +} x \right) $

When we typeset this inline, as in �� �� �!

��

��������������������

�� �	 �

�	

��

��������������������

�� �	 ��

�	

��

��������������������

�� �	 ��

�	

��

��������������������

�� �	 ��

�	

��

��������������������

�� �	 ��

�	

��

��������������������

�� �	 ��

�	

��

��������������������

�� �	 ��

�	

��

��������������������

�� �	 ��

�	

��

��������������������

�� �	 ��

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 �
�

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 �
��

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ���

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ���

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	

��

������������������������

�� �	 ����

�	 �� �" ,
we get nicely scaled fences but in a way that permits line breaks. The reason is that the engine has been
extended with a fenced class so that we can recognize later on, when TEX comes to injecting spaces and
penalties, that we need to unpack the construct. It is another beneficial side effect of the generalization.

31 A different approach to math spacing

The Plain TEX code can be used to illustrate some of what we discussed before about fractions. In the next
code we use excessive delimiter spacing:

\def\Bigg#1{% watch the wrapping in a box
{%
\hbox {%

$\normalleft#1\vbox to 17.5pt{}\normalright.\nomathspacing$%
}%

}%
}

\nulldelimiterspace0pt
\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

\nulldelimiterspace10pt
\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

\nulldelimiterspace10pt
\def\nomathspacing{\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

This renders as follows. We explicitly set \nulldelimiterspace to values because in ConTEXt it is now
zero by default.

�#H__ __VH__H__ � �	 �� �$ H__ __VH__H__ �#H__ __VH__H__
�
H__
������

H__

��H__
__VH__H__ �$H__ __VH__H__ �#H__ __VH__H__ � �	 �� �$ H__ __VH__H__ �#H__ __VH__H__

�
H__
������

H__

��H__
__VH__H__ �$H__ __VH__H__ �#H__ __VH__H__ � �	 �� �$ H__ __VH__H__ �#H__ __VH__H__

�
H__
������

H__

��H__
__VH__H__ �$H__ __VH__H__

0pt with
reset at end

10pt with
reset at end

10pt without
reset at end

Radicals

In traditional TEX a radical with degree is defined as macro. That macro does some measurements and
typesets the result in four sizes for a choice. The macro typesets the degree in a box that contains the degree
as formula. There is a less guesswork going on than with respect to how the radical symbol is shaped but as
we're talking plain TEX here it works out okay because the default font is well known.

Radicals are a nice example of a two dimensional ‘extender’ but only the vertical dimension uses the ex
tension mechanism, which itself operates either horizontally or vertically, although in principle it could go
both ways. The horizontal extension is a rule and the fact that the shape is below the baseline (as are other
large symbols) will make the rule connect well: the radical shape sticks out a little, so one can think of the
height reflecting the rule height.7 In OpenType fonts there is a parameter and in LuaTEX we use the default
rule thickness for traditional fonts, which is correct for Latin Modern. There are more places in the fonts

7 When you zoom in you will notice that this is not always optimal because of the way the slope touched the rule.

A different approach to math spacing 32

where the design relates to this thickness, for instance fraction rules are supposed to match the minus, but
this is a bit erratic if you compare fonts. This is one of the corrections we apply in the goodie files.

In OpenType the specification of the radical also includes spacing properties of the degree and that is
why we have a primitive in LuaTEX that also handles the degree. It is what we used in ConTEXt MkIV. But
. . . we actually end up with a situation that compares to the already discussed fraction: there is space
added before a radical when there is a degree. However, because we now have a radical atom class, we
can avoid using that one and use the new pairwise spacing. Some fuzzy spacing logic in the engine could
therefore be removed and we assume that \Umathradicaldegreebefore is zero. For the record: the
\Umathradicaldegreeafter sort of tells how much space there is above the low part of the root, which
means that we can compensate for multi-digit degrees.

Zeroing a parameter is something that relates to a font which means that it has to happen for each math
font which in turn can mean a family-style combination. In order to avoid that complication (or better: to
avoid tracing clutter) we have a way to disable a parameter:

\ruledhbox{$x + \sqrt[123]{b}^1_2$}
\ruledhbox{$x + \sqrt[12] {b}^1_2$}
\ruledhbox{$x + \sqrt[1] {b}^1_2$}
\ruledhbox{$x + \sqrt {b}^1_2$}

𝑥 + 123√−−−𝑏1
2 𝑥 + 12√−−−𝑏1

2 𝑥 + 1√−−−𝑏1
2 𝑥 + √−−−𝑏1

2
\setmathignore\Umathradicaldegreebefore 0

𝑥 + 123√−−−𝑏1
2 𝑥 + 12√−−−𝑏1

2 𝑥 + 1√−−−𝑏1
2 𝑥 + √−−−𝑏1

2
\setmathignore\Umathradicaldegreebefore 1

Latin Modern

One problem with these spacing parameters is that they are inconsistent across fonts. The Latin Modern
has a rather large space before the degree, while Cambria and Pagella have little. That means that when you
prototype a mechanism the chosen solution can look great but not so much when at some point you use
another font.

𝑥 + 123√−−−
𝑏
1
2 𝑥 + 12√−−−

𝑏
1
2 𝑥 + 1√−−−

𝑏
1
2 𝑥 + √−−−

𝑏
1
2

\setmathignore\Umathradicaldegreebefore 0

𝑥 + 123√−−−
𝑏
1
2 𝑥 + 12√−−−

𝑏
1
2 𝑥 + 1√−−−

𝑏
1
2 𝑥 + √−−−

𝑏
1
2

\setmathignore\Umathradicaldegreebefore 1

Cambria

More fences

One of the reasons why the MkII and MkIV fence related mechanism is somewhat complex is that we want
a clean solution for filtering fences like parenthesis by size, something that in the traditional happens via a

33 A different approach to math spacing

fake fence pair that encapsulates a strut of a certain size. In LMTX we use the same approach but have made
the sequence more configurable. In practice that means that the values 1 up to 4 are just that but for some
fonts we use the sequence 1 3 5 7. There was no need to adapt the engine as it already worked quite well.

Integrals

The Latin Modern fonts have only one size of big operators and one reason can be that there is no need for
more. Another reason can be that there was just no space in the font. However, an OpenType font has plenty
slots available and the reference font Cambria has integral signs in sizes as well as extensibles.

In LuaTEX we already have generic vertical extensibles but that only works well with specified sizes. And,
cheating with delimiters has the side effect that we get the wrong spacing. In LuaMetaTEX however we have
ways to adapt the size to what came or what comes. In fact, it is a mechanism that is available for any atom
that we support. However, it doesn't play well with script and this whole \limits and \nolimits is a bit
clumsy so Mikael and I decided that different route had to be followed. For adaptive large operators we
provide this interface:

$ x + \integral [color=darkred,top={t},bottom={b}] {\frac{1}{x}} = 10 $

$ x + \startintegral [color=darkblue,top={t},bottom={b}]
\frac{1}{x}

\stopintegral = 10 $

$ x + \startintegral [color=darkgreen,top={t},bottom={b},method=vertical]
\frac{1}{x}

\stopintegral= 10 $

This text is not about the user interface so we won't discuss how to define additional large operators using
one-liners.

�� �	 �%

�&

�'

�

������

��

�� ��� �� �	 �%

�&

�'

�

������

��

�� ��� �� �	

�&

�%

�'

�

������

��

�� ���

The low level LuaMetaTEX implementation handles this input:

\Uoperator \Udelimiter "0 \fam "222B {top} {bottom} {...}
\Uoperator limits \Udelimiter "0 \fam "222B {top} {bottom} {...}
\Uoperator nolimits \Udelimiter "0 \fam "222B {top} {bottom} {...}

plus the usual keywords that fenced accept, because after all, this is just a special case of fencing.

Currently these special left operators are implemented as a special case of fences because that mechanism
does the scaling. It means that we need a (bogus) right fence, or need to brace the content (basically create
an atom). When no right fence is found one is added automatically. Because there is no real fencing, right
fences are removed when processing takes place. When you specify a class that one will be used for the
left and right spacing, otherwise we have open/close spacing.

Going details

When the next feature was explored Mikael tagged it as math micro typography and the reason is that you
need not only to set up the engine for it but also need to be aware of this kind of spacing. Because we wanted
to get rid of this script spacing that the font imposes we configured ConTEXt with:

A different approach to math spacing 34

\setmathignore\Umathspacebeforescript\plusone
\setmathignore\Umathspaceafterscript \plusone

This basically nils all these tiny spaces. But the latest configuration has this instead:

% \setmathignore \Umathspacebeforescript\zerocount % default
% \setmathignore \Umathspaceafterscript \zerocount % default

\mathslackmode \plusone

\setmathoptions\mathopcode \plusthree
\setmathoptions\mathbinarycode \plusthree
\setmathoptions\mathrelationcode\plusthree
\setmathoptions\mathopencode \plusthree
\setmathoptions\mathclosecode \plusthree
\setmathoptions\mathpunctcode \plusthree

This tells the engine to convert these spaces into what we call slack: disposable kerns at the edges. But it
also converts these kerns into a glue component when possible. As with all these extensions it complicates
the machinery but users will never see that. Now, the last six lines do the magic that made us return to
honoring the spaces: we can tell the engine to ignore this slack when there are specific classes at the edges.
These options are a bitset and 1 means “no slack left” and 2 means “no slack right” so 3 sets both.

\def\TestSlack#1%
{\vbox\bgroup

\mathslackmode\zerocount
\hbox\bgroup

\setmathignore\Umathspacebeforescript\zerocount
\setmathignore\Umathspaceafterscript \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\red
\setmathignore\Umathspacebeforescript\plusone
\setmathignore\Umathspaceafterscript \plusone
#1

\egroup
\egroup}

\startcombination[nx=3]
{\showglyphs\TestSlack{$f^2 > $}} {}
{\showglyphs\TestSlack{$ > f^^2$}} {}
{\showglyphs\TestSlack{$f^2 > f^^2$}} {}

\stopcombination

�(

��

�)

�(

��

�)

�) �(

��

�) �(

��

�(

��

�) �(

��

�(

��

�) �(

��

Because this overall removal of slack is not granular enough a while later we introduced a way to set this per
class, as is demonstrated in the following example.

35 A different approach to math spacing

\def\TestSlack#1%
{\vbox\bgroup

\mathslackmode\plusone
\hbox\bgroup\red
\setmathignore\Umathspacebeforescript\zerocount
\setmathignore\Umathspaceafterscript \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\green
\setmathoptions\mathrelationcode \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\blue
\setmathoptions\mathrelationcode \plusthree
#1

\egroup
\egroup}

\startcombination[nx=3]
{\showglyphs\TestSlack{$f^2 > $}} {}
{\showglyphs\TestSlack{$ > f^^2$}} {}
{\showglyphs\TestSlack{$f^2 > f^^2$}} {}

\stopcombination

�(

��

�)

�(

��

�)

�(

��

�)

�) �(

��

�) �(

��

�) �(

��

�(

��

�) �(

��

�(

��

�) �(

��

�(

��

�) �(

��

Of course we need to experiment a lot with real documents and it might take a while before all this is stable (in
the engine and in ConTEXt). And as we don't need to conform to the decades old golden TEX math standards
we have some degrees of freedom in this: for Mikael and me it is pretty much a visual thing where we look
closely at large samples. Of course in practice details get lost when we print at 10 point but that doesn't
mean we can't provide the best experience.8

As we mention class specific options, we also need to mention the special case where we have for instance
simple formulas like single atoms (for instance digits) are preceded by a sign (binary). These special spac
ing cases are handled by a lookahead flag that can be set \setmathoptions <class>, like the slack flags.
More options might become available in due time. When set the lookahead will check for the automatically
injected end class atom and use that for spacing when found. The mentioned lookahead is one of the hard
coded heuristics in the traditional engine but here we need to explicitly configure it.

8 Whenever I look at (my) old (math) school books I realize that Don Knuth had very good reasons to come up with TEX and, it being hard
to beat, TEX still sets the standard!

A different approach to math spacing 36

Ghosts

As plain TEX has macros like \vphantom you also find them in macro packages that came later. These create
a boxes that have their content removed after the dimensions are set. They take space and are invisible but
there's also nothing there.

A variant in the upgraded math machinery are ghosts: these are visible in the sense that they show up but
ignored when it comes to spacing. Here is an example. The option bit set here tells the engine that we ghost
at the right, so we have ghosts around the relation (it controls where the spacing ends up).

$
x
\mathatom class \mathghostcode {!!}
>
\mathatom class \mathghostcode options "00000020 {!!}
1
\quad
x
\mathatom class \mathghostcode {\hbox{\smallinfofont ord}}
>
\mathatom class \mathghostcode options "00000020 {\hbox{\smallinfofont dig}}
1

$

You never know when this comes in handy but it fits in the new, more granular approach to spacing. The
code above shows that it's just a class, this time with number 17.

�� �* �*

ordrel
�)

reldig
�* �* � �� ord

ordrel
�)

reldig
dig�

Struts

In order to get consistent spacing the ConTEXt macro package makes extensive use of struts in text mode as
well as math mode. The normal way to implement that is either an empty box or a zero width rule, both with
a specifically set height and depth. In ConTEXt MkII and MkIV (and for a long time in LMTX too) they were
rules so that we could visualize them: they get some width and kerns around them to compensate for that.

In order to not let them interfere with spacing we could wrap them into a ghost atom but it is kind of ugly.
Anyway, before we had these ghost atoms an alternative to struts was already implemented: a special kind
of rule. The reason is that I wanted a cleaner and more predictable way to adapt struts to the math style uses
and sometimes predicting that is fragile. What we want is a delayed assignment of dimensions.

We have two solutions. The first one uses two math parameters that themselves adapt to the style, as do
other parameters: \Umathruleheight and \Umathruledepth. The other solution relates a font (or family)
and character with the strut rule which is then used as measure for the height and depth. Just for the record:
this also works in text mode, which is why a recent LMTX also does use that for struts now. The optional
visualization is just part of the regular visualization mechanism in ConTEXt which already had provisions for
struts. A side effect of this is that the rule primitives now accept three more keywords: font, fam and char,
in addition to the already present traditional ones width, height and depth, the (backend) margin ones
left (or top) and right (or bottom) options, as well as xoffset and yoffset). The command that creates

37 A different approach to math spacing

a rule with subtype strut is simply \srule. Because struts are rather macro package specific I leave it to
this.

One positive side effect is that we could simplify the ConTEXt fraction mechanism a bit. Over time control
over the (font driven) gaps was introduced but that is not really needed because we zero the gaps anyway.
There was also a tolerance mechanism which again was not used. However, for skewed fractions we do use
the new tolerance mechanism as well as gap control.

Atoms

Now that we have generic atoms (\mathatom) another, sometimes confusing aspect of the math parsing can
be solved. Take this:

\def\MyBin{\mathbin{\tt mybin}}
$ x ^ \MyBin _ \MyBin $

The parser just doesn't like that which means that one has to use

\def\MyBin{\mathbin{\tt mybin}}
$ x ^ {\MyBin} _ {\MyBin} $

or:

\def\MyBin{{\mathbin{\tt mybin}}}
$ x ^ \MyBin _ \MyBin $

But the later has side effects: it creates a list that can influence spacing. It is for that reason that we do
accept atoms where they were not accepted before. Of course that itself can have side effects but at least we
don't get an error message. It fits well into the additional (user) classes model. And, given that in ConTEXt
the \frac command is actually wrapped as \mathfrac the next will work too:

$ x^\frac{1}{2} + x^{\frac{1}{2}} $

but in practice you should probably use the braced version here for clarity.

The vcenter primitive

Traditionally this primitive is bound to math but it had already been adapted to also work in text mode. As
part of the upgrade of math we can now also pass all the options that normal boxed take and we can also
cheat with the axis. Here is an example:

\def\TEST{\hbox\bgroup
\darkred \vrule width 2pt height 4pt
\darkgreen \vrule width 10pt depth 2pt

\egroup}
$

x - \mathatom \mathvcentercode {!!!} -
+ \ruledvcenter {\TEST}
+ \ruledvcenter {\TEST}
+ \ruledvcenter axis 1 {\TEST}
+ \ruledvcenter xoffset 2pt yoffset 2pt {\TEST}
+ \ruledvcenter xoffset -2pt yoffset -2pt {\TEST}

A different approach to math spacing 38

+ x
$

There was already a vcenter class available before we did this:

��

ordbin
�+

binvce
�* �* �*

vcebin
�+

binord
�	

vcebin
�	

binvce vcebin
�	

binvce vcebin
�	

binvce vcebin
�	

binvce vcebin
�	

binord
��

Text

Sometimes you want text in math, for instance sin or cos but text in math is not really text:

$ \setmathspacing\mathordinarycode\mathordinarycode\textstyle 10mu fin(x) $

The result demonstrates that what looks like a word actually becomes three math atoms:

�(

ordord
�,

ordord
�- �.

opeord
��

ordclo
�/

Okay, so how about then wrapping it into a text box:

$
\setmathspacing\mathordinarycode\mathordinarycode\textstyle 10mu
fin(x) \quad \hbox{fin}(x)

$

Here we get:

�(

ordord
�,

ordord
�- �.

opeord
��

ordclo
�/

cloord
fin�.

opeord
��

ordclo
�/

We even get a ligature which might be an indication that we're not using a math font which indeed is the
case: the box is typeset in the regular text font.

\def\Test#1%
{\setmathspacing\mathordinarycode\mathordinarycode\textstyle 5mu
$\showglyphs
#1% style
{\tf fin} \quad
\hbox{fin} \quad
\mathatom class \mathordinarycode textfont {fin}
\mathatom class \mathordinarycode textfont {\tf fin}
\mathatom class \mathordinarycode textfont {\hbox{fin}}
\mathatom class \mathordinarycode mathfont {\hbox{fin}}
$}

39 A different approach to math spacing

When we feed this macro with the \textstyle, \scriptstyle and \scriptscriptstyle we get:

�0 �1 �2 fin �(�, �- �0 �1 �2 fin �0 �1 �2

text

�3 �4 �5 fin �6 �7 �8 �3 �4 �5 fin�3 �4 �5

script

�9 �: �; fin �< �= �> �9 �: �; fin�9 �: �;

scriptscript

Here you see a new atom option action: textfont which does as much as setting the font to the current
family font and the size to the one used in the style. For the record: you only get ligatures when they are
configured and provided by the font (and as math is a script itself it is unlikely to work).9

Tracing

I won't discuss the tracing features in ConTEXt here but for sure the visualizer helps a lot in figuring out all
this. In LuaMetaTEX we carry a bit more information with the resulting nodes so we can provide more details,
for instance about the applied spacing and penalties. Some is shown in the examples. A more recent tracing
feature is this:

\tracingmath 1
\tracingonline 1
$

\mathord (
\mathord {(}
\mathord \Udelimiter"4 0 `(
\Udelimiter"4 0 `(

$

That gives us on the console (the dots represent detailed attribute info that we omit here):

7:3: > \inlinemath=
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathlist
7:3: ...\noad[open][...]
7:3:\nucleus
7:3:\mathchar[open] family "0, character "28
7:3: \noad[ord][...]
7:3: .\nucleus

9 The existing mechanisms in ConTEXt already dealt with this but it is nevertheless nice to have it as a clean engine feature.

A different approach to math spacing 40

7:3: ..\mathchar[open] family "0, character "28
7:3: \noad[open][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28

A tracing level of 2 will spit out some information about applied spacing and penalties between atoms (when
set) and level 3 will show the math list before the first and second pass (a mix of nodes and noads) we well
as the result (nodes) plus return some details about rules, spacing and penalties applied.

Is there more?

The engine already provides the option to circumvent the side effect of a change in a parameter acting sort
of global: the last value given is also the one that a second pass starts with. The \frozen prefix will turn
settings into local ones but that's another (already old) topic. There are many such improvements and op
tions not mentioned here but you can find them mentioned and explained in older development stories. A
lot has been around for a while but not been applied in ConTEXt yet.

When TEX was written one important property (likely related to memory consumption) is that node lists
have only forward pointers. That means that the state of preceding material has to be kept track of: there
is no going (or looking) back. In LuaTEX we have double linked lists so in principle we can try to be more
clever but so far I decided not to touch the math machinery in that way. But who knows what comes next.

Those italics

Right from the start of LuaTEX it became clear that the fact that TEX assumes the actual width of glyphs
to be incremented by the italic correction that then selectively is removed has been an issue. It made for
successive attempts to improve spacing in ConTEXt by providing pseudo features. But, when we moved from
assembled Unicode math fonts to ‘real’ ones that became messy: what trick to apply when and even worse
where? In the end there are only a very few shapes that actually are affected in the sense that when we don't
deal with them it looks bad. It also happens that one of those shapes is the italic ‘f’, a letter that is used
frequently in math. It might even be safe to say that the simple fact that the math italic f has this excessively
wrong width and thereby pretty large italic correction is the cause of many problems.

In the LMTX approach Mikael and I settled on patching shapes in the so called font goodie files, aka lfg files
and only a handful of entries needed a treatment. This makes a good case for removing the traditional font
code path from LuaMetaTEX.

modern: 𝑎1
2 𝑏1

2 𝑐1
2 𝑑1

2 𝑒1
2 𝑓1

2 𝑔1
2 ℎ1

2 𝑖12 𝑗1
2 𝑘1

2 𝑙12 𝑚1
2 𝑛1

2 𝑜1
2 𝑝1

2 𝑞1
2 𝑟1

2 𝑠1
2 𝑡12 𝑢1

2 𝑣1
2 𝑤1

2 𝑥1
2 𝑦1

2 𝑧1
2 𝒂𝟏

𝟐 𝒃𝟏
𝟐 𝒄𝟏

𝟐 𝒅𝟏
𝟐 𝒆𝟏

𝟐 𝒇𝟏
𝟐 𝒈𝟏

𝟐 𝒉𝟏
𝟐 𝒊𝟏𝟐

𝒋𝟏
𝟐 𝒌𝟏

𝟐 𝒍𝟏𝟐 𝒎𝟏
𝟐 𝒏𝟏

𝟐 𝒐𝟏
𝟐 𝒑𝟏

𝟐 𝒒𝟏
𝟐 𝒓𝟏

𝟐 𝒔𝟏
𝟐 𝒕𝟏

𝟐 𝒖𝟏
𝟐 𝒗𝟏

𝟐 𝒘𝟏
𝟐 𝒙𝟏

𝟐 𝒚𝟏
𝟐 𝒛𝟏

𝟐

cambria: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓

1
2 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2 𝑦

1
2 𝑧

1
2 𝒂𝟏𝟐 𝒃

𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐

𝒍𝟏𝟐 𝒎
𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

pagella: 𝑎12 𝑏1
2 𝑐12 𝑑1

2 𝑒12 𝑓 12 𝑔1
2 ℎ1

2 𝑖12 𝑗12 𝑘1
2 𝑙12 𝑚1

2 𝑛1
2 𝑜12 𝑝1

2 𝑞1
2 𝑟12 𝑠12 𝑡12 𝑢1

2 𝑣1
2 𝑤1

2 𝑥1
2 𝑦1

2 𝑧12 𝒂𝟏
𝟐 𝒃𝟏

𝟐 𝒄𝟏
𝟐 𝒅𝟏

𝟐 𝒆𝟏𝟐 𝒇 𝟏
𝟐 𝒈𝟏

𝟐 𝒉𝟏
𝟐 𝒊𝟏𝟐 𝒋𝟏𝟐 𝒌𝟏

𝟐 𝒍𝟏𝟐 𝒎𝟏
𝟐

𝒏𝟏
𝟐 𝒐𝟏

𝟐 𝒑𝟏
𝟐 𝒒𝟏

𝟐 𝒓𝟏𝟐 𝒔𝟏𝟐 𝒕𝟏𝟐 𝒖𝟏
𝟐 𝒗𝟏

𝟐 𝒘𝟏
𝟐 𝒙𝟏

𝟐 𝒚𝟏
𝟐 𝒛𝟏

𝟐

termes: 𝑎12 𝑏12 𝑐12 𝑑12 𝑒12 𝑓 12 𝑔12 ℎ12 𝑖12 𝑗12 𝑘12 𝑙12 𝑚1
2 𝑛12 𝑜12 𝑝12 𝑞12 𝑟12 𝑠12 𝑡12 𝑢12 𝑣12 𝑤1

2 𝑥12 𝑦12 𝑧12 𝒂𝟏𝟐 𝒃𝟏𝟐 𝒄𝟏𝟐 𝒅𝟏𝟐 𝒆𝟏𝟐 𝒇 𝟏𝟐 𝒈𝟏𝟐 𝒉𝟏𝟐 𝒊𝟏𝟐 𝒋𝟏𝟐 𝒌𝟏𝟐 𝒍𝟏𝟐 𝒎𝟏
𝟐 𝒏𝟏𝟐

𝒐𝟏𝟐 𝒑𝟏𝟐 𝒒𝟏𝟐 𝒓𝟏𝟐 𝒔𝟏𝟐 𝒕𝟏𝟐 𝒖𝟏𝟐 𝒗𝟏𝟐 𝒘𝟏
𝟐 𝒙𝟏𝟐 𝒚𝟏𝟐 𝒛𝟏𝟐

bonum: �?

�

��

�@

�

��

�A

�

��

�B

�

��

�C

�

��

�(

�

��

�D

�

��

�E

�

��

�,

�

��

�F

�

��

�G

�

��

�H

�

��

�I

�

��

�-

�

��

�J

�

��

�K

�

��

�L

�

��

�M

�

��

�N

�

��

�O

�

��

�P

�

��

�Q

�

��

�R

�

��

��

�

��

�S

�

��

�T

�

��

�U

�V

�W

�X

�V

�W

�Y

�V

�W

�Z

�V

�W

�[

�V

�W

�\

�V

�W

�]

�V

�W

�^

�V

�W

�_

�V

�W

�`

�V

�W

�a

�V

�W

�b

�V

�W

�c

�V

�W

�d

�V

�W

�e

�V

�W

�f

�V

�W

�g

�V

�W

�h

�V

�W

�i

�V

�W

�j

�V

�W

�k

�V

�W

�l

�V

�W

�m

�V

�W

�n

�V

�W

�o

�V

�W

�p

�V

�W

41 A different approach to math spacing

One of the other very sloped symbol is the integral, although most fonts have them more upright than tex has.
Of course there are many variants of these integrals in a math font. Here we also have some font parameters
that we can tune, which is what we do.

Accents

Accents are common in languages other than English and it's English that TEX was made for. Although the
seven bit variant became eight bit handling accents never was sophisticated and one of the main reasons is
of course that one could use pre-built composed characters. The OpenType format brought proper anchor
ing (aka marks) to font formats and when LuaTEX deals with text those kick in. In OpenType math however,
anchoring is kind of limited to the top position only. Because the TEX Gyre fonts are based on traditional
TEX fonts, their accents have not become better suited.

$ \hat{x} \enspace \widehat{x} \enspace \widehat{xx} \enspace \widehat{xxx}
\enspace \hat{f} \enspace \widehat{f} $

When looking at examples you need to be aware of the fact hat fonts can have been adapted in the goodie
files.10 So, for instance bounding boxes and such can differ from the original. Anyway, the previous code in
Cambria looks as follows.

�̂� �𝑥 �𝑥𝑥 �𝑥𝑥𝑥 𝑓 𝑓
With Latin Modern we get:

̂𝑥 ̂𝑥 𝑥𝑥 𝑥𝑥𝑥 ̂𝑓 ̂𝑓
And Dejavu comes out as:

�̂� �̂� 𝑥𝑥 𝑥𝑥𝑥 ̂𝑓 ̂𝑓
As you can see there are some differences. In for instance Latin Modern the shape of the hat and smallest
wide hat are different and the first wide one has zero dimensions combined with a negative anchor. When
an accented character is followed by a superscript or prime the italic correction of the base kicks in but that
cannot be enough to not let this small wide hat overflow into the script. We could compensate for it but then
we need to know the dimensions. Of course we can consult the bounding box but it makes no sense to let
heuristics enter the machinery here while we're in the process generalization. One option is to have two
extra parameters that can be used when the width of the accent comes close to the width of the base (we

10 Extreme examples can be found for Lucida Bright where we not only have to fix the extensible parts of horizontal braces but also have
to provide horizontal brackets.

A different approach to math spacing 42

then assume that zero accent width means that it has base width) we add an additional kern. In the end we
settled for a (semi automatic) correction option in the goodie files.

There are actually three categories of extensible accents to consider: those that resemble the ones used in
text (like tildes and hats), those wrapping something (like braces and bracket but also arrows) and rules (that
in traditional TEX indeed are rules). In ConTEXt we have different interfaces for each of these in order to have
a more extensive control. The text related ones are the simplest and closest to what the engine supports out
of the box but even there we use tweaked glyphs to get better spacing because (of course) fonts have different
and inconsistent spacing in the boundingbox above and below the real shape. This is again some tweak that
we moved from being automatic to being under goodie file control. But this is all too ConTEXt specific to discuss
here in more detail.

Decision time

After lots of tests Mikael and I came to the conclusion that we're facing the following situation. When type
setting math most single characters are italic and we already knew from the start of the LuaTEX project that
the italics shapes are problematic when it comes to typesetting math. But it looks like even some upright
characters can have italic correction: in TexGyreBonum for instance the bold upright fhas italic correction,
probably because it then can (somehow) kern with a following i. It anyhow assumes no italic correction to
be applied between these characters.

In the end the mixed math font model model got more and more stressed so one decision was to simply
assume fonts to be used that are either Cambria like OpenType, or mostly traditional in metrics, or a hybrid
of both. It then made more sense to change the engine control options that we have into ones that simply
enable certain code paths, independent of the fact if a font is OpenType or not. It then become a bit “crap
in, crap out”, but because we already tweak fonts in the goodie files it's quite okay. Some fonts have bad
metrics anyway or miss characters and it makes no sense to support abandoned fonts either. Also, when
a traditional font is assembled one can set up the engine with different flags and we can deal with it as we
wish. In the end it is all up to the macro package to configure things right, which is what we tried to do for
months when rooting out all the artifacts that fonts bring.11

That said, the reason why some (fuzzy) mixed model works out okay (also in LuaTEX) is that proper OpenType
fonts use staircase kerns instead of italic correction. They also have no ligatures and kerns. We also suspect
that not that much attention is paid to the rendering. It's a bit like these “How many f's do you count in this
sentence?” tests where people tend to overlook of, if and similar short words. Mathematicians loves f's
but probably also overlook the occasionally weird spacing and kerning.

A side effect is that mixing OpenType and traditional fonts is also no longer assumed which in turn made a
few (newly introduced) state variables obsolete. Once everything is stable (including extensions discussed
before) some further cleanup can happen. Another side effect is that one needs to tell the engine what to
apply and where, like this:

\mathfontcontrol\numexpr \zerocount
+\overrulemathcontrolcode
+\underrulemathcontrolcode
+\fractionrulemathcontrolcode
+\radicalrulemathcontrolcode
+\accentskewhalfmathcontrolcode
+\accentskewapplymathcontrolcode

11 In previous versions one could configure this per font but that has been dropped.

43 A different approach to math spacing

% + checkligatureandkernmathcontrolcode
+\applyverticalitalickernmathcontrolcode
+\applyordinaryitalickernmathcontrolcode
+\staircasekernmathcontrolcode

% +\applycharitalickernmathcontrolcode
% +\reboxcharitalickernmathcontrolcode
+\applyboxeditalickernmathcontrolcode
+\applytextitalickernmathcontrolcode
+\checktextitalickernmathcontrolcode

% +\checkspaceitalickernmathcontrolcode
+\applyscriptitalickernmathcontrolcode
+\italicshapekernmathcontrolcode

\relax

There might be more control options (also for tracing purposes) and some of the symbolic (ConTEXt) names
might change for the better. As usual it will take some years before all is stable but because most users use
the latest greatest version it will be tested well.

After this was decided and effective I also decided to drop the mapping from traditional font parameters to
the OpenType derives engine ones: we now assume that the latter ones are set. After all, we already did that
in ConTEXt for the virtual assemblies that we started out with in the beginning of LuaTEX and MkIV.

Dirty tricks

Once you start playing with edge cases you also start wondering if some otherwise complex things can be
done easier. The next macro brings together a couple of features discussed in previous sections. It also uses
two state variables: \lastleftclass and \lastrightclass that hold the most recent edge classes.

\tolerant\permanent\protected\def\NiceHack[#1]#:#2% special argument parsing
{\begingroup
\setmathatomrule
\mathbegincode\mathbincode % context constants
\allmathstyles
\mathbegincode\mathbincode

\normalexpanded
{\setbox\scratchbox\hpack

ymove \Umathaxis\Ustyle\mathstyle % an additional box property
\bgroup
\framed % a context macro
[location=middle,#1]
{$\Ustyle\mathstyle#2$}%

\egroup}%
\mathatom
class 32 % an unused class
\ifnum\lastleftclass <\zerocount\else leftclass \lastleftclass\fi
\ifnum\lastrightclass<\zerocount\else rightclass \lastrightclass\fi
\bgroup
\box\scratchbox

\egroup
\endgroup}

A different approach to math spacing 44

\def\MyTest#1%
{$ x #1 x $\quad
$ x \NiceHack[offset=0pt]{#1} x $\quad
$\displaystyle x #1 x $\quad
$\displaystyle x \NiceHack[offset=0pt]{#1} x $}

\scale[scale=2000]{\MyTest{>}} \blank
\scale[scale=2000]{\MyTest{+}} \blank
\scale[scale=2000]{\MyTest{!}} \blank
\scale[scale=2000]{\MyTest{+\frac{1}{2}+}}\blank
\scale[scale=2000]{\MyTest{\frac{1}{2}}} \blank

Of course this is not code you immediately come up with after reading this text, also because you need to
know a bit of ConTEXt.

��

ordrel
�)

relord
�� ��

ordrel
�)

relord
�� ��

ordrel
�)

relord
�� ��

ordrel
�)

relord
��

��

ordbin
�	

binord
�� ��

ordbin
�	

�� ��

ordbin
�	

binord
�� ��

ordbin
�	

��

�� �*

facord
�� ��

�*

facord
�� �� �*

facord
�� ��

�*

facord
��

��

ordbin
�	

binfra

�

������

��

frabin
�	

binord
�� ��

ordbin
�	

binfra

�

������

��

fraord
�	 �� ��

ordbin
�	

binfra

�

������

��

frabin
�	

binord
�� ��

ordbin
�	

binfra

�

������

��

fraord
�	 ��

��

ordfra

�

������

��

fraord
�� ��

ordfra

�

������

��

fraord
�� ��

ordfra

�

������

��

fraord
�� ��

ordfra

�

������

��

fraord
��

There are a few control options, like \noatomruling that can be used to prevent rules being applied to the
next atom. We can use these in order to achieve more advanced alignment results, but discussing math
alignments would demand many more pages than make sense here.

Tuned kerning

The ConTEXt distribution has dedicated code for typesetting units that dates back to the mid nineties of the
previous century but was (code wise) upgraded from MkII to MkIV which made it end up in the physics name
space. There is not much reason to redo that code but when we talk new spacing classes it might make sense
at some point to see if we can use less code for spacing by using a ‘unit’ class. When Mikael pointed out that,
for instance in Pagella:

𝑚3/ 𝑠2
doesn't space well the obvious answer is: use the units mechanism because this kind of rendering was why
it was made in the first place. However, the question is of course, can we do better anyway. The chosen
solution uses a combination of class options and tweaked shape kerning:

45 A different approach to math spacing

𝑚3/ 𝑠2
An example of a class setup in ConTEXt is:

\setmathoptions\mathdivisioncode\numexpr
\nopreslackclassoptioncode +\nopostslackclassoptioncode
+\lefttopkernclassoptioncode +\righttopkernclassoptioncode
+\leftbottomkernclassoptioncode +\rightbottomkernclassoptioncode

\relax

and, although we don't go into the details of tweaking here, this is the kind if code you will find in the goodie
file:

{
tweak = "kerns",
list = {

[0x2F] = {
topleft = -0.3,
bottomright = 0.2,

}
}

}

where the numbers are a percentage of the width. This specification translates in a math staircase kerning
recipe.

More font tweaks

Once you start looking into the details of these fonts you are likely to notice more issues. For instance, in the
nice looking Lucida math fonts the relations have inconsistent widths and even shapes. This can partially
be corrected by using a stylistic alternate but even that forced us to come up with a mechanism to selec
tively replace ‘bad’ shapes because there is not that much granularity in the alternates. And once we looked
at these alternates we noticed that the definition of of script versus calligraphic is also somewhat fuzzy and
font dependent. That made for yet another tweak where we can swap alphabets and let the math machinery
choose the expected shape. In Unicode this is handled by variant selectors which is rather cumbersome.
Because these two styles are used mixed in the same document, a proper additional alphabet would have
made more sense. As we already support variant selectors it was no big deal to combine that mechanism
with a variant selector features over a range of calligraphic or script characters, which indeed is what math
ematicians use (Mikael can be very convincing). With this kind of tweaks the engine doesn't really play a
role: we always could and did deal with it. It's just that upgrading the engine made us look again at this.

Normalization

Once we had all these spacing related features upgraded it was time to move to other aspects math typeset
ting. Most of that is not handled in the engine but at the macro level. Examples of this are making sure that
math spacing obeys the rules across alignment cells, breaking long formulas into lines with various align
ment schemes. The first is accommodated by using the primitives that set the states at the beginning and
end of a formula so that is definitely something that the engine facilitates. The second was already possible
in MkIV but is somewhat more transparent now by using tagged boundary nodes.

A different approach to math spacing 46

But for this summary we stick to discussing the more low level features and where most of what we discussed
here concerns horizontal spacing we also have some vertical magic like the mentioned scaled fences and
operators but they sort of behave as expected given the traditional TEX approach. We have some more:

\definemathradical[esqrt][sqrt][height=\maxdimen,depth=\maxdimen]
\definemathradical[ssqrt][sqrt][height=3ex,depth=2ex]

\def\TestSqrt#1%
{test $ #1{x} + #1{\sin(x)} $ test\quad
test $ #1{x} + #1{\sin(x)} + #1{\frac{1}{x}} $ test\quad
test $ #1{x} + #1{x^2} $ test\quad
test $ \left(#1{x} + #1{x^2} \right) $ test\par}

\TestSqrt \sqrt \blank
\TestSqrt \esqrt \blank
\TestSqrt \ssqrt \blank

test �w ��������

�� �	

�w

������������������������������������

�x�1 �2 �. �� �/ test test �w ��������

�� �	

�w

������������������������������������

�x�1 �2 �. �� �/ �	

�y

������

�

������

��

test test �w ��������

�� �	

�w

��������������

��

�� test test �! �w

��������

�� �	

�w

��������������

��

��

�" test

test �w ��������

�� �	

�w

������������������������������������

�x�1 �2 �. �� �/ test test �y
��������

�� �	

�y

������������������������������������

�x�1 �2 �. �� �/ �	

�y

������

�

������

��

test test �w ��������

�� �	

�w

��������������

��

�� test test �! �w

��������

�� �	

�w

��������������

��

��

�" test

test �z
��������

�� �	

�z

������������������������������������

�x�1 �2 �. �� �/ test test �z
��������

�� �	

�z

������������������������������������

�x�1 �2 �. �� �/ �	

�z

������

�

������

��

test test �z
��������

�� �	

�z

��������������

��

�� test test
�

�z

��������

�� �	

�z

��������������

��

��

*

test

In the above example you see that square roots can be made to adapt themselves to other such roots. For
this we had to add an additional pass. Originally there are just two passes: a first typesetting pass where
the maximum height and depth are collected so that in the second pass the fences can be generated and
injected. That second pass also handles the spacing and penalties. In LuaMetaTEX we now have (1) radi
cal body typesetting, (2) radical typesetting, (3) atom typesetting with height and depth analysis, (4) fence
typesetting, and finally (5) inject spacing, penalties, remove slack, etc.

In the examples above we set the height and depth and these are passed by keywords to the radical prim
itive (most atoms and math structures accept keywords that control rendering). Here the special values
\maxdimen signal that we have to make radicals of equal height and depth.

In MkII we had ways to snap formulas so that we got consistent line spacing. For a while I wondered if the
engine could help with that but in the end no specific engine features are needed, but is is definitely an area
that I keep an eye on because consistent spacing is important. After all one has to draw aline somewhere
and we always have the Lua callback mechanism available.

More goodies

This summary will never be complete because we keep improving the rendering of math. For instance,
when Mikael checked some less used math alphabets of Latin Modern and Bonum, as part of the goodie
file completion, we were a bit horrified by the weird top accent anchoring, inconsistent dimensions and
stale italic correction present in some glyphs. For instance there was a italic correction after an upright
blackboard lowercase ‘f’, the upright digits had somewhat random top accent anchors, and due to the lack
of granularity in for instance wide hats, characters that are often seen together got inconsistent wide hats.
Also clashing with scripts was possible. All this resulted in yet another bunch of features:

47 A different approach to math spacing

• In the goodie files we added efficient options to remove anchors from alphabets (or individual charac
ters).

• In the goodie files we added similar options to remove italic correction.

• Characters got a few extra fields: margins that can be used to cheat with dimensions so that we can get
more consistent wide accents.

• The engine also got the possibility to compensate for accents when superscripts need to be anchored (by
diminishing the height of accents as well as via an offsets).

We expect to add (and use) some more options like this when we run into other persistent issues. For sure
there are some already that are not discussed here. Of course one can argue why we spend time on this: in
15 years of Unicode math usage in the TEX community no one ever bothered about a wide hat over the digit 7
and no one wondered about the bad spacing after a lowercase blackboard f, but as we go on we do run into
these phenomena and it has become a bit of an obsession to get it all right.12

By closely looking at default positioning of accents on top of characters Mikael noticed that the anchor points
are actually always in the middle of the topmost left and right points of shapes. It looks like these points are
calculates automatically and therefore you end up with an anchor on top of the highest part of the seven in
Latin Modern Serif but in the middle of a seven with a flat top. You also get anchors at the top of the vertical
line in b, d, and on the sticky bit of the g. It is a good example of being careful with automating font design.
In our case, removing most anchors and adding a few later on was the solution.13

Untold stories

There are of course more features but not all make sense to discuss here. For instance, all hard coded prop
erties are now configurable. Take for instance:

\Umathsuperscriptvariant\textstyle 1
\Umathsubscriptvariant \textstyle 1

$ 1_2^3 \quad {\scriptstyle 1_2^3} \quad {\displaystyle 1_2^3}$

This gives us:

�

��

��

�

�|

��

�

��

��

Here the number refers to one of the build in variants, that themselves are a range of styles. In the next table
the narrow variants are cramped:

0 normal D D T T S S SS SS

1 cramped D D T T S S SS SS

2 subscript S S S S SS SS SS SS

3 superscript S S S S SS SS SS SS

12 Of course all this puts the usual bashing of Microsoft Word by users in a different perspective: limited control in the TEX engine, faulty
fonts that come with TEX distributions, lack of testing and quality control, and probably the believe that all gets done well automatically
plays a role here.

13 In the original fonts and traditional TEX engine a kerning pair between a so called skew char and the character at hand is used.

A different approach to math spacing 48

4 small S S S S SS SS SS SS
5 smaller S S S S SS SS SS SS

6 numerator S S S S SS SS SS SS

7 denominator S S S S SS SS SS SS

8 double (superscript) S S S S SS SS SS SS

If you want you can change these values but of course we're then basically changing some of logic behind
math rendering and for sure Don Knuth had good reasons for these defaults.

Another untold story relates to multi scripts. When a double script is seen, TEX injects an ordinary recovery
atom, issues an error message, and when told so just continues. In order to always continue LuaMetaTEX in
troduces a mode variable that default to minus one, as negative values will trigger the error. Zero of positive
values are interpreted as a class and bypass the error. Here is an example of usage:

\mathdoublescriptmode
"\tohexadecimal\mathexperimentalcode % experimental class
\tohexadecimal\mathexperimentalcode % we have to set both left and right

\setmathspacing \mathexperimentalcode \mathexperimentalcode \allmathstyles 20mu
\setmathspacing \mathordinarycode \mathexperimentalcode \allmathstyles 20mu

$x^1_2^3_4^^5__6^^7__8$

We get this:

��

�

��

����

����

��

��

Final words

One can argue that all these new features can make a document look better. But you only have to look at what
Don Knuth produces himself to see that one always could do a good job with TEX, although maybe at the cost
of some extra spacing directives. It is the fact that OpenType showed up as well as many more math fonts,
all with their own (sometimes surprising) special effects, that made us adapt the engine. Of course there
are also new possibilities that permit better and more robust macro support. The TEXbook has a chapter on
“the fine points of mathematics typesetting” for a reason.

There has never been an excuse to produce bad looking documents. It is all about care. For sure there
is a category of users who are forced to use TEX, so they are excused. There are also those who have no
eye for typography and rely on the macro package, so there we can to some extent blame the authors of
those packages. And there are of course the sloppy users, those who don't enter a revision loop at all. They
could as well use any system that in some way can handle math. One can also wonder in what way massive
remote editing as well as collaborative working on documents make things better. It probably becomes less
personal. At meetings and platforms TEX users like to bash the alternatives but in the end they are part of
the same landscape and when it comes to math they dominate. Maybe there is less to brag about then we like:
just do your thing and try to do it as good as possible. Rely on your eyes and pay attention to the details, which
is possible because the engine provided the means. The previous text shows a few things to pay attention to.

Now that all the basics that have to do with proper dimensions, spacing, penalties and logic are dealt with,
we moved on to the more high level constructs. We also haven't applied some features in the ConTEXt code
base yet and are now experimenting with the more high level constructs. For instance the frequently used

49 A different approach to math spacing

math alignment mechanism has been overhauled to support advanced inter atom spacing across rows, and
in practice one will now more often not even use this alignment mechanism and use the alignment features
in multi-line display math, if only because they offer advanced annotation. As a nice side effect some of
the mechanism that we use for this (like the improved \vadjust primitive engine feature) also became
somewhat more powerful in regular text mode and we'll see where that brings us.

Given the time we spend on this and given the numerous new features it will take a while before all that got
added to the engine will be documented. Of course the usage in ConTEXt also serves as documentation. This
is not really a problem because most users will happily rely on the goodie files being okay and maintained,
and usage other than ConTEXt is unlikely to use these new features, if only because it will break away from
the established long term standards and habits.

The binary 50

6 The binary

This is a very short chapter. Because LuaMetaTEX is also a script runner, I want to keep it lean and mean. So,
when the size exceeded 3MB after we'd extended the math engine, I decided to (finally) let all the MetaPost
number interfaces pass pointers which brought down the binary 100K and below the 3MB mark again.

I then became curious about how much of the binary actually is taken by MetaPost, and a bit of calculation
indicated that we went from 20.1% down to 18.3%. Here is the state per May 13, 2022:

component pct bytes comment

liblua 11.8 349158 lua core, tex interfaces
libluaoptional 2.4 70263 framework, several small interfaces, cerf
libluarest 1.9 55911 general helper libraries
libluasocket 2.4 71640 helper that interfaces to the os libraries
libmimalloc 4.1 121186 memory management partial
libminiz 1.2 34962 minimalistic core
libmp 18.3 540615 mp graphic core, number libraries, lua interfacing
libpplib 7.4 220386 pdf reading core, encryption helpers
libtex 50.5 1495970 extended tex core

luametatex 2960091 2022-05-13

It is clear that the TEX core is good for half of the code (50.5%) with the accumulated Lua stuff (18.5%) and
MetaPost being a good second (18.3%) and third and the pdf interpreting library a decent fourth (7.4%) place.

51 The binary

To the point 52

7 To the point

In the 2022 ntg Maps 53 there is a visual very attractive article about generative graphics with MetaPost by
Fabrice Larribe. These graphics actually use very little MetaPost code that use randomized paths and points
and the magic is in getting the parameters right. This means that one has to process them a lot to figure out
what looks best. Here is an example of such a graphic definition. I will show more variants so a rendering
happens later on.

\startMPdefinitions
vardef agitate_a(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel, rlength ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := for i=1 upto nbpoints:

point (i/nbpoints) along R
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

I will not explain the working of this because there is the article. Instead, I will focus on something that came
up when the Maps was prepared: performance. Not only are these graphics large (which is no real problem)
but they also take a while to render (which is something that does matter when one wants to find the best a
parameters). For the first few variants we keep the same names of variables as in the article.

In figure 7.1 we show the (kind of) graphic that we are dealing with. Such an agitator is used in a loop so
that we agitate multiple circles, where we go from large to small with for instance 4868, 4539, 4221, 3892,
3564, 3245, 2917, 2599, 2270, 1941, 1623, 1294, 966, 647 and 319 points. The article uses a definition like
below for the graphic where you can see the agitator being applied to each of the circles.

path P ; numeric NbCircles, S, nzero, fn, tzero, ft ;

randomseed := 10 ;
defaultscale := .05 ;

NbCircles := 15 ; S := 10 ; nzero := 10 ; fn := 1.3 ; tzero := 5 ; ft := 0.8 ;

for c = NbCircles downto 1 :
P := fullcircle scaled (c*6.5) scaled 3 ;
P := agitate_a(P, S, nzero, fn, tzero, ft) ;
eofill P

withcolor transparent(1,4/NbCircles,col) ;
draw P

withpen pencircle scaled 0.1

53 To the point

Figure 7.1 Fabrice's agitated circles, with reduced
properties to keep this file small (see source).

transparent(1,4/NbCircles,.90[black,col]) ;
endfor ;

The first we noticed is that the graphics processes faster when double mode is used: we gain 40–50% and
the reason for this is that modern processors are very good at handling doubles while MetaPost in scaled
mode has to do a lot of juggling with pseudo fractions. In the timings shown later we leave that improvement
out. Also, because of this observation ConTEXt LMTX now defaults its MetaPost instances to method double.

When I stared at the agitator code I noticed that the along macro was used. That macro returns a point at
given percentage along a path. In order to do that the macro calculates the length of the path and then locates
that point. The primitive operations involved are arclength, arctime of and point of and each these
takes some time to complete. A first improvement is to inline the along and hoist the length calculation
outside the loop.

\startMPdefinitions
vardef agitate_b(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel, rlength ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
rlength := (arclength R) / nbpoints;
R := for i=1 upto nbpoints:

(point (arctime (i * rlength) of R) of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

To the point 54

enddef ;
\stopMPdefinitions

There is not that much that we can improve here but because Mikael Sundqvist and I had just extended
MetaPost with some intersection improvements, it made sense to see what we could do in the engine. In the
next variant the arcpoint combines arctime of and point of. The reason this is much faster is that we
are already on the right spot when we got the time, and we save a sequential point of lookup, something
that takes more time when paths are longer.

\startMPdefinitions
vardef agitate_c(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel, rlength ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
rlength := (arclength R) / nbpoints;
R := for i=1 upto nbpoints:

(arcpoint (i * rlength) of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

At that stage we wondered if we could come up with a primitive like intersectiontimelist for these
points; here a list refers to a path in which we collect the points. Now, as with the intersection primitives,
MetaPost loops over the segments of a path and works within such a segment. That is why the following
variant has an explicit start at point zero: we can now use offsets (discrete points).

\startMPdefinitions
vardef agitate_d(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel, rlength ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
rlength := (arclength R) / nbpoints;
R := for i=1 upto nbpoints:

(arcpoint (0, i * rlength) of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

55 To the point

During an evening zooming Mikael and I figured out, by closely looking at the source, how the arc functions
work and how we could indeed come up with a list primitive. The main issue was to use the right information.
Mikael sat down to make a pure MetaPost variant and I hacked the engine. Mikael came up with a first variant
similar to the following, where we use a new primitive subarclength.

\startMPdefinitions
vardef arcpoints_a(expr thepath, cnt) =

save len, seg, tot, tim, stp, acc ;
numeric len ; len := length thepath ;
numeric seg ; seg := 0 ;
numeric tot ; tot := 0 ;
numeric tim ; tim := 0 ;
%
numeric acc[] ; acc[0] := 0 ;
for i = 1 upto len:

acc[i] := acc[i-1] + subarclength (i-1,i) of thepath ;
endfor;
%
numeric stp ; stp := acc[len] / cnt;
%
point 0 of thepath
for tot = stp step stp until acc[len] :

hide(
forever :

exitif ((tim < tot) and (tot < acc[seg+1])) ;
seg := seg + 1 ;
tim := acc[seg] ;

endfor ;
)
-- (arcpoint (seg,tot-tim) of thepath)

endfor if cycle thepath : -- cycle fi
enddef ;

\stopMPdefinitions

Getting points of a path is somewhat complicated by the fact that the length of a closed path is different from
that of an open path even if they have the same number of so-called knots. Internally a path is always a closed
loop. That way, when MetaPost runs over a path, it can easily access the first point when it's at the end,
something that is handy when that point has to be taken into account. Therefore, the end condition of a loop
over a path is the arrival at the beginning. In the next graphic we show a bit how these first (zero) and last
points are located. One reason why the previous macros start at point one and not at zero is that arclength
can overflow due to the randomly growing path otherwise.

point length of p

point length of q
point 0 of p
point 0 of q

p is open (dark)
q is closed (light)

The difference between starting at zero or one for a cycle is show below, we get more and more points!

To the point 56

0
1

23

0
1

23

456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103

In the next variants we will not loop over points but step to the arclength. Watch the new subarclength
primitive that starts at an offset. This is much faster than taking a subpath of. We can move the accumu
lator loop into the main loop:

\startMPdefinitions
vardef arcpoints_b(expr thepath, cnt) =

save len, aln, seg, tot, tim, stp, acc ;
numeric len ; len := length thepath ;
numeric aln ; aln := arclength thepath ;
numeric seg ; seg := 0 ;
numeric tot ; tot := 0 ;
numeric tim ; tim := 0 ;
numeric stp ; stp := aln / cnt;
numeric acc ; acc := subarclength (0,1) of thepath ;
%
point 0 of thepath
for tot = stp step stp until aln :

hide(
forever :

exitif tot < acc ;
seg := seg + 1 ;
tim := acc ;
acc := acc + subarclength (seg,seg+1) of thepath ;

endfor ;
)
-- (arcpoint (seg,tot-tim) of thepath)

endfor if cycle thepath : -- cycle fi
enddef ;

\stopMPdefinitions

If you don't like the hide the next variant also works okay:

\startMPdefinitions
vardef mfun_arc_point(text tot)(text thepath) =

forever :
exitif tot < acc ;
seg := seg + 1 ;
tim := acc ;
acc := acc + subarclength (seg,seg+1) of thepath ;

endfor ;
(arcpoint (seg,tot-tim) of thepath)

enddef ;

vardef arcpoints_c(expr thepath, cnt) =
save len, aln, seg, tot, tim, stp, acc ;

57 To the point

numeric len ; len := length thepath ;
numeric aln ; aln := arclength thepath ;
numeric seg ; seg := 0 ;
numeric tot ; tot := 0 ;
numeric tim ; tim := 0 ;
numeric stp ; stp := aln / cnt;
numeric acc ; acc := subarclength (0,1) of thepath ;
%
point 0 of thepath
for tot = stp step stp until aln :

-- mfun_arc_point(tot)(thepath)
endfor if cycle thepath : -- cycle fi

enddef ;
\stopMPdefinitions

This got applied in three test agitators

\startMPdefinitions
vardef agitate_e_a(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := arcpoints_a(R, nbpoints) ; % original Mikael
R := for i=0 upto length R:

(point i of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;

vardef agitate_e_b(expr thepath, S, n, fn, t, ft) =
save R, nbpoints, noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := arcpoints_b(R, nbpoints) ; % merged Mikael
R := for i=0 upto length R:

(point i of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

To the point 58

enddef ;

vardef agitate_e_c(expr thepath, S, n, fn, t, ft) =
save R, nbpoints, noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := arcpoints_c(R, nbpoints) ; % split Mikael
R := for i=0 upto length R:

(point i of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

The new engine primitive shortens these agitators:

\startMPdefinitions
vardef agitate_e_d(expr thepath, S, n, fn, t, ft) =

save R, nbpoints, noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=1 upto S :

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := arcpointlist nbpoints of R;
R := for i=0 upto length R:

(point i of R)
randomized noiselevel

..
endfor cycle ;

endfor ;
R

enddef ;
\stopMPdefinitions

So are we done? Did we get rid of all bottlenecks? The answer is no! We still loop over the list in order to
randomize the points. For each point we start at the beginning of the list. Let's first rewrite the agitator a
little:

\startMPdefinitions
vardef agitate_f_a(expr pth, iterations, points, pointfactor, noise,
noisefactor) =
save currentpath, currentpoints, currentnoise ; path currentpath ;
currentpath := pth ;
currentpoints := points ;

59 To the point

currentnoise := noise ;
for step = 1 upto iterations :

currentpath := arcpointlist currentpoints of currentpath ;
currentnoise := currentnoise * noisefactor ;
currentpoints := currentpoints * pointfactor ;
if currentnoise <> 0 :

currentpath :=
for i = 0 upto length currentpath:

(point i of currentpath) randomized currentnoise ..
endfor

cycle ;
fi

endfor ;
currentpath

enddef ;
\stopMPdefinitions

One of the LuaMetaFun extensions is a fast path iterator. In the next variant the inpath macro sets up an
iterator (regular loop) with the length as final value. In the process the given path gets passed to Lua where
we can access it as array. The pointof macro (again a Lua call) injects a pair. You will be surprised that
even with passing the path to Lua and calling out to Lua to inject the pair this is way faster than the built-in
point of.

\startMPdefinitions
vardef agitate_f_b(expr pth, iterations, points, pointfactor, noise,
noisefactor) =
save currentpath, currentpoints, currentnoise ; path currentpath ;
currentpath := pth ;
currentpoints := points ;
currentnoise := noise ;
for step = 1 upto iterations :

currentnoise := currentnoise * noisefactor ;
currentpoints := currentpoints * pointfactor ;
currentpath := arcpointlist currentpoints of currentpath ;
if currentnoise <> 0 :

currentpath :=
for i inpath currentpath :

(pointof i) randomized currentnoise ..
endfor

cycle ;
fi

endfor ;
currentpath

enddef ;
\stopMPdefinitions

It was tempting to see if a more native solution pays of. One problem there is that a path is not really suitable
for that as we currently don't have a data type that represents a point. Okay, actually we sort of have because
we can use the transform record that has six points but that is something I will look into later (it just got
added to the todo list).

To the point 60

The i within pth iterator is no conceptual beauty but does the job. Just keep in mind that it is just means
for this kind of applications: run over a path point by point. The i has the current point number. Because
we run over a path following the links we only run forward.

\startMPdefinitions
vardef agitate_f_c(expr pth, iterations, points, pointfactor, noise,
noisefactor) =
save currentpath, currentpoints, currentnoise ; path currentpath ;
currentpath := pth ;
currentpoints := points ;
currentnoise := noise ;
for step = 1 upto iterations :

currentnoise := currentnoise * noisefactor ;
currentpoints := currentpoints * pointfactor ;
currentpath := arcpointlist currentpoints of currentpath ;
if currentnoise <> 0 :

currentpath :=
for i within currentpath :

pathpoint
randomized currentnoise
..

endfor
cycle ;

fi
endfor ;
currentpath

enddef ;
\stopMPdefinitions

Any primitive solution more complex than this, like first creating a fast access data structure, of having a
double linked list, or using some iterator larger than a simple numeric is very likely to have no gain over the
super fast Lua variant.

We show the average runtime for three runs. Here we don't render the paths, which takes about one second,
including conversion to pdf. Of course measurements like this can change a bit over time. To these times
you need to add about a second for the draw and fill operations as well as conversion to a pdf stream with
transparencies. The improvement in runtime makes it possible to use agitators like this at runtime espe
cially because normally one will not use such (combinations of) large paths.

agitate_a 776.26 agitate_e_a 291.99 agitate_f_a 10.82
agitate_b 276.43 agitate_e_b 76.06 agitate_f_b 2.55
agitate_c 259.89 agitate_e_c 77.27 agitate_f_c 2.17
agitate_d 260.41 agitate_e_d 18.67

The final version of the agitator is slightly different because it depends if we start at zero or one but gives
similar results and adapt the noise before or after the loop.

\startMPdefinitions
vardef agitator(expr pth, iterations, points, pointfactor, noise, noisefactor)
=
save currentpath, currentpoints, currentnoise ; path currentpath ;

61 To the point

currentpath := pth ;
currentpoints := points ;
currentnoise := noise ;
for step = 1 upto iterations :

currentpath := arcpointlist currentpoints of currentpath ;
if currentnoise <> 0 :

currentpath :=
for i within currentpath :

pathpoint
randomized currentnoise
..

endfor
cycle ;

fi
currentnoise := currentnoise * noisefactor ;
currentpoints := currentpoints * pointfactor ;

endfor ;
currentpath

enddef ;
\stopMPdefinitions

We use a similar example as in the mentioned article but coded a bit differently:

\startMPcode
path pth ;
nofcircles := 15 ; iterations := 10 ;
points := 10 ; pointfactor := 1.3 ;
noise := 5 ; noisefactor := 0.8 ;

nofcircles := 5 ; iterations := 10 ;
points := 5 ; pointfactor := 1.3 ;

% for c = nofcircles downto 1 :
% pth := fullcircle scaled (c * 6.5) scaled 3 ;
% points := floor(arclength(pth) * 0.5) ;
% pth := agitator(pth, iterations, points, pointfactor, noise, noisefactor) ;
% eofill pth
% withcolor darkred
% withtransparency(1,4/nofcircles) ;
% draw pth
% withpen pencircle scaled 0.1
% withtransparency(1,4/nofcircles) ;
% endfor ;

% currentpicture := currentpicture xsized TextWidth ;

for c = nofcircles downto 1 :
pth := fullcircle scaled (c * 6.5) scaled 3 ;
points := floor(arclength(pth) * 0.5) ;
pth := agitator(pth, iterations, points, pointfactor, noise, noisefactor) ;
draw pth

To the point 62

withpen pencircle scaled 1
withcolor (c/nofcircles)[darkgreen,darkred] ;

endfor ;

currentpicture := currentpicture xsized .5TextWidth ;
\stopMPcode

For Mikael and me, who both like MetaPost, it was a nice distraction from working months on extending
math in LuaMetaTEX, but it also opens up the possibilities to do more with rendering (math) functions and
graphics, so in the end we get paid back anyway.

63 To the point

Not all makes sense 64

8 Not all makes sense

The development of ConTEXt is to a large extend driven by users with a wide variety of background and usage.
I can safely say that much time spent on ConTEXt qualifies as hobby (or maybe even more by curiosity). Of
course I do use it myself but personally I never make advanced documents. I'm not a writer, nor an artist, nor
a typesetter. I do like challenges so that's why we get mechanisms that can do tricky things and some stay
sort of hidden because the practical usage is limited, although you will be surprised to see what users find
in the source and use anyway. My colleague uses ConTEXt for large scale, mostly complex and demanding
xml documents where one source is rendered in different ways with different parts used. Many features in
ConTEXt relate to workflows.

I like to visualize things so that's part of the development cycle. I never start from some ‘typographical’
point of view, if only because in my experience much design is arbitrary and personal. The output should
look okay on the average, and on reasonable simple documents there should be no need for manual inter
vention. I am quite willing to accept an occasional less optimal looking page and don't loose sleep over it.
A next time, when a sentence gets added, it might be better and the problem can be moved further down
the pages. Also, given what one runs into nowadays the average job that TEX does is pretty good (but users
can of course mess up). It is boundary conditions that determine in what direction a style or solution goes.
The more abstract one argues about typesetting and possible solutions, the less interested I often become
simply because there are no perfect solutions for every case. There are always those last few % points that
need manual intervention or some trickery and most users get that. It is also what makes using TEX fun.

As mentioned, the TEX engine does a pretty good job on average but that didn't prevent me from extending
it: the mix of TEX, MetaPost and Lua is even more fun. But what is the development agenda there? Again, it is
very much driven by what users want me to solve, but there's also the curiosity element. A recent example of
extending is the math sub system. It was already made more configurable and some features where added
but now it is really flexible. This was doable because the heuristics in the engine are clear. It was could be
done because I had a dedicated partner in this journey.14 Other parts are more difficult but have nevertheless
been extended, to mention a few: alignments, par building and page building. However the last two use
some heuristics that are hard to make more flexible. For instance the badness calculation combined with
the loop that tries to find breakpoints is already quite good and the somewhat special values involved in the
calculations have been optimized stepwise by Don Knuth during the development of TEX.

Does that mean that one cannot add some options to influence that tuning? For sure one can. The source
has this comment:

“When looking for optimal line breaks, TEX creates a ‘break node’ for each break that is feasible, in the
sense that there is a way to end a line at the given place without requiring any line to stretch more
than a given tolerance. A break node is characterized by three things: the position of the break (which
is a pointer to a glue_node, math_node, penalty_node, or disc_node); the ordinal number of the
line that will follow this breakpoint; and the fitness classification of the line that has just ended, i.e.,
tight_fit, decent_fit, loose_fit, or very_loose_fit.””

The book TEX by Topic (by Eijkhout) gives a good explanation of the way lines are broken so there is no need
to go into detail here. The code involved is not that trivial anyway. The criteria for deciding what is bad are
as follows:

verdict effect badness

14 In another chapter I summarize what Mikael Sundqvist and I did in this context.

65 Not all makes sense

very loose stretch >= 100
loose stretch >= 13

decent <= 12
tight shrink >= 13

When the difference between two lines is more than one, they are considered to be visually incompatible.
Then, if the badness of any line exceeds pretolerance a second pass is triggered, When pretolerance is
negative the first pass is skipped. When the badness of any line exceeds tolerance a third pass is triggered
and emergencystretch is used to make things fit.

Where in traditional TEX a lot of parsing, hyphenation, font handling and par building is combined, in Lua
MetaTEX we always work with completely hyphenated and font readied lists. In traditional TEX the first pass
works on the original non-hyphenated lists.

In the source there is an old note that one day I will play with a plugged in badness calculation but it also
says that there might be a performance impact as well as all kind of unforeseen side effects because TEX
makes sure that the heuristics lead to values that don't result in overflow and such.

Another note concerns more fitness values. Doing that will increase the runtime a little but on a modern
machine that is not really an issue. Shortly after I upgraded my laptop to a somewhat newer one I decided
to play with this and therefore any performance hit would go unnoticed anyway. The following snippet from
the source shows the idea:

typedef enum fitness_value {
very_loose_fit, /*tex lines stretching more than their stretchability */
loose_fit, /*tex lines stretching 0.5 to 1.0 of their stretchability */
semi_loose_fit,
decent_fit, /*tex for all other lines */
semi_tight_fit,
tight_fit, /*tex lines shrinking 0.5 to 1.0 of their shrinkability */
n_of_finess_values

} fitness_value;

This means that when we loop over very_loose_fitupto tight_fitwe have two more classes to take into
account: the semi ones. Playing with that and associating them with magic numbers quickly learned that we
enter the area of ‘random improvements’. You can render variants and because some will look better and
others worse one can argue for any case. And as usual, once a user (unaware of what we are doing) looks at
it, things like successive hyphens, wider spaces, rivers and such are seen as the main difference. Of course
spacing is the direct result of this kind of messing, but because the effects are actually mostly noticeable on
non-justified texts it then is the end-of-line spacing that influences the verdict.15

In the end this kind of extensions make little sense. One can of course play science and introduce all kind
of imaginary cases where it might work but that is why I started this summary by explaining what drives
developments: users and constraints. Playing science for the sake of it is pseudo science. And, as with

15 When hz showed up in pdfTEX we did experiments with random samples of its usage and TEXies at user group meetings and the results
were such that one could only draw the conclusion that on the average a user has no clue if something is good or bad for what reason.
The strong emphasis in the TEX community on hyphenation makes that an eye-catching criterium. So having two in a successive lines
even when there is really no better solution is what draws the attention and users then tend to think that what a survey is about is “The
quality of hyphenation related to breaking paragraphs into lines.”

Not all makes sense 66

much science related to typesetting (probably with the exception of Don's work) most has therefore little
practical value.

So, do we keep this feature or not? We actually do, if only to be able to demonstrate the fuzziness of this. We
have an undocumented magic parameter:

\linebreakcriterium"0C0C0C63

Actually the value is zero but when one of the four byte pairs is zero it will default to "0C (12) or "63 (99).
The values concern semitight, decent, semiloose, and loose. After some trial and error I got to the
examples on the next two pages. You need to zoom in to see the differences (the black one is the original).
In setting used are:

\hsize \setupalign
1 12em normal, stretch, tolerant
2 18em flushleft

As mentioned, one can look at specific expected properties and draw conclusions but when TEX cannot find
a good solution using its default, it is unlikely that alternative settings help you out, unless you do that on a
per-paragraph basis.

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
1
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
2
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
3
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
4
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
5
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
1
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
2
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
3
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
4
C
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 i
nf

or
m

at
io

n-
-

th
ic

k
w

or
ld

s
be

ca
us

e
of

 o
ur

m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca

pa
ci

ty
 t

o
se

le
ct

, e
di

t,
sin

gl
e

ou
t,

st
ru

ct
ur

e,

hi
gh

lig
ht

,
gr

ou
p,

pa

ir,

m
er

ge
,

ha
r

m
on

iz
e,

sy

nt
he

siz
e,

fo

cu
s,

or
ga

ni
ze

,
co

nd
en

se
,

re
du

ce
,

bo
il

do
w

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
,

cl
as

sif
y,

 l
ist

,
ab

st
ra

ct
,

sc
an

,
lo

ok
 i

nt
o,

id
ea

liz
e,

iso

la
te

,
di

sc
rim

i
na

te
,

di
st

in
gu

ish
,

sc
re

en
,

pi
ge

on
ho

le
,

pi
ck

 o
ve

r,
so

rt
,

in
te

gr
at

e,

bl
en

d,

in
sp

ec
t,

fil
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
,

ch
un

k,

av
er

ag
e,

ap

pr
ox

i
m

at
e,

cl

us
te

r,
ag

gr
eg

at
e,

ou
tli

ne
,

su
m

m
ar

iz
e,

ite

m

iz
e,

re

vi
ew

,
di

p
in

to
,

fli
p

th
ro

ug
h,

br

ow
se

,
gl

an
ce

in
to

, l
ea

f t
hr

ou
gh

, s
ki

m
, r

e
fin

e,
 e

nu
m

er
at

e,
 g

le
an

, s
yn

op

siz
e,

 w
in

no
w

 t
he

 w
he

at
fr

om
 t

he
 c

ha
ff

an
d

se
pa

ra
te

th
e

sh
ee

p
fr

om
 t

he
 g

oa
ts

.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
5
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
1
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
2
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
3
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
4
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
5
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
1
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
2
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
3
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
4
C
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
0
0
0
0

W
e

th
riv

e
in

 in
fo

rm
at

io
n-

-t
hi

ck
 w

or
ld

s
be

ca
us

e
of

 o
ur

 m
ar

ve
lo

us
 a

nd
 e

ve
ry

da
y

ca
pa

ci
ty

 t
o

se
le

ct
, e

di
t,

sin
gl

e
ou

t,
st

ru
c

tu
re

, h
ig

hl
ig

ht
, g

ro
up

, p
ai

r,
m

er
ge

, h
ar

m

on
iz

e,
 s

yn
th

es
iz

e,
 fo

cu
s,

or
ga

ni
ze

, c
on

de

ns
e,

 r
ed

uc
e,

 b
oi

l d
ow

n,
 c

ho
os

e,
 c

at
eg

o
riz

e,
 c

at
al

og
, c

la
ss

ify
, l

ist
, a

bs
tr

ac
t,

sc
an

,
lo

ok
 in

to
, i

de
al

iz
e,

 is
ol

at
e,

 d
isc

rim
in

at
e,

di
st

in
gu

ish
, s

cr
ee

n,
 p

ig
eo

nh
ol

e,
 p

ic
k

ov
er

, s
or

t,
in

te
gr

at
e,

 b
le

nd
, i

ns
pe

ct
, fi

l
te

r,
lu

m
p,

 s
ki

p,
 s

m
oo

th
, c

hu
nk

, a
ve

ra
ge

,
ap

pr
ox

im
at

e,
 c

lu
st

er
, a

gg
re

ga
te

, o
ut

lin
e,

su
m

m
ar

iz
e,

 it
em

iz
e,

 r
ev

ie
w

, d
ip

 in
to

,
fli

p
th

ro
ug

h,
 b

ro
w

se
, g

la
nc

e
in

to
, l

ea
f

th
ro

ug
h,

 s
ki

m
, r

efi
ne

, e
nu

m
er

at
e,

 g
le

an
,

sy
no

ps
iz

e,
 w

in
no

w
 t

he
 w

he
at

 fr
om

 t
he

ch
aff

 a
nd

 s
ep

ar
at

e
th

e
sh

ee
p

fr
om

 t
he

go
at

s.
\
l
i
n
e
b
r
e
a
k
c
r
i
t
e
r
i
u
m
=
"
0
0
0
0
5
C
0
0

69 Not all makes sense

But this does 70

9 But this does

In LuaMetaTEX one can do a lot on Lua, like what I will discuss next, but because it is somewhat fundamental
it became a core feature of the engine. It was also quite easy to implement. It has to do with packaging.16

The box constructors in traditional TEX accept two keywords: to for setting an exact width and spread for
specifying additional width. In LuaMetaTEX we have some more like shift (a traditional TEX concept),
orientation, xmove, xoffset, ymove and yoffset for absolute positioning, anchor(s), target and
source for relative positioning, axis and class for usage in �} delay for leader like boxes, the multiple
attr key for setting attributes, a special subtype directive container and direction for controlling bidi
rectional typesetting, and reverse for reversing content. The latest addition: adapt is there for controlling
and freezing glue.

So, in addition to the width related keys to and spread we have adapt that drives wo what width the box
will be typeset.17 The keyword is followed by a scale values between -1000 and 1000 where a negative value
enforces shrink and a positive value stretch. The following table shows the effects:

Here are just some words so that we can see what happens.
to 4cm Here are just some words so that we can see what happens.
to \hsize Here are just some words so that we can see what happens.
spread 1cm Here are just some words so that we can see what happens.
spread -1cm Here are just some words so that we can see what happens.
adapt -1000 Here are just some words so that we can see what happens.
adapt -750 Here are just some words so that we can see what happens.
adapt -500 Here are just some words so that we can see what happens.
adapt 0 Here are just some words so that we can see what happens.
adapt 500 Here are just some words so that we can see what happens.
adapt 750 Here are just some words so that we can see what happens.
adapt 1000 Here are just some words so that we can see what happens.

When a box is typeset the natural glue width is used but when the required width exceeds the natural width
the glue stretch components kick in. With a negative spread the shrink is used but you can get underflows.
The adapt feature freezes the glue and it removes the stretch and shrink after applying it to the glue width
with the given scale factor. So, in order to get the minimum width you use adapt -1000.

The reason why I decided to add this feature is that when experimenting with math alignments I wanted to
be able to see what shrink could be achieved.18 The next example shows this:

��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

to 4cm ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

to \hsize ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

spread 1cm ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

spread -1cm ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

adapt -1000 ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

adapt -750 ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

adapt -500 ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

16 I actually did prototype it in Lua first but wanted a more natural integration in the end.
17 For the moment this keyword only has effect for horizontal boxes.
18 At that time Mikael and I were experimenting with consistent spacing in math alignments.

71 But this does

adapt 0 ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

adapt 500 ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

adapt 750 ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

adapt 1000 ��

ordbin
�	

binord
��

ordbin
�	

binord
�?

ordrel
��

reldig
�� ��

ordbin
�	

binord
�?

Once we had this new feature it made sense to add support for it to \framed, one of the oldest macros that
got extended over time:

\inframed[adaptive=1000] {Just some words}
\inframed[adaptive=500] {Just some words}
\inframed[adaptive=0] {Just some words}
\inframed[adaptive=-500] {Just some words}
\inframed[adaptive=-1000]{Just some words}

This renders as:

Just some words
Just some words
Just some words
Just some words
Just some words

Once we have it there other mechanisms can benefit from it, for instance natural tables. But keep in mind
that spaces are fixed in there so there is only the expected result if glue has stretch or shrink.

The curious case of \over 72

10 The curious case of \over

Normally TEX scans forward but there are a few special cases. First of all, TEX is either scanning regular con
tent or it is scanning alignments. That results in intercepts in all kind of places. When a row ends, scanning
for inter-row actions happens. When the preamble is scanned there is some lookahead with partial expan
sion. This has side effects but these can be avoided in LuaMetaTEX by several options. Another special case
is math mode. Normally curly braces indicate grouping but not in math mode: there they construct an atom,
ordinary by default. Although most math constructs actually pick up some following atom, in which case we
get a wrapped construct that actually is processed in a nested cal to the math processing routine. That whole
has a class and although in LuaMetaTEX we can make atoms with a different left end right class, normally
what is inside is hidden stays hidden.19

Fraction commands like \over and \above are used like this:

a + 1 \over 2 + b

and as there can be more than for instance single digits we can do:

a + {12} \over {34} + b

but it doesn't end there because you actually need to wrap:

a + {{12} \over {34}} + b

If you don't do this �@ will become part of the fraction. The curly braces here make the ��� , ���� and the whole
fraction made from them ordinary atoms. Because that also influences spacing one should be aware of side
effects.

a + {{12} \over {34}} + b

The argument of simplicity of input is easily defeated by using

a + \frac{12}{34} + b

because it also reads sequential, is in sync with other commands like \sqrt and actually uses less tokens.
It used more runtime, also because ConTEXt adds plenty of control and extras but you won't notice it.

Because in ConTEXt we assume users to use \frac it made sense to see if we can make curly braces act
like groups. In LuaMetaTEX we already have \beginmathgroup and \endmathgroup that provide grouping
with mathstyle recovery, and by setting \mathgroupingmode to a non-zero value curly braces will act like
these.

The effects are subtle:

$ a + { \bf x } ^ 2 + {\bf 1} + {\red 123} +
\frac{1}{2} + {\scriptstyle 123} + \dd $

19 We can think of optionally exposing the edge classes but although it is easy to implement we see no reason to do that now. After all, the
information is actually available already via variables.

73 The curious case of \over

�?

ordbin
�	

binord
�~

��

ordbin
�	

binord
�V

ordbin
�	

binord
�����

ordbin
�	

binfra

�

������

��

frabin
�	

binord
�
����

ordbin
�	

bindif
�B

\mathgroupingmode 0

�?

ordbin
�	

binord
�~

��

ordbin
�	

bindig
�V

digbin
�	

bindig
�����

digbin
�	

binfra

�

������

��

frabin
�	

bindig
�
����

digbin
�	

bindif
�B

\mathgroupingmode 1

If you see the differences you might be happy with this new trick, if not, you probably are not that much into
optimal math spacing anyway and you can forget about what you just read.

Getting rid of jit 74

11 Getting rid of jit

At the ntg meeting there was a short discussion about performance of the OpenType font machinery. Cur
rently we still support LuajitTEX and although the MkIV code base is mostly separated from the LMTX one
there is still some compromise going on, as some Lua code is shared and needs to adapt to the fact that Lua
JIT is stuck to Lua5.2 (sort of). One reason why we still support LuajitTEX is that there are users who like the
performance gain. However, if these can switch to ConTEXt we could get rid of LuajitTEX support. After all,
LuaJIT is stalled as is ffi. Of course a plain TEX users can object to using ConTEXt but one can just use the
basics and be as plain as possible.

Performance of LuaMetaTEX is quite okay and it often performs better than LuaTEX or even LuajitTEX. One
border case is for instance the somewhat overdone in terms of split feature steps is the Brill font. So, I
decided to do some tests on my 2017 laptop that had replaced the 2013 one (Windows 10). We use cross
compiled binaries. Here is the test:

% \enableexperiments[fonts.compact]

\definefont[Fa][brill*default @ 10pt]
\definefont[Fb][brill*default @ 12pt]
\definefont[Fc][brill-bf*default @ 10pt]
\definefont[Fd][brill-bf*default @ 12pt]

\start \testfeatureonce{1000}{
\Fa \samplefile{tufte} \samplefile{tufte}\par

}\stop \page \edef\TimeA{\elapsedtime}
\start \testfeatureonce{1000}{

\Fa \samplefile{tufte}\par\Fb\samplefile{tufte}\par
}\stop \page \edef\TimeB{\elapsedtime}
\start \testfeatureonce{1000}{

\Fa \samplefile{tufte} \Fb\samplefile{tufte}\par
}\stop \page \edef\TimeC{\elapsedtime}
\start \testfeatureonce{1000}{

\Fa \samplefile{tufte} \Fd\samplefile{tufte}\par
\Fb \samplefile{tufte} \Fc\samplefile{tufte}\par

}\stop \page \edef\TimeD{\elapsedtime}

\startTEXpage[offset=10pt]
\strut\infofont
2 par 1 font : \TimeA\par
2 par 2 font : \TimeB\par
1 par 2 font : \TimeC\par
1 par 4 font : \TimeD\par

\stopTEXpage

The next table shows the best times from three tests where each one produces 1693 pages in the default
layout. We're talking of one run as normally ConTEXt will run till a two pass stable state is reached (unless
it is forced to one run), although in practice fixing a few typos will not for an extra run. Keep in mind that
in LuaMetaTEX we have a Lua driven backend that is more flexible with respect to fonts but therefore also
adds some extra overhead. Also keep in mind that four different fonts per paragraph is a rare case.

75 Getting rid of jit

2 pars 1 font 2 pars 2 fonts 1 par 2 fonts 1 par 4 fonts

luametatex 8.9 9.4 12.1 24.6
luametatex compact 8.9 9.3 9.3 23.9
luatex 10.0 10.3 14.5 31.2
luajittex 8.0 8.1 11.4 23.2

One should take these measurements with a grain of salt because it also depends on the system load, but
it shows that there is no real need to favor a LuajitTEX setup over a LuaMetaTEX one. In the meantime the
default LuaTEX binaries exceed 7 MB (and the hb variant adds quite a bit more) which LuaMetaTEX stays
around 3 MB which is nice for high performance setups with thousands of (small) runs.

Just for the record, when we use Dejavu Serif we get 2767 pages and the following timings. Again, the dif
ferences between LuaMetaTEX and LuajitTEX is not that significant, especially when you realize that we're
not doing anything fancy that more runtime. In practice fonts are only part of the story.

2 pars 1 font 2 pars 2 fonts 1 par 2 fonts 1 par 4 fonts

luametatex 4.2 4.4 5.0 10.8
luametatex compact 4.2 4.5 4.5 10.5
luatex 4.9 5.0 6.2 13.3
luajittex 4.0 4.0 5.0 10.3

Issues in math fonts 76

12 Issues in math fonts

12.1 Introduction

After trying to improve math rendering of OpenType math fonts, we20 ended up with a mix of improving the
engine and fixing fonts runtime, and we are rather satisfied with the results so far.

However, as we progress and also improve the more structural and input related features of ConTEXt, we
wonder why we don't simply are more drastic when it comes to fonts. The OpenType specifications are
vague, and most existing OpenType math fonts use a mixture of the OpenType features and the old TEX
habits, so we are sort of on our own. The advantage of this situation is that we feel free to experiment and
do as we like.

In another article we discuss our issues with Unicode math, and we have realized that good working solu
tions will be bound to a macro package anyway. Also, math typesetting has not evolved much after Don
Knuth set the standard, even if the limitations of those times in terms of memory, processing speed and
font technologies have been lifted already for a while. And right from the start Don invited users to extend
and adapt TEX to one's needs.

Here we will zoom in on a few aspects: font parameters, glyph dimensions and properties and kerning of
scripts and atoms. We discuss OpenType math fonts only, and start with a summary of how we tweak them.
We leave a detailed engine discussion to a future article, since that would demand way more pages, and
could confuse the reader.

12.2 Tweaks, also known as goodies

The easiest tweaks to describe are those that wipe features. Because the TEX Gyre fonts have many bad top
accent anchors (they sit above the highest point of the shape) the wipeanchors tweak can remove them,
and we do that per specified alphabet.

̂7
In a similar fashion we wipeitalics from upright shapes. Okay, maybe they can play a role for sub
script placement, but then they can also interfere, and they do not fit with the OpenType specification.
The wipecues tweak zeros the dimensions of the invisible times and friends so that they don't interfere and
wipevariants gets rid of bad variants of specified characters.

The fixers is another category, and the names indicate what gets fixed. Tweaks like these take lists of code
points and specific properties to fix. We could leave it to your imagination what fixaccents, fixanchors,
fixellipses, fixoldschool, fixprimes, fixradicals and fixslashes do, but here are some details.
Inconsistencies in the dimensions of accents make them jump all over the place so we normalize them. We
support horizontal stretching at the engine level.

��

�?

ordbin
�	

binord
�@

ordbin
�	

binord
�A

ordbin
�	

binord
�B

accrel
��

relacc
��

�P

ordbin
�	

binord
�Q

ordbin
�	

binord
�R

ordbin
�	

binord
��

ordbin
�	

binord
�S

It required only a few lines of code thanks to already present scaling features.

20 Mikael Sundqvist and Hans Hagen

77 Issues in math fonts

Anchors can be off so we fix these in a way so that they look better on especially italic shapes. We make
sure that the automated sizing works consistently, as this is driven by width and overshoot. Several kind of
ellipses can be inconsistent with each other as well as with periods (shape and size wise) so we have to deal
with that. Radicals and other extensibles have old school dimensions (TEX fonts have a limited set of widths
and heights). We need to fix for instance fences of various size because we want to apply kerns to scripts on
the four possible corners for which we need to know the real height and depth,

Discussing primes would take many paragraphs so we stick to mentioning that they are a mess. We now have
native prime support in the engine as well as assume properly dimensioned symbols to be used. Slashes
are used for skewed fractions so we'd better make sure they are set up right.

A nice tweak is replacealphabets. We use this to provide alternative script (roundhand) and calligraphic
(chancery) alphabets (yes we have both natively in ConTEXt while Unicode combines them in one alphabet).
Many available OpenType math fonts come with one of the two alphabets only, some with roundhand and
some with chancery. For the record: this tweak replaces the older variants tweak that filtered scripts from
a stylistic font feature.

We also use the replacealphabets tweak to drop in Arabic shapes so that we can do bidirectional math.
In practice that doesn't really boil down to a replacement but more to an addition. The addmirrors fea
tures accompanies this, and it is again a rather small extension to the engine to make sure we can do this
efficiently: when a character is looked up we check a mirror variant when we are in r2l mode, just like we
look up a smaller variant when we're in compact font mode (a ConTEXt feature).

��

��

��

ordrel
��

relord
��

opeord
��

��

ordrel
��

relord
��

��

ordfra

��

ordbin
�+

binord
��

��

ordbin
�+

binord
��

ordbin
�	

binord
��

��

��

ordbin
�+

binord
��

fraope
�.

opeord
��

ordrel
��

relord
��

ordclo
�/

Another application of replacealphabets is to drop in single characters from another font. We use this
for instance to replace the ‘not really an alpha’ in Bonum by one of our own liking. Below we show a math
italic a and the original alpha, together with the modified alpha.

�?

ordbin
�	

binord
α

ordbin
�	

binord
𝛼

For that we ship a companion font. On our disks (and in the distribution) you can find:

/tex/texmf-fonts/fonts/data/cms/companion/RalphSmithsFormalScript-Companion.otf
/tex/texmf-fonts/fonts/data/cms/companion/TeXGyreBonumMath-Companion.otf
/tex/texmf-fonts/fonts/data/cms/companion/XITSMath-Companion.otf

All these are efficient drop-ins that are injected by the replacealphabets, some under user control, some
always. We tried to limit the overhead and actually bidirectional math could be simplified which also had
the benefit that when one does tens of thousands of bodyfont switches a bit of runtime is gained.

There are more addition tweaks: addactuarian creates the relevant symbols which is actually a right sided
radical (the engine has support for two-sided radicals). It takes a bit of juggling with virtual glyphs and
extensible recipes, but the results are rewarding.

��������

��

�� �

��

�

��

ordrel
��

relrad
����������

�8

�

In a similar fashion we try to add missing extensible arrows with addarrows, bars with addbars, equals with
addequals and again using the radical mechanism fourier notation symbols (like hats) with addfourier.
That one involves subtle kerning because these symbols end up at the right top of a fence like symbol.

Issues in math fonts 78

��

�(

ordbin
��

binord
�D

ordbin
��

binord
�E �.

opeord
��

ordclo
�/

clorel
��

relrad
��

opeord
�(

ordbin
��

binord
�D

ordbin
��

binord
�E

ordclo
��

�

�.

opeord
��

ordclo
�/

It was actually one of the reasons to introduce a more advanced kerning mechanism in the engine, which
is not entirely trivial because one has to carry around more information, since all this is font and character
bound, and when wrapped in boxes that gets hard to analyze. The addrulesmakes sure that we can do bars
over and under constructs properly. The addparts is there to add extensible recipes to characters.

Some of these tweaks actually are not new and are also available in MkIV but more as features (optionally
driven by the goodie file). An example is addscripts that is there for specially positioned and scaled signs
(high minus and such) but that tweak will probably be redone as part of the “deal with all these plus and
minus issues”. The dedicated to Alan Braslau addprivates tweak is an example of this: we add specific
variants for unary minus and plus that users can enable on demand, which in turn of course gives class
specific spacing, but we promised not to discuss those engine features here.

��

��

�

��

opeope
�.

opeord
��

ordbin
�	

bindig
��

digclo
�/

��

������

��

clobin
�+

binope
�.

opeord
��

ordbin
�	

bindig
��

digclo
�/

�+

unafra

��

������

��

cloclo
��

clodif
�B ��

There is a handful of tweaks that deals with fixing glyph properties (in detail). We mention: dimensions
and accentdimensions that can reposition in the boundingbox, fix the width and italic correction, squeeze
and expand etc. The kernpairs tweak adds kern pairs to combinations of characters. The kernsprovides a
way to add top left, bottom left, top right and bottom right kerns and those really make the results look better
so we love it!

��

opefra

�

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�

digbin
�	

binord
��

��

fraclo
��

�8

cloord
��

��

�� �.

opedig
�

digbin
�	

binord
��

ordclo
�/

The margins tweak sets margin fields that the engine can use to calculate accents over the base character
better. The same is true for setovershoots that can make accents lean over a bit. The staircase feature
can be used to add the somewhat complicated OpenType kerns. From all this you can deduce that the engine
has all types of kerning that OpenType requires, and more.

Accents as specified in fonts can be a pain to deal with so we have more tweaks for them: copyaccents
moves them to the right slots and extendaccentsmakes sure that we can extend them. Not all font makers
have the same ideas about where these symbols should sit and what their dimensions should be.

The checkspacing tweak fixes bad or missing spacing related to Unicode character entries in the font, be
cause after all, we might need them. We need to keep for instance MathML in mind, which means: process
ing content that we don't see and that can contain whatever an editor puts in. The replacements feature
replaces one character by another from the same font. The substitutes replaces a character by one from
a stylistic feature.

Relatively late we added the setoptions which was needed to control the engine for specific fonts. The
rendering is controlled by a bunch of options (think of kerning, italic correction, and such). Some are per
font, many per class. Because we can (and do) use mixed math fonts in a document, we might need to adapt
the engine level options per font, and that is what this tweak does: it passes options to the font so that the
engine can consult them and prefer them over the ‘global’ ones. We needed this for some fonts that have old
school dimensions for extensibles (like Lucida), simply because they imitated Computer Modern. Normally
that goes unnoticed, but, as mentioned before, it interferes with our optional kerning. The fixoldschool

79 Issues in math fonts

tweak sort of can fix that too so setoptions is seldom needed. Luckily, some font providers are willing to
fix their fonts!

We set and configure all these tweaks in a so-called goodie file, basically a runtime module that returns a
Lua table with specifications. In addition to the tweaks subtable in the math namespace, there is a subtable
that overloads the font parameters: the ones that OpenType specifies, but also new ones that we added. In
the next section we elaborate more on these font bound parameters.

12.3 Font parameters

At some point in the upgrading of the math machinery we discussed some of the inconsistencies between
the math constants of the XITS and STIX fonts. Now, one has to keep in mind that XITS was based on a first
release of STIX that only had Type1 fonts so what follows should not to be seen as criticism, but more as
observations and reason for discussion, as well as a basis for decisions to be made.

One thing we have to mention in advance, is that we often wonder why some weird and/or confusing stuff
in math fonts go unnoticed. We have some suggestions:

• The user doesn't care that much how math comes out. This can easily be observed when you run into
documents on the internet or posts on forums. And publishers don't always seem to care either. Consis
tency with old documents sometimes seems to be more important than quality.

• The user switches to another math font when the current one doesn't handle its intended math domain
well. We have seen that happening and it's the easiest way out when you have not much control anyway
(for instance when using online tools).

• The user eventually adds some skips and kerns to get things right, because after all TEX is also about
tweaking.

• The user doesn't typeset that complex math. It's mostly inline math with an occasional alignment (also
in text style) and very few multi-level display math (with left and right fences that span at most a fraction).

We do not claim to be perfect, but we care for details, so let's go on. The next table shows the math constants
as they can be found in the Stix (two) and Xits (one) fonts. When you typeset with these fonts you will notice
that Xits is somewhat smaller, so two additional columns show the values compensated for the axis height
and accent base height.

constant stix xits base axis relevance

AccentBaseHeight 480 450 480 464 optional**
AxisHeight 258 250 267 258 mandate
DelimitedSubFormulaMinHeight 1325 1500 1600 1548
DisplayOperatorMinHeight 1800 1450 1547 1496
FlattenedAccentBaseHeight 656 662 706 683 optional**
FractionDenominatorDisplayStyleGapMin 150 198 211 204
FractionDenominatorDisplayStyleShiftDown 640 700 747 722
FractionDenominatorGapMin 68 66 70 68
FractionDenominatorShiftDown 585 480 512 495
FractionNumeratorDisplayStyleGapMin 150 198 211 204
FractionNumeratorDisplayStyleShiftUp 640 580 619 599
FractionNumeratorGapMin 68 66 70 68
FractionNumeratorShiftUp 585 480 512 495

Issues in math fonts 80

FractionRuleThickness 68 66 70 68 optional
LowerLimitBaselineDropMin 670 600 640 619
LowerLimitGapMin 135 150 160 155
MathLeading 150 150 160 155
MinConnectorOverlap 100 50 53 52 mandate
OverbarExtraAscender 68 66 70 68
OverbarRuleThickness 68 66 70 68 optional*
OverbarVerticalGap 175 198 211 204
RadicalDegreeBottomRaisePercent 55 70 75 72 mandate
RadicalDisplayStyleVerticalGap 170 186 198 192
RadicalExtraAscender 78 66 70 68
RadicalKernAfterDegree -335 -555 -592 -573
RadicalKernBeforeDegree 65 277 295 286
RadicalRuleThickness 68 66 70 68
RadicalVerticalGap 85 82 87 85
ScriptPercentScaleDown 70 75 80 77
ScriptScriptPercentScaleDown 55 60 64 62
SkewedFractionHorizontalGap 350 300 320 310
SkewedFractionVerticalGap 68 66 70 68
SpaceAfterScript 40 41 44 42
StackBottomDisplayStyleShiftDown 690 900 960 929
StackBottomShiftDown 385 800 853 826
StackDisplayStyleGapMin 300 462 493 477
StackGapMin 150 198 211 204
StackTopDisplayStyleShiftUp 780 580 619 599
StackTopShiftUp 470 480 512 495
StretchStackBottomShiftDown 590 600 640 619
StretchStackGapAboveMin 68 150 160 155
StretchStackGapBelowMin 68 150 160 155
StretchStackTopShiftUp 800 300 320 310
SubSuperscriptGapMin 150 264 282 272
SubscriptBaselineDropMin 160 50 53 52
SubscriptShiftDown 210 250 267 258
SubscriptTopMax 368 400 427 413
SuperscriptBaselineDropMax 230 375 400 387
SuperscriptBottomMaxWithSubscript 380 400 427 413
SuperscriptBottomMin 120 125 133 129
SuperscriptShiftUp 360 400 427 413
SuperscriptShiftUpCramped 252 275 293 284
UnderbarExtraDescender 68 66 70 68
UnderbarRuleThickness 68 66 70 68 optional*
UnderbarVerticalGap 175 198 211 204
UpperLimitBaselineRiseMin 300 300 320 310
UpperLimitGapMin 135 150 160 155

Very few values are the same. So, what exactly do these constants tell us? You can even wonder why they
are there at all. Just think of this: we want to typeset math, and we have an engine that we can control. We
know how we want it to look. So, what do these constants actually contribute? Plenty relates to the height
and depth of the nucleus and/or the axis. The fact that we have to fix some in the goodie files, and the fact

81 Issues in math fonts

that we actually need more variables that control positioning, makes for a good argument to just ignore
most of the ones provided by the font, especially when they seem somewhat arbitrarily. Can it be that font
designers are just gambling a bit, looking at another font, and starting from there?

The relationship between TEX's math font parameters and the OpenType math constants is not one-to-one.
Mapping them onto each other is possible but actually is font dependent. However, we can assume that the
values of Computer Modern are leading.

The AxisHeight, AccentBaseHeight and FlattenedAccentBaseHeight are set to the x-height, a value
that is defined in all fonts. The SkewedFractionVerticalGap also gets that value. Other variables relate
to the em-width (or \quad), for instance the SkewedFractionHorizontalGap that gets half that value. Of
course these last two then assume that the engine handles skewed fractions.

Variables that directly map onto each other are StretchStackGapBelowMinas bigopspacing1, Stretch
StackTopShiftUp as bigopspacing3, StretchStackGapAboveMin as bigopspacing2 and Stretch
StackBottomShiftDown as bigopspacing4. However, these clash with UpperLimitBaselineR
iseMin as bigopspacing3, UpperLimitGapMin as bigopspacing1, LowerLimitBaselineDropMin as
bigopspacing4 and LowerLimitGapMin as bigopspacing2. Where in traditional fonts these are the
same, in OpenType they can be different. Should they be?

Internally we use different names for variables, simply because the engine has some parameters that Open
Type maths hasn't. So we have limit_above_kern and limit_below_kern for bigopspacing5.

A couple of parameters have different values for (cramped) displaystyle. The FractionDelimiterSizeand
FractionDelimiterDisplayStyleSize use delim2 and delim1. The FractionDenominatorShift
Down and FractionDenominatorDisplayStyleShiftDown map onto denom2 and denom1 and their nu
merator counterparts from num2 and num1. The Stack* parameters also use these. The sub1, sub2, sup1,
sup2, sup3, and supdrop can populate the Sub* and Super* parameters, also in different styles.

The rest of the parameters can be defined in terms of the default rulethickness, quad or xheight, often mul
tiplied by a factor. For some we see the 1/18 show up a number that we also see with muskips. Some con
stants can be set from registers, like SpaceAfterScript which is just \scriptspace.

If you look at the LuaTEX source you wil find a section where this mapping is done in the case of a traditional
font, that is: one without a math constants table. In LuaMetaTEX we don't need to do this because font loading
happens in Lua. So we simply issue an error when the math engine can't resolve a mandate parameter.
The fact that we have a partial mapping from math constants onto traditional parameters and that LuaTEX
has to deal with the traditional ones too make for a somewhat confusing landscape. When in LuaMetaTEX
we assume wide fonts to be used that have a math constants table, we can probably clean up some of this.

We need to keep in mind that Cambria was the starting point, and it did borrow some concepts from TEX.
But TEX had parameters because there was not enough information in the glyphs! Also, Cambria was meant
for MS Word, and a word processor is unlikely to provide the level of control that TEX offers, so it needs some
directions with respect to e.g. spacing. Without user control, it has to come up with acceptable compromises.
So actually the LuaMetaTEX math engine can be made a bit cleaner when we just get rid of these parameters.

So, which constants are actually essential? The AxisHeight is important and also design related. Quite
likely this is where the minus sits above the baseline. It is used for displacements of the baseline so that for
instance fractions nicely align. When testing script anchored to fences we noticed that the parenthesis in
XITS had too little depth while STIX had the expected amount. This relates to anchoring relative to the math
axis.

Issues in math fonts 82

Is there a reason why UnderbarRuleThickness and OverbarRuleThickness should differ? If not, then
we only need a variable that somehow tells us what thickness fits best with the other top and bottom accents.
It is quite likely the same as the RadicalRuleThickness, which is needed to extend the radical symbol. So,
here three constants can be replaced by one design related one. The FractionRuleThickness can also
be derived from that, but more likely is that it is a quantity that the macro package sets up anyway, maybe
related to rules used elsewhere.

The MinConnectorOverlap and RadicalDegreeBottomRaisePercent also are related to the design al
though one could abuse the top accent anchor for the second one. So they are important. However, given
the small number of extensibles, they could have been part of the extensible recipes.

The AccentBaseHeight and FlattenedAccentBaseHeight might relate to the margin that the designer
put below the accent as part of the glyph, so it is kind of a design related constant. Nevertheless, we fix quite
some accents in the goodie files because they can be inconsistent. That makes these constants somewhat
dubious too. If we have to check a font, we can just as well set up constants that we need in the goodie file.
Also, isn't it weird that there are no bottom variants?

We can forget about MathLeadingas it serves no purpose in TEX. The DisplayOperatorMinHeight is often
set wrong so although we fix that in the goodie file it might be that we just can use an internal variable. It is
not the font designer who decides that anyway. The same is true for DelimitedSubFormulaMinHeight.

If we handle skewed fractions, SkewedFractionHorizontalGap and SkewedFractionVerticalGap
might give an indication of the tilt but why do we need two? It is design related though, so they have some
importance, when set right.

The rest can be grouped, and basically we can replace them by a consistent set of engine parameters. We
can still set them up per font, but at least we can then use a clean set. Currently, we already have more. For
instance, why only SpaceAfterScript and not one for before, and how about prescripts and primes? If
we have to complement them with additional ones and also fix them, we can as well set up all these script
related variables.

For fractions the font provides FractionDenominatorDisplayStyleGapMin, FractionDenomina
torDisplayStyleShiftDown, FractionDenominatorGapMin, FractionDenominatorShiftDown,
FractionNumeratorDisplayStyleGapMin, FractionNumeratorDisplayStyleShiftUp, Fraction
NumeratorGapMin and FractionNumeratorShiftUp. We might try to come up with a simpler model.

Limits have: LowerLimitBaselineDropMin, LowerLimitGapMin, UpperLimitBaselineRiseMin and
UpperLimitGapMin. Limits are tricky anyway as they also depend on abusing the italic correction for an
choring.

Horizontal bars are driven by OverbarExtraAscender, OverbarVerticalGap, UnderbarExtraDescen
der and UnderbarVerticalGap, but for e.g. arrows we are on our own, so again a not so useful set.

Then radicals: we need some more than these RadicalDisplayStyleVerticalGap, RadicalExtraAs
cender, RadicalKernAfterDegree, RadicalKernBeforeDegree and RadicalVerticalGap, and be
cause we really need to check these there is no gain having them in the font.

Isn't it more a decision by the macro package how script and scriptscript should be scaled? Currently we
listen to ScriptPercentScaleDown and ScriptScriptPercentScaleDown, but maybe it relates more to
usage.

We need more control than just SpaceAfterScript and an engine could provide it more consistently. It's
a loner.

83 Issues in math fonts

How about StackBottomDisplayStyleShiftDown, StackBottomShiftDown, StackDisplayStyleGap
Min, StackGapMin, StackTopDisplayStyleShiftUp and StackTopShiftUp? And isn't this more for the
renderer to decide: StretchStackBottomShiftDown, StretchStackGapAboveMin, StretchStackGap
BelowMin and StretchStackTopShiftUp?

This messy bit can also be handled more convenient so what exactly is the relationship with the font de
sign of SubSuperscriptGapMin, SubscriptBaselineDropMin, SubscriptShiftDown, SubscriptTop
Max, SuperscriptBaselineDropMax, SuperscriptBottomMaxWithSubscript, SuperscriptBottom
Min, SuperscriptShiftUp and SuperscriptShiftUpCramped?

Just for the record, here are the (font related) ones we added so far. A set of prime related constants simi
lar to the script ones: PrimeRaisePercent, PrimeRaiseComposedPercent, PrimeShiftUp, PrimeBase
lineDropMax, PrimeShiftUpCramped, PrimeSpaceAfter and PrimeWidthPercent. Of course, we also
added SpaceBeforeScript just because we want to be symmetrical in the engine where we also have to
deal with prescripts.

These we provide for some further limit positioning: NoLimitSupFactor and NoLimitSubFactor; these
for delimiters: DelimiterPercent and DelimiterShortfall; and these for radicals in order to compen
sate for sloping shapes: RadicalKernAfterExtensible and RadicalKernBeforeExtensible because
we have doublesided radicals.

Finally, there are quite some (horrible) accent tuning parameters: AccentTopShiftUp, Accent
BottomShiftDown, FlattenedAccentTopShiftUp, FlattenedAccentBottomShiftDown, Accent
BaseDepth, AccentFlattenedBaseDepth, AccentTopOvershoot, AccentBottomOvershoot, Ac
centSuperscriptDrop, AccentSuperscriptPercent and AccentExtendMargin, but we tend to move
some of that to the tweaks on a per accent basis.

Setting these parameters right is not trivial, and also a bit subjective. We might, however, assume that for
instance the math axis is set right, but alas, when we were fixing the less and greater symbols in Lucida
Bright Math, we found that all symbols actually were designed for a math axis of 325, instead of the given
value 313, and that difference can be seen!

��

digrel
�)

relord
�+ ��

opefra

�

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�

digbin
�	

binord
��

��

fraclo
�� 2

digrel
>

relord
−{

opefra

1−−−−−1
digbin
+

binord
𝑥2fraclo

}
Old Lucida New Lucida

The assumption is that the axis goes trough the middle of the minus. Luckily it was relatively easy to fix
these two symbols (they also had to be scaled, maybe they originate in the text font?) and adapt the axis.
We still need to check all the other fonts, but it looks like they are okay, which is good because the math axis
plays an important role in rendering math. It is one of the few parameters that has to be present and right.
A nice side effect of this is that we end up with discussing new (ConTEXt) features. One can for instance shift
all non-character symbols down just a little and lower the math axis, to get a bit more tolerance in lines with
many inline fractions, radicals or superscripts, that otherwise would result in interline skips.

A first step in getting out of this mess is to define all these parameters in the goodie file where we fix them
anyway. That way we are at least not dependent on changes in the font. We are not a word processor so
we have way more freedom to control matters. And preset font parameters sometimes do more harm than
good. A side effect of a cleanup can be that we get rid of the evolved mix of uppercase and lowercase math
control variables and can be more consistent. Ever since LuaTEX got support for OpenType, math constants
names have been mapped and matched to traditional TEX font parameters.

Issues in math fonts 84

12.4 Metrics

With metrics we refer to the dimensions and other properties of math glyphs. The origin of digital math
fonts is definitely Computer Modern and thereby the storage of properties is bound to the tfm file format.
That format is binary and can be loaded fast. It can also be stored in the format, unless you're using Lua
TEX or LuaMetaTEX where Lua is the storage format. A tfm file stores per character the width, height, depth
and italic correction. The file also contains font parameters. In math fonts there are extensible recipes and
there is information about next in size glyphs. The file has kerning and ligature tables too.

Given the times TEX evolved in, the format is rather compact. For instance, the height, depth and italic
correction are shared and indices to three shared values are used. There can be 16 heights and depths and
64 italic corrections. That way much fits into a memory word.

The documentation tells us that “The italic correction of a character has two different uses. (a) In ordinary
text, the italic correction is added to the width only if the TEX user specifies ‘\/’ after the character. (b) In
math formulas, the italic correction is always added to the width, except with respect to the positioning of
subscripts.” It is this last phenomena that gives us some trouble with fonts in OpenType math. The fact that
traditional fonts cheat with the width and that we add and selectively remove or ignore the correction makes
for fuzzy code in LuaTEX although splitting the code paths and providing options to control all this helps a
bit. In LuaMetaTEX we have more control but also expect an OpenType font. In OpenType math there are
italic corrections, and we even have the peculiar usage of it in positioning limits. However, the idea was that
staircase kerns do the detailed relative positioning.

Before we dive into this a bit more, it is worth mentioning that Don Knuth paid a lot of attention to details.
The italic alphabet in math uses the same shapes as the text italic but metrics are different as is shown
below. We have also met fonts where it looked like the text italics were taken, and where the metrics were
handled via more excessive italic correction, sometimes combined with staircase kerns that basically were
corrections for the side bearing. This is why we always come back to Latin Modern and Cambria when we
investigate fonts: one is based on the traditional TEX model, with carefully chosen italic corrections, and the
other is based on the OpenType model with staircase kerning. They are our reference fonts.

abcdefghijklmnopqrstuvwxyz
Latin Modern Roman Italic

𝑎𝑏𝑐𝑑𝑒𝑓𝑔ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟𝑠𝑡𝑢𝑣𝑤𝑥𝑦𝑧
Latin Modern Math Italic

In ConTEXt MkIV we played a lot with italic correction in math and there were ways to enforce, ignore, se
lectively apply it, etc. But, because fonts actually demand a mixture, in LuaMetaTEX we ended up with more
extensive runtime patching of them. Another reason for this was that math fonts can have weird properties.
It looks like when these standards are set and fonts are made, the font makers can do as they like as long as
the average formula comes out right, and metrics to some extent resemble a traditional font. However, when
testing how well a font behaves in a real situation there can be all kind of interferences from the macro pack
age: inter-atom kerning, spacing corrections macros, specific handling of cases, etc. We even see OpenType
fonts that seem to have the same limited number of heights, depths and italic corrections. And, as a conse
quence we get for instance larger sizes of fences having the same depth for all the size variants, something
that is pretty odd for an OpenType font with no limitations.

85 Issues in math fonts

The italic correction in traditional TEX math gets added to the width. When a subscript is attached to a kernel
character it sits tight against that character: its position is driven by the width of the kernel. A superscript
on the other hand is moved over the italic width so that it doesn't overlap or touch the likely sticking out
bit of the kernel. This means that a traditional font (and quite some OpenType math fonts are modelled
after Computer Modern) have to find compromises of width and italic correction for characters where the
subscript is supposed to move left (inside the bounding box of the kernel).

The OpenType specification has some vague remarks about applying italic correction between the last in a
series of slanted shapes and operators, as well as positioning limits, and suggests that it relates to relative
super- and subscript positioning. It doesn't mention that the correction is to be added to the width. However,
the main mechanism for anchoring script are these top and bottom edge kerns. It's why in fonts that provide
these, we are unlikely to find italic correction unless it is used for positioning limits.

It is for that reason that an engine can produce reasonable results for fonts that either provide italics or
provide kerns for anchoring: having both on the same glyph would mean troubles. It means that we can
configure the engine options to add italic correction as well as kerns, assuming distinctive usage of those
features. For a font that uses both we need to make a choice (this is possible, since we can configure options
per font). But that will never lead to always nicely typeset math. In fact, without tweaks many fonts will look
right because in practice they use some mixture. But we are not aiming at partial success, we want all to
look good.

Here is another thing to keep in mind (although now we are guessing a bit). There is a limited number of
heights and depths in TEX fonts possible (16), but four times as many italic corrections can be defined (64).
Is it because Don Knuth wanted to properly position the sub- and subscripts? Adding italic correction to
the width is pretty safe: shapes should not overlap. Choosing the right width for a subscript needs more
work because it's is more visual. In the end we have a width that is mostly driven by superscript placement!
That also means that as soon as we remove the italic correction things start looking bad. In fact, because
also upright math characters have italic correction the term ‘italic’ is a bit of a cheat: it's all about script
positioning and has little to do with the slope of the shapes.

One of the reasons why for instance spacing between an italic shape and an upright one in TEX works out
okay is that in most cases they come from a different font, which can be used as criterium for keeping the
correction; between a sequence of same-font characters it gets removed. However, in OpenType math there
is a good chance that all comes from the same font (at least in ConTEXt), unless one populates many families
as in traditional TEX. We have no clue how other macro packages deal with this but it might well be the case
that using many families (one for each alphabet) works better in the end. The engine is really shape and
alphabet agnostic, but one can actually wonder if we should add a glyph property indicating the distinctive
range. It would provide engine level control over a run of glyphs (like multiplying a variable represented by
a greek alpha by another variable presented by an upright b).

But glyph properties cannot really be used here because we are still dealing with characters when the en
gine transforms the noad list into a node list. So, when we discussed this, we started wondering how the en
gine could know about a specific shape (and tilt) property at all, and that brought us to pondering about an
additional axis of options. We already group characters in classes, but we can also group them with prop
erties like tilted, dotless, bold. When we pair atoms we can apply options, spacing and such based on
the specific class pair, and we can do something similar with category pairs. It basically boils down to for
instance \mccode that binds a character to a category. Then we add a command like \setmathcatego
rization (analogue to \setmathspacing) that binds options to pairs of categories. An easier variant of
this might be to let the \mccode carry a (bit)set of options that then get added to the already existing options
that can be bound to character noads as we create them. This saves us some configuration. Deciding what
suits best depends on what we want to do: the fact that TEX doesn't do this means that probably no one ever

Issues in math fonts 86

gave it much thought, but once we do have this mechanism it might actually trigger demand, if only by star
ing at existing documents where characters of a different kind sit next to each other (take this ‘a’ invisible
times ‘x’). It would not be the first time that (in ConTEXt) the availability of some feature triggers creative
(ab)usage.

Because the landscape has settled, because we haven't seen much fundamental evolution in OpenType
math, because in general TEX math doesn't really evolve, and because ConTEXt in the past has not been seen
as suitable for math, we can, as mentioned before, basically decide what approach we follow. So, that is why
we can pick up on this italic correction in a more drastic way: we can add the correction to the width, thereby
creating a nicely bounded glyph, and moving the original correction to the right bottom kern, as that is some
thing we already support. In fact, this feature is already available, we only had to add setting the right bottom
kern. The good news is that we don't need to waste time on trying to get something extra in the font format,
which is unlikely to happen anyway after two decades.

It is worth noticing that when we were exploring this as part of using MetaPost to analyze and visualize these
aspects, we also reviewed the wipeitalics tweak and wondered if, in retrospect, it might be a dangerous
one when applied to alphabets (for digits and blackboard bold letters it definitely makes sense): it can make
traditional super- and subscript anchoring less optimal. However, for some fonts we found that improper
bounding boxes can badly interfere anyway: for instance the upright ‘f’ in EBGaramond sticks out left and
right, and has staircase kerns that make scripts overlap. The right top of the shape sticks out a lot and that
is because the text font variant is used. We already decided to add a moveitalics tweak that moves italic
kerns into the width and then setting a right bottom kern that compensates it that can be a pretty good start
ing point for our further exploration of optimal kerns at the corners. That tweak also fixes the side bearings
(negative llx) and compensates left kerns (when present) accordingly. An additional simplifykerns tweak
can later migrate staircase kerns to simple kerns.

So, does that free us from tweaks like dimensions and kerns? Not completely. But we can forget about the
italic correction in most cases. We have to set up less lower right kerns and maybe correct a few. It is just a
more natural solution. So how about these kerns that we need to define? After all, we also have to deal with
proper top kerns, and like to add kerns that are not there simply because the mentioned comprise between
width, italic and the combination was impossible. More about that in the next section.

12.5 Kerning

In the next pictures we will try to explain more visual what we have in mind and are experimenting with as
we write this. In the traditional approach we have shapes that can communicate the width, height, depth and
italic correction to the engine so that is what the engine can work with. The engine also has the challenge
to anchor subscripts and superscripts in a visual pleasing way.

two characters width only with italic

In this graphic we show two pseudo characters. The shown bounding box indicates the width as seen by the
engine. An example of such a shape is the math italic f, and as it is used a lot in formulas it is also one of the
most hard ones to handle when it comes to spacing: in nearly all fonts the right top sticks out and in some
fonts the left part also does that. Imagine how that works out with scripts, fences and preceding characters.

When we put two such characters together they will overlap, and this is why we need to add the italic cor
rection. That is also why the TEX documentation speaks in terms of “always add the italic correction to the

87 Issues in math fonts

width”. This also means that we need to remove it occasionally, something that you will notice when you
study for instance the LuaTEX source, that has a mix of traditional and OpenType code paths. Actually, com
pensating can either be done by changing the width property of a glyph node or by explicitly adding a kern.
In LuaMetaTEX we always add real kerns because we can then trace better.

The last graphic in the above set shows how we compensate the width for the bit that sticks out. It also
shows that we definitely need to take neighboring shapes into account when we determine the width and
italic correction, especially when the later is not applied (read: removed).

kernel subscript superscript

Here we anchored a super- and subscript. The subscript position it tight to the advance width, again indi
cated by the box. The superscript however is moved by the italic correction and in the engine additional
spacing before and after can be applied as well, but we leave that for now. It will be clear that when the
font designer chooses the width and italic correction, the fact that scripts get attached has to be taken into
account.

two characters width only

In this graphic we combine the italic correction with the width. Keep in mind that in these examples we use
tight values but in practice that correction can also add some extra right side bearing (white space). This
addition is an operation that we can do when loading a font. At the same time we also compensate the left
edge for which we can use the x coordinate of the left corner of the glyphs real bounding box. The advance
width starts at zero and that corner is then left of the origin. By looking at shapes we concluded that in most
cases that shift is valid for usage in math where we don't need that visual overlap. In fact, when we tested
some of that we found that the results can be quite horrible when you don't do that; not all fonts have left
bottom kerning implemented.

The dot at the right is actually indicating the old italic correction. Here we let it sit on the edge but as men
tioned there can be additional (or maybe less) italic correction than tight.

kernel superscript subscript

Finally we add the scripts here. This time we position the superscript and subscript at the top and bottom
anchors. The bottom anchor is, as mentioned, the old italic correction, and the top one currently just the
edge. And this is what our next project is about: identify the ideal anchors and use these instead.

In the ConTEXt goodie files (the files that tweak the math fonts runtime) we can actually already set these
top and bottom anchors and the engine will use them when set. These kerns are not to be confused with the
more complicated staircase kerns. They are much simpler and lightweight. The fact that we already have
them makes it relatively easy to experiment with this.

Issues in math fonts 88

It must be noted that we talk about three kinds of kerns: inter character kerns, corner kerns and staircase
kerns. We can set them all up with tweaks but so far we only did that for the most significant ones, like
integrals. The question is: can we automate this? We should be careful because the bad top accent anchors
in the TEX Gyre fonts demonstrate how flawed heuristics can be. Interesting is that the developers of these
font used MetaPost and are highly qualified in that area. And for us using MetaPost is also natural!

The approach that we follow is somewhat interactive. When working on the math update we like to chat (with
zoom) about these matters. We discuss and explore plenty and with these kerns we do the same. Because
MetaPost produces such nice and crispy graphics, and because MetaFun is well integrated into ConTEXt we
can link all these subsystems and just look at what we get. A lot is about visualization: if we discuss so called
‘grayness’ in the perspective of kerning, we end up with calculating areas, then look at what it tells us and
as a next step figure out some heuristic. And of course we challenge each other into new trickery.

We are sure that getting this next stage in the perfection of math typesetting in ConTEXt and LuaMetaTEX
will take quite some time, but the good news is that all machinery is in place. We also have to admit that it
all might not work out well, so that we stick to what we have now. But at least we had the fun then. And it is
also a nice example of both applying mathematics and programming graphics.

That said, if it works out well, we can populate the goodie files with output from MetaPost, tweak a little when
needed, and that saves us some time. One danger is that when we try to improve rendering the whole system
also evolves which in turn will give different output, but we can always implement all this as features because
after all ConTEXt is very much about configuration. And it makes nice topics for articles and talks too!

The kerns discussed in the previous paragraphs are not the ones that we find in OpenType fonts. There we
have ‘staircase’ kerns that stepwise go up or down by height and kern. So, one can have different kerns de
pending on the height and sort of follow the shape. This permits quite precise kerning between for instance
the right bottom of a kernel and left top of a subscript. So how is that used in practice? The reference font
Cambria has these kerns but close inspection shows that these are not that accurate. Fortunately, we never
enter the danger zone with subscripts, because other parameters prevent that. If we look at for instance Lu
cida and Garamond, then we see that their kerns are mostly used as side bearing, and not really as staircase
kerns.

𝛽
(65,-430)

(65,420)

(0,1431)

(-200,-430)

(-200,100)

(-130,844)

(0,1431)

832

Τ
(-192,0)

(-192,824)

(-4,1365)

(-40,0)

(-40,900)

(80,1365)
612

𝓌(-60,-16)

(-60,620)

(80,974)

(0,-16)

(0,220)

(80,974)

(-180,-16)

(-180,420)

(-95,690)

(0,974)

1200 𝚸
(-276,0)

(-276,632)

(0,1365)

(0,0)

(0,616)

(65,1365)

𝜌
(0,-432)

(0,664)

(20,972)

(65,-432)

(65,0)

(0,972)

(-80,-432)

(-80,384)

(-65,690)

(0,972)

716

U+1D6FD U+003A4 U+1D4CC U+1D6B8 U+1D70C

In these figures you see a few glyphs from cambria with staircase kerns and although we show them small
you will notice that some kern boundaries touch the shape. As subscripts never go that high it goes unno
ticed but it also shows that sticking to the lowest boundary makes sense.

89 Issues in math fonts

We conclude that we can simplify these kerns, and just transform them into our (upto four) corner kerns.
It is unlikely that Cambria gets updates and that other fonts become more advanced. One can even wonder
if multiple steps really give better results. The risk of overlap increases with more granularity because not
every pair of glyphs is checked. Also, the repertoire of math characters will likely not grow and include
shapes that differ much from what we can look at now. Reducing these kerns to simple ones, that can easily
be patched at will in a goodie file, has advantages. We can even simplify the engine.

12.6 Conclusion

So how can we summarize the above? The first conclusion is that we can only get good results when we
runtime patch fonts to suite the engine and our (ConTEXt) need. The second conclusion is that we should
seriously consider to drop (read: ignore) most math font parameter and/or to reorganize them. There is no
need to be conforming, because these parameters are often not that well implemented (thumb in mouth).
The third conclusion (or observation) is that we should get rid of the excessive use of italic correction, and
go for our new corner kerns instead. Last, we can conclude that it makes sense to explore how we can use
MetaPost to analyze the shapes in such a way that we can improve inter character kerning, corner kerns and
maybe even, in a limited way, staircase kerns.

And, to come back to accents: very few characters need a top kern. Most can be handled with centered
anchors, and we need tweaks for margins and overshoot anyway. The same is true for many other tweaks:
they are there to stay.

This is how we plan to go forward:

• We pass no italic corrections in the math fonts to the engine, but instead we have four dedicated simple
corner kerns, top and bottom anchors, and we also compensate negative left side bearing. We should
have gone that route earlier (as follow up on a MkIV feature) but were still in some backward compatibility
mindset.

• The LuaMetaTEX math engine might then be simplified by removing all code related to italic correction.
Of course it hurts that we spent so much time on that over the years. We can anyway disable engine
options related to italic correction in the ConTEXt setup. Of course the engine is less old school generic
then but that is the price of progress.

• A default goodie file is applied that takes care of this when no goodie file is provided. We could do some
in the engine, but there is no real need for that. We can simplify the mid 2022 goodie files because we
have to fix less glyphs.

• If we ever need italic correction (that is: backtrack) then we use the (new) \mccode option code that can
identity sloped shapes. But, given that ignoring the correction between sloped shapes looks pretty bad,
we can as well forget about this. After all, italic correction never really was about correcting italics, but
more about anchoring scripts.

• Staircase kerns can be reduced to simple corner kerns and the engine can be simplified a bit more. In
the end, all we need is true widths and simple corner kerns.

• We reorganize the math parameters and get rid of those that are not really font design dependent. This
also removes a bit of overlap. This will be done as we document.

• Eventually we can remove tweaks that are no longer needed in the new setup, which is a good thing as it
also save us some documenting and maintenance.

All this will happen in the perspective of ConTEXt and LuaMetaTEX but we expect that after a few years of us
age we can with confidence come to some conclusions that can trickle back in the other engines so that other
macro packages can benefit from a somewhat radical different but reliable approach to math rendering, one
that works well with the old and new fonts.

Gaining performance 90

13 Gaining performance

In the meantime (2022) the LuaMetaTEX engine has touched many aspects of the original TEX implementa
tion. This has resulted in less memory consumption than for instance LuaTEX when we talk tokens, more ef
ficient macro handing, additional storage options and numerous new features and optimizations. Of course
one can disagree about all of this, but what matters to us is that it facilitates ConTEXt well. That macro pack
age went from MkII to MkIV to MkXL (aka LMTX).

Although over the years the macros evolved the basic ideas haven't changed: it is a keyword driven macro
package that is set up in a way that makes it possible to move forward. In spite of what one might think, the
fundamentals didn't change much. It looks like we made the right decisions at the start, which means that
we can change low level implementations to match the engine without users noticing much. Of course in
the area of fonts, input encoding and languages things have changed simply because the environment in
which we operate changes.

A fundamental difference between pdfTEX and LuaMetaTEX is that the later is in many aspects 32 and even
64 bit all over the place. That comes with a huge performance hit but also with possibilities (that I won't
discuss here now)! On a simple document nothing can beat pdfTEX, even with the optimizations that we can
apply when using the modern engines. However, on more complex documents reality is that LuaMetaTEX
can outperform pdfTEX, and documents (read: user demands) have become more complex indeed.

So, how does that work in practice? One can add some features to an engine but then the macro package has
to be adapted. Due to the way ConTEXt is organized it was not that hard to keep it in sync with new features,
although not all are applied yet to full extend. Some new features improved performance, others made the
machinery (or its usage) a bit slower. The first versions of LuaMetaTEX were some 25% slower than LuaTEX,
simply because the backend is written in Lua. But, end 2022 we can safely say that LuaMetaTEX can be 50%
faster than its ancestor. This is due to a mix of the already mentioned optimizations and new features, for
instance a more powerful macro parser. The backend has become more complex too, but also benefits from
a few more helpers.

Because we spend a lot of time in Lua the interfaces to TEX have been extended and improved too. Of course
we depend on the Lua interpreter being kept in optimum state by its authors. It must be said that quite
some of the interfaces might look obscure but these are not really meant for the average user anyway. Also,
as soon as one messes with tokens and nodes at that level one definitely need to know what one's doing!

The more stable the engine becomes, the less there is to improve. Occasionally it was possible to squeeze
our a few more milliseconds on run but it depends a lot of what one does. And TEX is already quite fast
anyway. Of course 0.005 seconds on a 5 second run is not much but hundred times such an improvement
is noticeable, especially when there are multiple runs or when one processes a batch of 10.000 documents
(each needing two runs).

One interesting aspect of TEX that it can surprise you every now and then. End 2022 I decided to play a bit
more with a feature that has been around for a while:

\integerdef \fooA 123
\dimensiondef\fooB 123pt

These primitives create a counter and a dimen where the value is stored in the hash table. The original
reason was that I didn't want to spoil registers. But although these are basically constants there is more to
it now.

91 Gaining performance

\countdef\fooC 27
\dimendef\fooD 56

These primitives create a command that stores the register number (here 27 and 56) with the name. In this
case a ‘variable’ is accessed in two steps: the \fooC macro expands to an register accessor with value 27.
Next that accessor will kick in and fetch (or set) the value in slot 27 of the memory range bound to (in total
65K) counters. All these registers sit a the lower end of TEX's memory which is definitely not next to the
meaning of \fooC. So we have two memory accesses to get to the number. Contrary to that once we are at
\fooA we are also at the value. Although memory access can be fast when the relevant slots are cached in
practice it can give delays, especially in a program like TEX where most data is spread all over the place. And
imagine other processes competing for access too.

It is for that reason that I decided to replace the more or less ‘constant’ property of \fooA by one that also
supports assignments As well as the arithmic commands like \advance. This was not that hard due to the
way the LuaMetaTEX source is organized. After that using these pseudo constants proved to be more efficient
than registers, but of course I then had to adapt the source. Interestingly that should have been easy because
one only needs to change the definitions of for instance \newcountbut in practice that doesn't work because
it will/can break for instance generic packages like Tikz.

So, in the end a new allocator was added and just over 1000 lines in some 120 files (with some overlap) had to
be adapted to this. In addition some precautions had to be made for access from Lua because the quantities
were no longer registers. But it was rewarding in the sense that the test suite now ran some 5% faster and
processing the LuaMetaTEX manual went from 8.7 seconds on my laptop down to around 8.5, which is not
bad.

Now why do we bother so much about performance? If I really want a faster run using a decent desktop is
of more help. But even then there can be reasons. When Mikael and I were discussing math engine de
velopments at some point we noticed that a run took twice as much time as a result of (supposedly idle)
background tasks. Now keep in mind that TEX uses a single core so with plenty cores it should not be that
bad. However, when the video chat program takes half of the CPU power, or when a mathematical manipu
lation program idles in the background taking 80 percent of a modern machine, or when a popular editor
keeps all kind of plug ins busy for no reason, or when a supposedly closed a browser consumes gigabytes of
memory and keeps dozens of supposedly idle threads busy, it becomes clear that we should not let TEX put
a large burden on memory access (and cache).

It can get even worse when one runs on virtual machines where the host suggests that you get 16 cores so
that you can run a dozen TEX jobs in parallel but simple measurements show that these shared cores report a
much higher ideal performance than the one you measure. So, the less demanding a ConTEXt run becomes,
the better: we're not so much after the .2 seconds on a 8 second run, but more after 3 seconds for that same
run when using shared resources where it became 15 seconds. And this is what observations with respect
to the performance of the test suite seem to indicate.

In the end it's mostly about comfort: when you process a document of 300 pages, 10 seconds is quite okay
for a few changes, because one can relate time to output, but 20 seconds . . . And when processing a a few
page document the waiting time of a second is often less than what one needs to move the mouse around
to the viewer. Also, when a user starts TEX on the console and afterwards opens a browser from there that
second is even less noticeable.

Now let's go back to improvements. A related addition was \advanceby that doesn't check for the by key
word. When there is no such keyword we can avoid pushing back the non-matching next token which is
also noticeable. Here about 680 changes were needed. Changes like these only make a difference in perfor
mance for some very demanding mechanisms in ConTEXt. Again one cannot overload an existing primitive

Gaining performance 92

because generic packages can fail (as the test suite proved). There were also a few places where a dirty trick
had to be changed because we cannot alias these constants.

We can give similar stories about other improvements but this one sort of stands out because it is so no
ticeable. Also, other changes involve more drastic low level adaptations of ConTEXt so these happen over a
longer period of time. Of course all has to happen in ways that don't impact users. An example of a perfor
mance primitive is \advancebyplusone which is actually implemented but still disabled because the gain
is in hundreds of seconds range and I need to (again) adapt the source in order to benefit.

The mentioned register variants are implemented for count (integer), dimen (dimension), skip (gluespec)
and muskip (mugluespec). Token registers are more complex as they have reference counters as well as
more manipulator primitives. The same is true for boxes (although it is tempting to come up with some
faster access mechanism) and attributes, that also have more diverse accessors. Also, token lists and boxes
involve way more than a simple assignment or access so any gain will drown in other actions. That said, it
really makes sense now to drop the maximum of 64K registers to some more reasonable 8K (or even less
for mu skips). That will save a couple of megabytes which sounds like little but still puts less burden on the
system.

93 Gaining performance

LMTX on a phone 94

14 LMTX on a phone

When my FairPhone 2 started to get issues (running hot and then rebooting) and some spare parts became
hard to get, I moved on to a FairPhone 4. We're talking early 2022. The specifications of that little computer,
which comes with a 5 year warrantee and long term support are quite okay: a 1080x2340 pixel display, a
Qualcomm SM7225 Snapdragon 750G (Octa-core (2x2.2 GHz Kryo 570 & 6x1.8 GHz Kryo 570), an Adreno
619 GPU, 8GB memory. an 256GB solid state disk, the usual phone gadgets like audio, camera, wireless,
bluetooth and gps, and an USB Type-C 3.0 connector with support for OTG and DisplayPort.

Why do these specification matter? One reason is that in the compile farm we generate binaries for ARM
processors and this phone has a decent one. The fast cores are in the same league as an over-clocked Rasp
berryPi 4 that we use in the compile farm for generating 32 bit binaries; the 64 bit binaries are generated in
a virtual machine on a Mac Mini. So, in 2023, when looking at that phone, I wondered if we could run LMTX
on it. I installed the UserLand linux stub from the Android Playstore and got myself an Ubuntu headless in
stallation. After downloading the LMTX installer indeed I could install the distribution on the little machine.

A next step was trying to connect the phone to the display on my desk and after getting the right USB-C cable
from the local computer shop I managed to get a bit larger terminal although Android 12 seems not able
to use the whole 4K screen. Putting it in developers mode made it possible to enable the Android desktop
interface in an external monitor. A bluetooth keyboard and mouse completed the setup. Later I tried a linux
desktop but that was quite a disappointment so more research is needed there.

A predictable next step was to see if I could compile the LuaMetaTEX source that is part of the installation.
Installing gcc and cmake was easy and indeed compilation went pretty well after that.

A quick performance test showed that making a format, which includes generating the file database, initially
takes 10 seconds but less that 4 seconds once files are cached. Processing 1000 paragraphs from the tufte
sample file is done with a reasonable 55 pages per second. I didn't test more complex documents but that
might happen later, when the dock that I ordered has arrived, and when I have a decent display setup.

Given the fact that I only use a handful of applications on the laptop one can wonder when the moment is
there that a properly dockable phone can do the job. Of course a disadvantage is that batteries are too small
so one needs to provide power, but one needs a monitor, keyboard and mouse anyway. Wear and tear of the
ssd can also be an issue but when storage is plenty that should work out all right. Of course it also assumes
a stable operating system with one's favourite editing platform and viewer available.

95 LMTX on a phone

Running green 96

15 Running green

There are a few contradicting developments going on: energy prices sky-rocket and Intel and AMD are com
peting for the fastest cpu's where saving energy seems mostly related to making sure that the many cores
running at the same time don't burn the machine. However, TEX is a single core consumer so throwing lots
of cores into the game is not helping much. You're better served with one very fast core than many slower
ones that accumulate to much horsepower. The later makes sense when you process video or play games,
but that's not what TEX is about, although it is fun to play with. Of course often multiple cores come in handy,
for instance in the build farm that is used to compile LuaMetaTEX and intermediate TEXLive releases: when
that gets compiled and we also trigger a LuaMetaTEX build, two times 10 linux virtual machines are compil
ing and one windows machine that runs four compile jobs at the same time.

The server that runs the farm is Dell 710 server with dual 5630 Xeon processors, 6 SAS drives each 2GB in
(hardware) raid 10, 72 GB memory, redundant power supplies and 6 network ports. It sits idle for most of
the time and consumes between 250 and 400W. It is part of a redundant setup: dual switches, dual routers,
multiple UPS's, air conditioning, two backup QNAP NAS's, a few low power machines for distributed contin
uous incremental backups, etc. The server itself is a refurbished one, so not the most expensive, but with
the Dutch energy prices of 2022 bound to gas prices, we quickly realized that there was no way we could
keep it up and running. Because we have three such servers (one is turned off and used as fallback) we
started wondering if we could go for a different solution.

As we recently upgraded the 2013 laptops to refurbished 2018 ones (the latest models that could use the
docking stations that we have), we decided to buy a few more and test these as replacements for the servers.
Of course one has to pimp these machines a bit: a professional 2TB nvme SSD plus a proper 2.5in SSD as
backup one, 64 GB of memory, a few extra USB3 network cards. The cpu's are fast mobile Xeons. We use
proxmox as virtual host and that runs fine in such a configuration.

Surprisingly, after moving the farm to that setup, which basically boils down to moving virtual machines,
we found that running those parallel compilations performance wise was quite okay. And the nice thing was
that these machines idle much lower, some 20–30W. The saving is therefore quite noticeable and we decided
to check some more; after all it would be nice if we could bring down the average power consumption of
1750W down to at least half so that it would match the output of a few solar panels. Of course it means that
one has to ditch perfectly well working machines which itself is not that environmental friendly but there is
not much to choose here.

The second machine to be replaced was the one that runs quite some virtual machines too: the main file
server, the mail server, an ftp server, the website, an rsync host, the squeezebox server that also serves as
update test, and various project related rendering services. All run in their own (OpenSuse) virtual machine.
After installing a similar laptop those were also moved.

As a side effect, the two backup NAS's were replaced by a single laptop (my 2013 Dell precision workhorse)
running one backup file server, and for an extra incremental backup (rsnaphot running hourly, daily, weekly
and monthly backups is our friend) a 2013 macbook was turned into a linux machine (15W idle with an inter
nal reused SSD21 and an external 4GB disk), two managed switches became one (after all we had less network
cables due to lost redundancy), only one backup power supply (that will be replaced by an nicer alternative
when it breaks down; after all, by using laptops we get power backup for free). The total consumption went

21 For a change that apple machine was easy to update, and we could even get a new clone battery replacement.

97 Running green

down with at least 1000W. Of course there is an investment involved and we need to reconfigure the server
rack, but the expectation is that by investing now we get less troubles later (less gambling on energy).22

But, there is still the pending question of what the impact is on the services that we run. The most demand
ing ones are the Math4all and Math4mbo: these produce large files, need many resources (xml and images),
and we didn't want to burn ourselves too much. Now, here is an interesting observation: this service runs
twice as fast on the new infrastructure. But it is hard to explain why. The file server is on a different ma
chine (so no fast internal network), the cpu is a bit faster but not that much, the virtual machine is on ssd,
but files are saved on the file server, which is a two disk usb3 enclosure connected directly to a virtual ma
chine that does software raid. The most important difference is that main memory is much faster and TEX
is a memory intense process. From when we started with LuaTEX we do know that memory bandwidth and
cpu caches makes a difference. Maybe the faster floating point handling fo the more modern Xeon also helps
here.

And that brings me to the following: how do we actually benchmark TEX? When you go on the internet and
compare cpu's most tests are not that comparable to a TEX run on a single core. One can think of a set of
test files, but the problem there is that when the engine evolves and details in the macro package coding
changes, one looses the comparison with older tests. This is why, when we do such tests, we always run the
same test on the different platforms. Although this often shows that the gain on newer hardware is seldom
what one expects from the more general benchmarks, one can still be surprised. When we moved to five
year newer laptops the gain was some 30% for me and 50% for my colleague. The difference between his
laptop and the slightly more beefed up virtual machine can be neglected.

We monitor the power consumption with a youless device connected to the power meter. When I process the
LuaMetaTEX manual I see the phase that the machine sits on go up 20W for a run that takes some 9 seconds.
Let's say that we use 180Ws or 0.0006kWh (20.000 runs per kWh). So, compared to the idle power usage of
a server, a single TEX run can be neglected, simply because it is so fast. So, what is actually the most efficient
hardware for a TEX service? I get the feeling that a decent Intel Atom C3955 16-Core driven machine is quite
okay for that, but I don't have that at hand and last time I checked one could not order anything anyway.
And with prices of hardware going up it's also not something you try for fun. As comparison to what we
have now, testing TEX on an Intel NUC11ATKC2 could also be interesting (it has an N4505 cpu). There was
a time when I considered a bunch of raspberry pi's but they no longer are that cheap, given that you can get
them, and adding a case and proper disc enclosure also adds up. When wrapped in a nice package the pi will
probably a couple of times slower but it then probably also uses less power. These fitlets are also interesting
but again, one can't get them.

It is kind of fun to play with optimizations that don't really impact the clarity of the code. One can argue that
spending a day on something that saves 0.005 seconds on a specific run is a waste of time, but of course
one has to multiply that number by a number of runs. Personally I will never gain from it but nevertheless
it can save some energy: imagine a batch of 15000 documents every day. We then save ���������

digbin
��

bindig
����������

digbin
��

������

digrel
��

reldig
���������� seconds or about 8 hours runtime. This can still be neglected but what if this is not the only

optimization?

An example of such an optimization is this:

\advance\somecounter \plusone
\advance\somecounter by \plusone

22 We hope to save some 9000 kWh which means that save at least some 2500€ per year and more when the government will reinstate its
energy tax policy and or prices go further up, which seems to be the case. Even before the crisis in the Netherlands 5ct/Kwh became
fives times that amount effectively when connection, transportation, energy tax and value added tax gets added.

Running green 98

The second one runs faster because there is no push back involved as side effect of the lack of a keyword,
so how about adding this to the engine?

\advanceby \somecounter \plusone
\advancebyone\somecounter

Given the way LuaMetaTEX is coded, it only needs a few lines! In this case it extends the repertoire of prim
itives so it is visible but we have many other (similarly small) optimizations that contribute. Again, the av
erage user will not notice a drop in runtime from 1.5 seconds to 1.45 but when 8 hours become 80 hours or
800 hours it does become interesting. In energy sensitive 2022 these 800 hours not only save some €400
but also contribute to a lower carbon footprint! And now imagine how much could be saved on these exten
sive runs when we make sure that the style used is optimal? Of course, when we need two runs per docu
ment it starts adding up more.

Some experiments with a demanding file showed one percent gain (on a 2.7 seconds run) using the alter
native integers, dimensions and advance primitives. However, using ConTEXt's compact font mode brought
down runtime to 2.0 seconds! So, in the end it's all very relative. It is worth noticing that the .7 seconds
saved on fonts is sort of constant, which means that accumulated gains elsewhere makes that .7 seconds
more significant as we progress.

99 Running green

Supporting math in the JMN collection 100

16 Supporting math in the JMN collection

Hans Hagen, Hasselt NL
Mikael Sundqvist, Lund SV

Introduction

In 2022 we overhauled math font support in ConTEXt, using new functionality in the LuaMetaTEX engine. By
that time it had become clear that the OpenType math font landscape had more or less settled. The Latin
Modern fonts as well as the TEXgyre fonts don't evolve, so we consider them being frozen. It is also unlikely
that the reference Cambria font will change or become more complete. More recent math font are modelled
as a mixture of Cambria and Latin Modern.

When we started with LuaTEX in ConTEXt we immediately started using Unicode math but the lack of proper
Unicode fonts, with the exception of Cambria, resulted in creating virtual Unicode math fonts on the fly
using the virtual font features of the LuaTEX. But when the OpenType math fonts came available that kind of
trickery was no longer needed (or at least less preferred).

That is why we considered dropping the virtual math font mechanism from LMTX. We had already dropped
tx (we can use Termes) and px (better use Pagella) fonts as well as Type1 based Latin Modern. Dropping
the commercial Math Times was a logical next step, also because it has never been tested. The mixtures of
Pagella and Euler were already replaced by using the upgraded tweak mechanism.

That left us with Antykwa, Iwona and Kurier, the fonts that the late Janusz Nowacky vectorized and that
came with plenty OpenType text fonts but also with Type1 math companions. And, as we like these fonts, it
meant that we had to come up with a solution. One option was to create proper OpenType math fonts, but
another was to strip down the virtual math font mechanism to just support these fonts. There is some charm
in keeping the Type1 fonts, also because it is a test case for (by now sort of obsolete) tfm metric, pfb outline,
encoding and map files, for which we have code embedded so having a proper test case makes sense.

In the end we opted for the second solution so this is what the next sections are about: supporting OpenType
math using Type1 fonts. We admit that it took way more time than a conversion to OpenType math fonts
would have, but that is partly due to the fact that these fonts, and especially Antykwa, have some character
istic features that we wanted to use. So, in a sense it was also an esthetics challenge. It also helped that the
font was used in realistic and moderately complex math rendering. We also note that rendering in LMTX is
different (and hopefully better) than in MkIV because we try to benefit from the upgraded math engine in
LuaMetaTEX.

This exploration is dedicated to Janusz who was one of the characteristic presenters of fonts at BachoTEX
meetings, who contributed these fonts, and who in some sense was thereby kick starting the Polish TEX
related font projects.

Virtual math

We keep this expose simple and only tell what we did, you can look at the lfg files and source code to see
what magick is done. For the standard Antykwa we load LatinModern-Math first, so we cover all symbols
that matter. Next we stepwise load rm-anttr.tfm, mi-anttri.tfm, mi-anttbi.tfm, rm-anttb.tfm, sy-
anttrz.tfm, ex-anttr.tfm. For each we specify an encoding vector. Some are loaded multiple times with
different vectors. Because we don't like the slanted curly braces we even load AntykwaTorunska-Regular
in order to get the upright ones. This method is not that different from what we do in MkIV.

101 Supporting math in the JMN collection

The specification of a loaded font also can contain a list of (named) characters that should be ignored, That
was one of the new features in the virtual constructor. We take the math parameters from the fonts where
these are specified, here in the symbols and extension fonts.

The fonts contain extra snippets of extensibles that one can use to construct some of these vertical and
horizontal stretched symbols on the fly in addition to what the font metrics already define. Unfortunately
some snippets are missing, like the six pieces that could make up horizontal and vertical bars, for which
we now need to cheat. We considered making a companion font but for now we are in ‘as good as we can’
emulation mode.

The fonts

We start out with a skeleton font and in the past we used the OpenType text font for that. On top of that we
overlay a bunch of Type1 fonts, and as was common in those days, the ams math symbol fonts msa and msb
were overlayed last in order to fill in remaining gaps. However, now that we have a Latin Modern OpenType
math font it made more sense to use that as starting point because it already has all these symbols.

If we forget about the additional weights and condensed variants, the JMN math collection has actually not
that many fonts. One reason for that is that the upright roman font, the ones that have an r near the end
of the file name, in traditional TEX speak rm, have way more than 255 characters: it not only has all kind
of composed characters, it also has all the extensible shapes. All is (as usual with Type1 fonts) driven by
encoding and mapping files. Fortunately the glyphs names (that we use for filtering) are the same for the
three fonts but there are some more in Antykwa.

Challenges

The real challenge was Antykwa. This is because it has a distinctive curvature at the end of sticky parts (like
rules and such). The TEX machinery as well as OpenType math assume rules being used in for instance
radicals, fractions, overbars, underbars and vertical bar fences.−

ordbin
+

binord
=

ordbin
<

binord
>

The last three come in not only sizes (aka variants) but also can stretch (aka extensible). And, them being
just rules it is assumes that the TEX engine deals with that, and as it cannot really do that without characters,
the traditional approach is to use commands that use TEX rules. However, in ConTEXt (MkIV and LMTX) we
can provide the proper variants and extensible using virtual shapes, and in LMTX we can even scale as last
resort.

The first two are special. We already could support fractions using dedicated characters because we played
with the fraction builder using for instance arrows as separator and these are not rules but characters. It
was not that much work to also make that possible for the rule in a radical. The main adaptation was that we
need to center the numerator and denominator of a fraction and the body of a radical when the character
used is wider than requested.√����𝑥

ordbin
+

bindig
1

radbin
−

binope|opefra1��𝑥
ordbin
+

bindig
1fraclo|

Supporting math in the JMN collection 102

Because we have two font models in ConTEXt, normal and compact, we had to be careful in defining the
virtual shapes and extensibles so that they work in both models. This has to do with scaling and sharing.

Implementation

The original virtual math font mechanism worked closely with the math fall back features, but these have
been replaced by tweaks, which means that we lost some of that. Also, heuristics worked fine on the average
but for Antykwa we wanted more. Therefore some of the built in logic has been moved to the goodie file that
controls the composition. After all, we don't want to hard code specific solutions in the core.

Another addition was the use of so called setups bound to a font class so that we can set up some math
machinery features for e.g. Antykwa in the goodie file. We need to bind to a class because we mix a dozen
math fonts in one test file and therefore we need to separate these setups.

As in regular OpenType math support we ignore the italic correction and translate it in combinations of
proper width and specific kerning. That way we avoid all kind of issues that we otherwise need to compen
sate for.

Because we need to hook extensible characters into the machine for Antykwa its font typescript file also
defines a font class specific setup (of a few lines) to be applied. This might evolve into a more granular
mechanism but for now it works fine and adds little overhead.

Examples

We end by showing a few “real” examples.
�𝑛
𝑘
�

frarel
=

relfra

𝑛!������𝑘!(
opeord
𝑛

ordbin
−

binord
𝑘

ordclo
)!fratpu

,
tpudig
0

digrel
≤

relord
𝑘

ordrel
≤

relord
𝑛

ordtpu
.

The parentheses are unchanged, and we believe that using rotation symmetry instead of mirror symmetry
is a brave but interesting choice, and the new fraction bar fits well with it. The fraction bar also fits well with
the equal sign.

1
digbin
+

binord
𝑥

ordbin
+

binord
𝑥2

ordbin
+

binell
. . .

ellbin
+

binord
𝑥𝑛

ordrel
=

relfra

1
digbin
−

binord
𝑥𝑛

ordbin
+

bindig
1�����1

digbin
−

binord
𝑥

The new vertical bars go well with the brackets, the integral and the solidus.

||
opeord
𝑓

ordclo
||𝑝clorel

=
relope

�
opeint

� 1
0
|

opeord
𝑓 (

opeord
𝑥

ordclo
)

cloclo
|𝑝

clodif
𝑑𝑥

ordclo

�1/𝑝

The fancy fraction bar and the radical bar have made the arithmetic-geometric mean inequality look more
appealing than ever, hasn't it?

𝑎1ordbin
+

binord
𝑎2ordbin

+
binell
. . .

ellbin
+

binord
𝑎𝑛�����������𝑛 frarel

≥
relrad

𝑛��������𝑎1right
𝑎2ordell

. . .
ellord
𝑎𝑛

Primes are usually a bit of a challenge:

𝑓 (
opeord
𝑘

ordbin
+

bindig
1

digclo
)

clobin
−

binord
𝑓 (

opeord
𝑘

ordclo
)

clorel
=

relord
𝑓 ′(

opeord
𝑘

ordclo
)

clobin
+

binord
𝑓 ′′(

opeord
𝑘

ordclo
)

clofra

1−2 frabin
+

binord
𝑓 ′′′(

opeord
𝜉𝑘ordclo

)
clofra

1−6
=

relord
𝑘𝑝

ordbin
+

binfra

𝑝−2 fraord
𝑘𝑝

ordbin
−

bindig
1

ordbin
+

binfra

𝑝(
opeord
𝑝

ordbin
−

bindig
1

digclo
)�����6 fraord
𝜉𝑝

ordbin
−

bindig
2

𝑘

And, as expected, multi-line formulas also look fine.

103 Supporting math in the JMN collection

Profiles 104

17 Profiles

17.1 Introduction

Among the typesetting problems that relate to math are inline formulas that have a bit too much height or
depth but not so much as to justify some additional interline space. For that reason in ConTEXt MkII we have
some snapping features that can be enabled that limit the dimensions. In MkIV a more extensive profile
feature was written (we talked about it at meetings in 2015) that look at the bottom and top of lines in order
to determine if lines can be moved closer, but in practice snapping and profiling are never really used. In
the end it was more an academic exercise which is not uncommon when it comes to TEX user demands and
practice.

As part of exploring math micro typography these features surfaced again during some discussion about
weird mechanisms and we actually wondered if we could revive this now that we also control other aspects
of math typesetting in more detail. One condition is that the overhead is not that high. Users accept some
overhead for protrusion and expansion that relate to horizontal optimization so a little extra overhead for
vertical optimization should not be a problem.

Of course, as with protrusion and especially expansion, the question is if readers will notice it. Best would
be to set up some experiments but, although one can argue that research is important, in practice it always
boils down to a visual impression, feel good and, like it or not, exploration, trial and error. And so a simplified
variant of profiling was implemented and applied to a math intensive math book used in academia. Instead
of proper experiments some unaware bystanders were asked if they noticed a difference and to our surprise
that was the case! And these were not even math students but kids who were more familiar with children
books and phones. That convinced us that we were on the right track, that we need to explain a little about
what we actually do, and that we should tell users what to look at when this gets applied.

With an introduction like this, mentioning ‘research’, ‘academia’, ‘students’ and ‘typography’ we're sure
that future generations will be convinced that what is discussed next has a strong fundament so here we go!

17.2 A first example

We start with a simple example. Because in practice profiling always kicks in when possible one really need
to handcraft an example that can be used for demonstration: figure 17.1.

In order to see what happens it is important to understand how TEX sees lines. Actually, the concept of lines
in TEX is rather limited: lines are just horizontal boxes where the baselines are separated by \baselineskip
and when the distance is larger than that dimensions a \lineskip gets added.

these are a fewL__

lines of textL__

where lines have depthsL__

or no realL__

height at allL__

Between all these lines some skip needs to be added: the \baselineskip minus the height and depth. If
we add struts the lines get the optimal height and depth so then no skips are inserted:

these are a fewL__

lines of textL__

105 Profiles

no no no no no no no no no no no no no noL__

no no no ��

��

��

��

ordbin
�	

binord
��

��

��

. no no no no no no noL__

no no no no no no no no no no no no no noL__

no no �

digbin
�	

binord
��

��

��

������������������������������

��

digbin
�	

binord
�

��

no no no no no no no no no noL__

no no no no no no no.L__

no no no yes yes no no no no no no no noL__

no no no ��

��

��

��

ordbin
�	

binord
��

��

��

. no no no no no no noL__

no yes yes no no no no no no no no no noL__

no no �

digbin
�	

binord
��

��

��

������������������������������

��

digbin
�	

binord
�

��

no no no no no no no no no noL__

no no no no no no no.L__

no no no no no no no no no no no no no noL__

no no no ��

��

��

��

ordbin
�	

binord
��

��

��

. no no no no no no noL__

no no no no no no no no no no no no no noL__

no no �

digbin
�	

binord
��

��

��

������������������������������

��

digbin
�	

binord
�

��

no no no no no no no no no noL__

no no no no no no no.L__

no no no yes yes no no no no no no no noL__

no no no ��

��

��

��

ordbin
�	

binord
��

��

��

. no no no no no no noL__

no yes yes no no no no no no no no no noL__

no no �

digbin
�	

binord
��

��

��

������������������������������

��

digbin
�	

binord
�

��

no no no no no no no no no noL__

no no no no no no no.L__

no profile step=1pt,factor=0.125

no no no no no no no no no no no no no noL__

no no no ��

��

��

��

ordbin
�	

binord
��

��

��

. no no no no no no noL__

no no no no no no no no no no no no no noL__

no no �

digbin
�	

binord
��

��

��

������������������������������

��

digbin
�	

binord
�

��

no no no no no no no no no noL__

no no no no no no no.L__

no no no yes yes no no no no no no no noL__

no no no ��

��

��

��

ordbin
�	

binord
��

��

��

. no no no no no no noL__

no yes yes no no no no no no no no no noL__

no no �

digbin
�	

binord
��

��

��

������������������������������

��

digbin
�	

binord
�

��

no no no no no no no no no noL__

no no no no no no no.L__

no no no no no no no no no no no no no noL__

no no no ��

��

��

��

ordbin
�	

binord
��

��

��

. no no no no no no noL__

no no no no no no no no no no no no no noL__

no no �

digbin
�	

binord
��

��

��

������������������������������

��

digbin
�	

binord
�

��

no no no no no no no no no noL__

no no no no no no no.L__

no no no yes yes no no no no no no no noL__

no no no ��

��

��

��

ordbin
�	

binord
��

��

��

. no no no no no no noL__

no yes yes no no no no no no no no no noL__

no no �

digbin
�	

binord
��

��

��

������������������������������

��

digbin
�	

binord
�

��

no no no no no no no no no noL__

no no no no no no no.L__

step=1pt,factor=0.250 step=1pt,factor=1.000

Figure 17.1

where lines have depthsL__

or no realL__

height at allL__

When we increase the depth a little, for instance 1.2 times the normal strut depth, we see that some addi
tional space, the \lineskip gets added:

these are a fewL__

lines of textL__

where lines have depthsL__

or no realL__

height at allL__

However, there is no real reason to do that here because the larger rules don't clash with text or other content.
So this is what we get when we pass the profile option to \setupalign:

these are a fewL__
LI:0.000

lines of textL__
LI:0.000

where lines have depthsL__
LI:0.000

or no realL__
LI:0.000

height at allL__

Profiling works per paragraph, so when we add a \par in the middle we get this:

Profiles 106

these are a fewL__
LI:0.000

lines of textL__
LI:0.000

where lines have depthsL__

or no realL__
LI:0.000

height at allL__

But, we can actually setup the profiler to look back. Setting up the main (document) profiler happens with:

\setuplineprofile
[factor=0.125, % default
paragraph=yes, % default: no
step=0.5\emwidth] % default

but as with most ConTEXt mechanisms you can define your own profiler. The step tells what granularity to
use when comparing positions in a line. The factor sets the threshold for the interline skip. We saw these
two differ in the first example we gave.

17.3 Profiled math

We will give several examples of math profiling. In the examples we will switch font to Latin Modern, since
the effect is more visible for that font. Most of our examples will be “real” (slightly modified) ones, but we
start with a rather artificial example. Below we have two occurrences of a fraction. Note that the profiling
only kicks in for the second one. The reason is that on the line above the first one we only have letters (x)
with no depth, while in the second one, we have added one letter (g) that has depth.

xxx xxxx xxxx xx xxx xx xx xxx xxxx xxx xx xxx xxx xxL__

xx xxx x xxxxx xxxxx xxx xxxx xxxx xx xxx xx xx xxxL__

xxxx xxx xx xxx xxx xx xx xxx x xxxxx xxxxx �

��

xxx xxxL__

xx xx xxx xxxx xxxxxxx xxxx xxxx xxxxx xxx xxxx xxxL__

xxx xxx xxx xxx xxx xxxx xxxxxx xxxxxxx xxxgxxx xxxL__

xxx xxx xx x xxxxxxx xxx �

��

xxx xxxx xxxx xx xxx xx xxL__

xxx xxxx xxx xx xxx xxx xx xx xxx x xxxxx xxxxx.L__

xxx xxxx xxxx xx xxx xx xx xxx xxxx xxx xx xxx xxx xxL__

xx xxx x xxxxx xxxxx xxx xxxx xxxx xx xxx xx xx xxxL__

xxxx xxx xx xxx xxx xx xx xxx x xxxxx xxxxx �

��

xxx xxxL__

xx xx xxx xxxx xxxxxxx xxxx xxxx xxxxx xxx xxxx xxxL__

xxx xxx xxx xxx xxx xxxx xxxxxx xxxxxxx xxxgxxx xxxL__

xxx xxx xx x xxxxxxx xxx �

��

xxx xxxx xxxx xx xxx xx xxL__

xxx xxxx xxx xx xxx xxx xx xx xxx x xxxxx xxxxx.L__

no profile step=1pt,factor=0.125

We next show a simple paragraph where the mechanism gets applied in three out of five line breaks.

The results of Section 6.3 show that the same phenomL__

enon is encountered when treating the norms of inL__

verses: �¡�¢

�+�

�- right
�¡

�K

converges to �£

�K

very fast if �£

�K ordrel
�)

relord
�£

��

�K

,L__

while the convergence may be slow if �£

�K ordrel
��

relord
�£

��

�K

. As theL__

following proposition reveals, at least for �K
ordrel
��

reldig
�� the strictL__

inequality �£
�� ordrel

�)

relord
�£

��

��

is the generic case.L__

The results of Section 6.3 show that the same phenomL__

enon is encountered when treating the norms of inL__

verses: �¡�¢

�+�

�- right
�¡

�K

converges to �£

�K

very fast if �£

�K ordrel
�)

relord
�£

��

�K

,L__

while the convergence may be slow if �£

�K ordrel
��

relord
�£

��

�K

. As theL__

following proposition reveals, at least for �K
ordrel
��

reldig
�� the strictL__

inequality �£
�� ordrel

�)

relord
�£

��

��

is the generic case.L__

no profile step=1pt,factor=0.125

We have shown the lines and used the helper to show where the profiling is applied. We show the same
example but without these helpers. After all, this is how we usually see it.

The results of Section 6.3 show that the same phenom
enon is encountered when treating the norms of in
verses: �¡�¢

�+�

�- right
�¡

�K

converges to �£

�K

very fast if �£

�K ordrel
�)

relord
�£

��

�K

,
while the convergence may be slow if �£

�K ordrel
��

relord
�£

��

�K

. As the
following proposition reveals, at least for �K

ordrel
��

reldig
�� the strict

inequality �£
�� ordrel

�)

relord
�£

��

��

is the generic case.

The results of Section 6.3 show that the same phenom
enon is encountered when treating the norms of in
verses: �¡�¢

�+�

�- right
�¡

�K

converges to �£

�K

very fast if �£

�K ordrel
�)

relord
�£

��

�K

,
while the convergence may be slow if �£

�K ordrel
��

relord
�£

��

�K

. As the
following proposition reveals, at least for �K

ordrel
��

reldig
�� the strict

inequality �£
�� ordrel

�)

relord
�£

��

��

is the generic case.

no profile step=1pt,factor=0.125

107 Profiles

If the paragraph is slightly reformulated, the profiling might change. Below we show an example where the
subscript (p) on the fourth line gets too close to the superscript (0) on the last line.

The results of Section 6.3 show that the same phenomL__

enon is encountered when treating the norms of inL__

verses: �¡�¢

�+�

�- right
�¡

�K

converges to �£

�K

very fast if �£

�K ordrel
�)

relord
�£

��

�K

,L__

while the convergence may be slow if �£
�K ordrel

��

relord
�£

��

�K

. At leastL__

for �K

ordrel
��

reldig
�� the strict inequality �£

�� ordrel
�)

relord
�£

��

��

is the genericL__

case.L__

The results of Section 6.3 show that the same phenomL__

enon is encountered when treating the norms of inL__

verses: �¡�¢

�+�

�- right
�¡

�K

converges to �£

�K

very fast if �£

�K ordrel
�)

relord
�£

��

�K

,L__

while the convergence may be slow if �£
�K ordrel

��

relord
�£

��

�K

. At leastL__

for �K

ordrel
��

reldig
�� the strict inequality �£

�� ordrel
�)

relord
�£

��

��

is the genericL__

case.L__

no profile step=1pt,factor=0.125

We can configure the amount of space that shall be added with the factor key.

The results of Section 6.3 show that the same phenomL__

enon is encountered when treating the norms of inL__

verses: �¡�¢

�+�

�- right
�¡

�K

converges to �£

�K

very fast if �£

�K ordrel
�)

relord
�£

��

�K

,L__

while the convergence may be slow if �£
�K ordrel

��

relord
�£

��

�K

. At leastL__

for �K

ordrel
��

reldig
�� the strict inequality �£

�� ordrel
�)

relord
�£

��

��

is the genericL__

case.L__

The results of Section 6.3 show that the same phenomL__

enon is encountered when treating the norms of inL__

verses: �¡�¢

�+�

�- right
�¡

�K

converges to �£

�K

very fast if �£

�K ordrel
�)

relord
�£

��

�K

,L__

while the convergence may be slow if �£
�K ordrel

��

relord
�£

��

�K

. At leastL__

for �K

ordrel
��

reldig
�� the strict inequality �£

�� ordrel
�)

relord
�£

��

��

is the genericL__

case.L__

step=1pt,factor=0.125 step=1pt,factor=1

This shows that the sequence �.�(
�- right

�/ is a Cauchy sequenceL__

in �¤

�

�.�¥�/ and therefore it converges in norm to someL__

�¦

�-

�G

ordrel
��

reldig
� opeacc

�§

�(

accrel
�¨

relord
�¤

�

�.�¥�/ , by Thereom 2.8.1. On the other hand,L__

by Theorem 2.8.2, there exists an increasing sequenceL__

of positive integers �L

�-

such that �(

�L

�-

ordrel
�©

relacc
�ª

�(almost everyL__

where.L__

This shows that the sequence �.�(
�- right

�/ is a Cauchy sequenceL__

in �¤

�

�.�¥�/ and therefore it converges in norm to someL__

�¦

�-

�G

ordrel
��

reldig
� opeacc

�§

�(

accrel
�¨

relord
�¤

�

�.�¥�/ , by Thereom 2.8.1. On the other hand,L__

by Theorem 2.8.2, there exists an increasing sequenceL__

of positive integers �L

�-

such that �(

�L

�-

ordrel
�©

relacc
�ª

�(almost everyL__

where.L__

no profile step=1pt,factor=0.125

17.4 Line spacing

When we enable the line profiler on a 300 page math course with plenty inline formulas, the number of
‘corrections’ varies a lot with the fonts. Some simple tests show that Latin Modern, Bonum and EBGaramond
get quite some applied, while Lucida, Dejavu, Antykwa, Erewhon and Libertinus only see a few corrections.
Pagella, Termes and StixTwo end up in the middle.

The trigger is not always text or math. The course material has quite some structure, like numbered de
scriptions. In ConTEXt we use plenty of struts to make sure that spacing is consistent and the keyword that
starts a description therefore gets them. Normally that is not an issue but when the height of the next line
exceeds the strut height we get a clash and line skip will be added. One can argue that the strut spoils the
typesetting but in general it does more good than harm, at least in ConTEXt. It looks like the profiler is quite
capable of getting rid of the cases where it interferes (or more precisely: where it doesn't run into the next
line).

The reason why we get a line skip added is simple: when the depth of the first line equals strut depth and the
height of the second one equals strut height we're okay. When one of them is less we're also okay because TEX
will adapt the baseline skip so that it compensated the difference. However, when the first line has strut
depth (due to the present strut) and the second line more than strut height (resulting for instance from a
formula) the lines are considered overflowing in each other and therefore interline skip gets added.

When we end up in this situation the profiler can bring down the line skip when it concludes that the strut
is not running into the next line. However when the formula sits directly below the strut we cannot really

Profiles 108

determine what is right so then we just keep the skip. This situation occurs seldom. In many cases struts
are optional so one can always disable them (locally).

As the mentioned test document uses Lucida as body font, in the three cases where we actually get a clash,
one definitely relates to the strut: the overflow in the second line occurs close to the right margin and the
strut in the first line sits at the left margin so we can get rid of the line skip, which leave us with only two
cases. However, there is another observation, one that involves the baseline distance or line height.

In ConTEXt the ratio between the strut height and depth is 72:28 which works quite well for most fonts. If
we look at Lucida shapes we see that the depth is normally small so we can actually decide to change that
ratio. It is however not clear how that will influence decisions. Assuming more height will help with for
instance formulas that have superscripts, but an inline integral with subscript might suffer. For other fonts,
like EBGaramond, that have some extremely deep shapes changing rations won't help anyway. We win here
and loose there.

We will look into a few fonts to get a better impression how all this relates. We will use 10pt sizes. When
we compare Lucida, Latin Modern, Bonum and Pagella we notice that we start out with design sizes that are
quite different.

lucida
strut ht : 10.67896pt
strut dp : 4.15291pt
ex : 5.29709pt

modern
strut ht : 8.68419pt
strut dp : 3.37718pt
ex : 4.30763pt

bonum
strut ht : 9.77223pt
strut dp : 3.80031pt
ex : 4.84734pt

pagella
strut ht : 9.44986pt
strut dp : 3.67493pt
ex : 4.68742pt

This is why we always use ratios (the 0.72 and 0.28) as well as abstract dimensions like ex and em so that we
adapt to what the font provides. Because the default (total) line height is set to 2.8ex we get larger values in
for instance Lucida.

In the next tables we use three samples, with text-001 being:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
()[]/\{\}\|
.,!?@\#\$\%^&*_-+=

109 Profiles

The two math samples are:

$\int\sum\sqrt{}$

and

x_2^2

For text the ratios are not that far off the defaults, but for math they start to differ and the distance becomes
larger. For Lucida we get:

text-001 math-001 math-002
0.79 7.8257pt 0.81 9.78223pt 0.92 7.40593pt
0.21 2.04887pt 0.19 2.24377pt 0.08 0.62965pt

Modern gives:

text-001 math-001 math-002
0.75 7.49588pt 0.75 9.16898pt 0.84 7.43591pt
0.25 2.49863pt 0.25 3.05333pt 0.16 1.37924pt

And bonum moves in the other direction:

text-001 math-001 math-002
0.77 7.90565pt 0.77 10.16666pt 0.82 7.21603pt
0.23 2.40868pt 0.23 3.11829pt 0.18 1.54915pt

Pagella also differs:

text-001 math-001 math-002
0.73 7.49588pt 0.78 10.69714pt 0.85 6.88622pt
0.27 2.82845pt 0.22 2.95837pt 0.15 1.24931pt

Changing the ratios for the sake of math makes not that much sense because profiling depends a lot on what
math ends up inline. When we looked around a bit for realistic examples we got the impression that seeing
some clash (read: getting uneven line spacing) might be a reason why small formulas eventually end up as
display. Without mentioning names, we noticed that a reprint of a book actually got reformatted and when
we looked for the slashing formulas in the original they had become display instead. With proper profiling
there is no need for that. On top of that one can argue that some inline rendering can be done better anyway,
like using skewed fraction instead of ruled ones. Can we predict that math with many superscripts goes
well with a font with relatively high shapes? As soon as some parenthesis are used we get depth anyway and
how likely is it that math without these is used inline? It also depends on the amount of math: two lines with
superscripted math will drive TEX to use line skip so we need to profile anyway. For that reason we will not
adapt the ratios, just like we keep the default line spacing. There are of course fonts with extreme heights
(like the Computer Modern Dunhill variant) but no one will use those artistic variants in a math document.
If you want to go fancy and distinctive, Antykwa is a good choice and that one actually scores pretty good
with the defaults!

antykwa
strut ht : 9.47pt
strut dp : 3.68277pt
ex : 4.69742pt

Profiles 110

text-001 math-001 math-002
0.75 7.69577pt 0.76 9.59224pt 0.87 7.0961pt
0.25 2.49863pt 0.24 3.05562pt 0.13 1.04942pt

17.5 Conclusion

So, should we enable profiling on mixed text-math documents or not? One possible reason for not doing it
is that it adds overhead, but in practice it's not that much compared to processing the rest. It is no problem
to find complaints on the internet about LuaTEX performing worse than its ancestors so if you're in that cat
egory: don't use profiling because it sets you back a few percent runtime. However, when you're a demand
ing ConTEXt user who mixes in a lot of math, you might give it a try. It will intercept a couple of cases where
struts (assuming structure is used) trigger a line skip, and it might also catch a couple of cases where TEX
found lines getting too close. Tweaking the factor and step can actually be fun. Because it does influence
page breaks it is not something to be applied last minute. And, talking performance, this kind of vertical
optimization comes cheaper than horizontal optimization using expansion (hz) and protrusion.

111 Profiles

Pushing the envelope 112

18 Pushing the envelope

Here I describe the results of some exploration and experiments by Mikael Sundqvist and me. We got side
tracked from intersections, arcs and drawing functions when we noticed some artifacts with envelopes. But
what are envelopes actually? Let us start with a simple path:

\startMPinclusions
path TestPath ; TestPath := fullcircle xyscaled (10cm,1cm)

\stopMPinclusions

When we draw this with a circular pen we get this:

\startMPcode
draw TestPath withpen pencircle scaled 2mm withcolor darkred ;

\stopMPcode

Filling gives:

\startMPcode
fill TestPath withpen pencircle scaled 2mm withcolor darkred ;

\stopMPcode

When a pencircle is used MetaPost delegates the work to the backend because PostScript has a circular
pen, otherwise it has to calculate the to-be-filled shape itself. The backend has to do some path juggling in
the case of pdf because there a pen transform is different from PostScript.

\startMPcode
draw TestPath withpen pensquare scaled 2mm withcolor darkblue ;

\stopMPcode

Here we draw the shape with a square pen while filling gives:

\startMPcode
fill TestPath withpen pensquare scaled 2mm withcolor darkblue ;

\stopMPcode

In most cases this works out well but there are some hidden issues. These get exposed when we use a trans
parency:

113 Pushing the envelope

\startMPcode
fill TestPath withpen pensquare scaled 2mm withcolor darkgreen

withtransparency (1,.5) ;
\stopMPcode

It are these artifacts that we will explore a little. For that we will render quite some graphics. We could
show numerous more examples but when you are a ConTEXt user you will be able to make plenty yourself
by looking at these examples.

\startMPcode
fill fullcircle xyscaled (.8TextWidth,2cm)

withpen pensquare scaled 8mm
withcolor darkgreen
withtransparency (1,.5) ;

\stopMPcode

When we were playing with the envelopeprimitive we noticed these artifacts and we spent quite some time
looking at the code to see where it comes from and if we could prevent this. It was then that we realized that
the fill actually also uses these envelopes but that it gets delayed till the shapes are flushed to the backend.
That meant that we could use fills with transparencies as simple test cases.

The first thing to get rid of is the weird blob at the right end of the fill in this example. Not really understand
ing all what went on, we explored all kind of shapes and temporarily disabled some of the code in the Meta
Post library to see where it crept in. We decided that touching the code to get rid of for instance rounding
issues or potential direction related side effects made no sense. In the end the solution was simple:

\startMPcode
pen p ; p := makepen(unitsquare rotated eps) ;
fill fullcircle xyscaled (.8TextWidth,2cm)

withpen p scaled 8mm
withcolor darkgreen
withtransparency (1,.5) ;

\stopMPcode

We show what the envelope primitive gives us:

Pushing the envelope 114

\startMPcode
pen p ; p := makepen(unitsquare rotated eps) ;
path e ; e :=

envelope (p scaled 8mm)
of

(fullcircle xyscaled (.8TextWidth,2cm))
;
draw e

withpen pencircle scaled 2mm
withcolor darkgreen
withtransparency (1,.5) ;

drawpoints e ;
\stopMPcode

This looks okay compared to previous the examples but we have only a simple path here, while the fill actu
ally has two:

\startMPcode
pen p ; p := makepen(unitsquare rotated eps) ;
enfill fullcircle xyscaled (.8TextWidth,2cm)

withpen p scaled 8mm
withcolor darkgreen
withtransparency (1,.5) ;

\stopMPcode

So how do we get that inner shape? Once you know what a fill actually outputs to the backend it is easy!
There are two envelopes: the normal one and one made from the reverse path (or in internal MetaPost speak:
htap). In the previous example the enfill treats the path as a fill but will draw the envelopes instead. As
with eofill, eoclip and path accumulators this is a MetaFun backend related feature but we introduced
enfill as a new one.

\startMPcode
pen p ; p := makepen(unitsquare rotated eps) ;
draw

envelope (p scaled 8mm) of
(fullcircle xyscaled (.8TextWidth,2cm))
withpen pencircle scaled 2mm

115 Pushing the envelope

withcolor darkgreen
withtransparency (1,.5) ;

draw
envelope (p scaled 8mm) of
reverse (fullcircle xyscaled (.8TextWidth,2cm))
withpen pencircle scaled 2mm
withcolor darkblue
withtransparency (1,.5) ;

\stopMPcode

We're now ready for the real deal but keep in mind that what we show here is the result of stepwise growing
insight combined with adding some features to the engine that not only makes it possible to illustrate this
but also might prove to be useful. The used primitives will be explained later, for now we just stick to the
results.

Figure 18.1 shows a circle filled (or enveloped) with pens made from fullcircle, fulldiamond,
fulltriangle and fullsquare. The paths that we use for the pens are also shown. The outcome can be
puzzling but after going over the code (in the engine) and trying to reason the logic it becomes clear that the
unexpected is mostly due to the fact that there is no other way to draw the path (read: meet the criteria).

When looking closely at the results (adding labels to the points and zooming in) one will notice more side
effects. Because we rotate over eps to get rid of the weird end situation we can end up with more points
than we like and these are so close to each other that one doesn't notice them. For this we can apply the
scrutinizer:

e := e scrutinized 0.01 ;

When that is done we can wonder if a simplified (inner) path is possible. I tried a few solutions using the
Lua interface while Mikael (as mathematician) followed the more scientific approach but the results largely
depend on the pens and shapes.

Actually when doing all that we used a more complex pen in several variants. This is shown in figure 18.2.
Notice the dashed lines here. When a pen is defined there is some checking going on. One is that circular
pens get no treatment at all and just pass through the system. Basically any single point cycle is considered
as elliptical anyway. Then the path turned into a so called ‘convex’ path. It also showed us the real pen being
used. When out of curiosity I commented that bit of code I noticed that we could achieve interesting results.
The result is that we now have a convexed primitive. After all the code was there so it took only a few lines
to add this primitive. In figure 18.3 you can see the result of a unconvexed pen.

We can also calculate envelopes of non-cyclic paths which is demonstrated in figure 18.4 and figure 18.5.
There is however some trickery involved. Just to make this easier the MetaFun macro package has a type
starring macro that makes such a star:

path p ; p := starring(-1/2) rotated eps ;

Pushing the envelope 116

Figure 18.1 Using four different relatively large pens on a circle.

This star can become a pen:

pen somepen ; somepen := makepen (pp) ;

And as mentioned pens get convexed by default. Even worse, whenever we transform a pen it gets convexed
again. When we fill a shape the pen gets attached to that shape and the backend will do the enveloping. The
easiest way to consistently avoid convexing was to introduce a new pen type.

nep somepen ; somepen := makenep (pp) ;

The somewhat weird short nep perfectly fits the bill as in Dutch it means fake. A pen defined this way
stays unconvexed. Actually there is another property where pens differ from regular paths: they are double
linked. In original MetaPost that back (prev) link uses a field in a knot record that is not used by pen paths.
The path that gets pencilled also abuses one of knot fields for keeping track of the offset that a point has rel
ative to the current point in the pen. It was good moment to also make regular paths double linked lists.

117 Pushing the envelope

Figure 18.2

That comes at the cost of an extra pointer in the knot record but we could also save some space by using
smaller slots for other fields. Memory is not our biggest worry anyway.23. Double linking meant that there
was no need for doing that when making pens.24

We can apply the convexed primitive to the inner envelope which is demonstrated in figure 18.6 and fig
ure 18.7. Of course it is debatable how useful this is but as with all these MetaPost shapes, it has some charm.

23 Of course adding code is but when looking in more detail at the code involved it was actually possible to simplify the code a bit so there
we gained

24 It makes it possible to get points relative to the current point in iterators over paths that we introduced a while ago, which makes for
high performance path manipulators.

Pushing the envelope 118

Figure 18.3

119 Pushing the envelope

Figure 18.4

Figure 18.5

Pushing the envelope 120

Figure 18.6

121 Pushing the envelope

Figure 18.7

Pushing the envelope 122

To what extend does all this influence the output? As long as we don't use transparencies we're quite okay
unless we use a pen size that introduces the more extreme overshoots. If you think these phenomena only
relate to MetaPost output, you're wrong. Over the past decades I've seen various fonts that exhibit the same
small spikes and other artifacts btu as we often see the shapes at small sizes it goes unnoticed. A particular
sensitive areas is variable fonts where, when the ranges on which the various dimensions operate are too
liberal, you can also get these effects. After all, glyphs are filled shapes. To that you can also add the fact
that they are single (connected) paths drawn with eofill.

The final format a graphics ends up in can be pdf. Take the following three shapes and watch the subtle side
effect of rotating either the to be drawn shape or the pen.

\startMPcode
fill fullcircle xyscaled (5cm,3cm)

withpen makepen(fullsquare) scaled 2mm
withcolor darkred
withtransparency (1,.5) ;

fill fullcircle xyscaled (5cm,3cm)
shifted (6cm,0)
withpen makepen(fullsquare rotated eps) scaled 2mm
withcolor darkblue
withtransparency (1,.5) ;

fill fullcircle rotated eps xyscaled (5cm,3cm)
shifted (12cm,0)
withpen makepen(fullsquare) scaled 2mm
withcolor darkgreen
withtransparency (1,.5) ;

\stopMPcode

This produces four filled paths in the pdf file, a normal and a reverse path per shape. I show the whole
output because you can see how some points of the ‘inside’ curve are sort of duplicated: they have the same
coordinates but can have different control points.

inner outer
left 25=26 31=32 35=36 39=40 43=25
middle 49=50=51 54=55 58=59 62=63
right 107=108=109 112=113 116=117 120=121 89=105

Here is the output. Each combination is between bound by the transparency operators /Tr1 and /Tr0 and
has different colors.

1 % mps graphic 1: begin
2 q
3 /Tr1 gs
4 0.625 0 0 rg 0.625 0 0 RG

123 Pushing the envelope

5 10 M
6 1 j
7 45.354315 2.83464 m
8 45.354315 14.111559 40.874577 24.926605 32.900591 32.900591 c
9 24.926605 40.874577 14.111559 45.354315 2.83464 45.354315 c
10 2.83464 45.354315 -2.83464 45.354315 -2.83464 45.354315 c
11 -2.83464 45.354315 l
12 -14.111559 45.354315 -24.926605 40.874577 -32.900591 32.900591 c
13 -40.874577 24.926605 -45.354315 14.111559 -45.354315 2.83464 c
14 -45.354315 2.83464 -45.354315 -2.83464 -45.354315 -2.83464 c
15 -45.354315 -2.83464 l
16 -45.354315 -14.111559 -40.874577 -24.926605 -32.900591 -32.900591 c
17 -24.926605 -40.874577 -14.111559 -45.354315 -2.83464 -45.354315 c
18 -2.83464 -45.354315 2.83464 -45.354315 2.83464 -45.354315 c
19 2.83464 -45.354315 l
20 14.111559 -45.354315 24.926605 -40.874577 32.900591 -32.900591 c
21 40.874577 -24.926605 45.354315 -14.111559 45.354315 -2.83464 c
22 45.354315 -2.83464 45.354315 2.83464 45.354315 2.83464 c
23 45.354315 2.83464 l
24 h f
25 39.685035 -2.83464 m
26 39.685035 -2.83464 45.354315 -2.83464 45.354315 -2.83464 c
27 45.354315 -2.83464 45.354315 2.83464 45.354315 2.83464 c
28 45.354315 2.83464 39.685035 2.83464 39.685035 2.83464 c
29 39.685035 -8.442279 35.205297 -19.257325 27.231311 -27.231311 c
30 19.257325 -35.205297 8.442279 -39.685035 -2.83464 -39.685035 c
31 -2.83464 -39.685035 l
32 -2.83464 -39.685035 2.83464 -39.685035 2.83464 -39.685035 c
33 -8.442279 -39.685035 -19.257325 -35.205297 -27.231311 -27.231311 c
34 -35.205297 -19.257325 -39.685035 -8.442279 -39.685035 2.83464 c
35 -39.685035 2.83464 l
36 -39.685035 2.83464 -39.685035 -2.83464 -39.685035 -2.83464 c
37 -39.685035 8.442279 -35.205297 19.257325 -27.231311 27.231311 c
38 -19.257325 35.205297 -8.442279 39.685035 2.83464 39.685035 c
39 2.83464 39.685035 l
40 2.83464 39.685035 -2.83464 39.685035 -2.83464 39.685035 c
41 8.442279 39.685035 19.257325 35.205297 27.231311 27.231311 c
42 35.205297 19.257325 39.685035 8.442279 39.685035 -2.83464 c
43 39.685035 -2.83464 l
44 h f
45 /Tr0 gs
46 0 g 0 G
47 /Tr1 gs
48 0 0 0.625 rg 0 0 0.625 RG
49 158.740139 -2.834616 m
50 158.740139 -2.834252 l
51 158.740139 -2.834252 158.740091 2.835028 158.740091 2.835028 c
52 158.739994 14.111816 154.260267 24.926715 146.286366 32.900615 c
53 138.31238 40.874601 127.497335 45.354339 116.220416 45.354339 c

Pushing the envelope 124

54 116.220052 45.354339 l
55 116.220052 45.354339 110.550772 45.354291 110.550772 45.354291 c
56 99.273984 45.354194 88.459085 40.874467 80.485185 32.900566 c
57 72.511199 24.92658 68.031461 14.111535 68.031461 2.834616 c
58 68.031461 2.834252 l
59 68.031461 2.834252 68.031509 -2.835028 68.031509 -2.835028 c
60 68.031606 -14.111816 72.511333 -24.926715 80.485234 -32.900615 c
61 88.45922 -40.874601 99.274265 -45.354339 110.551184 -45.354339 c
62 110.551548 -45.354339 l
63 110.551548 -45.354339 116.220828 -45.354291 116.220828 -45.354291 c
64 127.497616 -45.354194 138.312515 -40.874467 146.286415 -32.900566 c
65 154.260401 -24.92658 158.740139 -14.111535 158.740139 -2.834616 c
66 h f
67 153.070811 2.834616 m
68 153.070811 -8.442303 148.591072 -19.257349 140.617086 -27.231335 c
69 132.643186 -35.205235 121.828288 -39.684963 110.5515 -39.685059 c
70 110.5515 -39.685059 116.22078 -39.685011 116.22078 -39.685011 c
71 116.220416 -39.685011 l
72 104.943497 -39.685011 94.128451 -35.205272 86.154465 -27.231286 c
73 78.180565 -19.257386 73.700837 -8.442488 73.700741 2.8343 c
74 73.700741 2.8343 73.700789 -2.83498 73.700789 -2.83498 c
75 73.700789 -2.834616 l
76 73.700789 8.442303 78.180528 19.257349 86.154514 27.231335 c
77 94.128414 35.205235 104.943312 39.684963 116.2201 39.685059 c
78 116.2201 39.685059 110.55082 39.685011 110.55082 39.685011 c
79 110.551184 39.685011 l
80 121.828103 39.685011 132.643149 35.205272 140.617135 27.231286 c
81 148.591035 19.257386 153.070763 8.442488 153.070859 -2.8343 c
82 153.070859 -2.8343 153.070811 2.83498 153.070811 2.83498 c
83 153.070811 2.834616 l
84 h f
85 /Tr0 gs
86 0 g 0 G
87 /Tr1 gs
88 0 0.625 0 rg 0 0.625 0 RG
89 272.125915 2.835004 m
90 272.125819 14.111923 267.645988 24.92693 259.671934 32.900848 c
91 251.697965 40.87468 240.883028 45.354315 229.606241 45.354315 c
92 229.606241 45.354315 223.936961 45.354315 223.936961 45.354315 c
93 223.936596 45.354315 l
94 212.659677 45.354219 201.84467 40.874388 193.870752 32.900334 c
95 185.89692 24.926365 181.417285 14.111428 181.417285 2.834641 c
96 181.417285 2.834641 181.417285 -2.834639 181.417285 -2.834639 c
97 181.417285 -2.835004 l
98 181.417381 -14.111923 185.897212 -24.92693 193.871266 -32.900848 c
99 201.845235 -40.87468 212.660172 -45.354315 223.936959 -45.354315 c
100 223.936959 -45.354315 229.606239 -45.354315 229.606239 -45.354315 c
101 229.606604 -45.354315 l
102 240.883523 -45.354219 251.69853 -40.874388 259.672448 -32.900334 c

125 Pushing the envelope

103 267.64628 -24.926365 272.125915 -14.111428 272.125915 -2.834641 c
104 272.125915 -2.834641 272.125915 2.834639 272.125915 2.834639 c
105 272.125915 2.835004 l
106 h f
107 266.456635 -2.834276 m
108 266.456635 -2.834641 l
109 266.456635 -2.834641 266.456635 2.834639 266.456635 2.834639 c
110 266.456635 -8.442148 261.977 -19.257085 254.003168 -27.231054 c
111 246.02925 -35.205108 235.214243 -39.684939 223.937324 -39.685035 c
112 223.936959 -39.685035 l
113 223.936959 -39.685035 229.606239 -39.685035 229.606239 -39.685035 c
114 218.329452 -39.685035 207.514515 -35.2054 199.540546 -27.231568 c
115 191.566492 -19.25765 187.086661 -8.442643 187.086565 2.834276 c
116 187.086565 2.834641 l
117 187.086565 2.834641 187.086565 -2.834639 187.086565 -2.834639 c
118 187.086565 8.442148 191.5662 19.257085 199.540032 27.231054 c
119 207.51395 35.205108 218.328957 39.684939 229.605876 39.685035 c
120 229.606241 39.685035 l
121 229.606241 39.685035 223.936961 39.685035 223.936961 39.685035 c
122 235.213748 39.685035 246.028685 35.2054 254.002654 27.231568 c
123 261.976708 19.25765 266.456539 8.442643 266.456635 -2.834276 c
124 h f
125 /Tr0 gs
126 0 g 0 G
127 Q
128 % mps graphic 1: end

The duplicates differ per variant and as they are effective lineto combine with curveto we can consider
removing the lineto's. This can either be done in the backend or we can decide to do that in the MetaPost
library during the export.25

The tracingspecs flag can help us to see what happens deep down when

envelopes are made. It will show the intermediate path on the console.

tracingspecs := 1;
path e ; e := envelope (makepen(fullsquare) scaled 2mm) of (fullcircle scaled 3cm)

;
show(e);

The intermediate path is reported as:

% beginning with offset (2.83464, 2.83464)
(42.51968, 0) .. controls (42.51968, 11.27742) and (38.03908,

22.09160)
.. (30.06534, 30.06534) .. controls (22.09160, 38.03908) and (11.27742,

42.51968)
% counterclockwise to offset (-2.83464, 2.83464)

25 In the end I settled on introducing a move tolerance in addition to the bend tolerance that we already have in the export. The default
value of 0.001999 removes 14 lines from the above pdf code.

Pushing the envelope 126

.. (0, 42.51968) .. controls (0, 42.51968) and (0,
42.51968)

.. (0, 42.51968) .. controls (-11.27742, 42.51968) and (-22.09160,
38.03908)

.. (-30.06534, 30.06534) ..controls (-38.03908, 22.09160) and (-42.51968, 11.27742)
% counterclockwise to offset (-2.83464,-2.83464)

.. (-42.51968, 0) .. controls (-42.51968, 0) and (-42.51968, 0
)

.. (-42.51968, 0) .. controls (-42.51968,-11.27742) and
(-38.03908,-22.09160)

.. (-30.06534,-30.06534) .. controls (-22.0916, -38.03908) and
(-11.27742,-42.51968)

% counterclockwise to offset (2.83464,-2.83464)
.. (0, -42.51968) .. controls (0, -42.51968) and (0,

-42.51968)
.. (0, -42.51968) .. controls (11.27742,-42.51968) and (22.0916,

-38.03908)
.. (30.06534,-30.06534) .. controls (38.03908,-22.09160) and (

42.51968,-11.27742)
% counterclockwise to offset (2.83464, 2.83464)

.. (42.51968, 0) .. controls (42.51968, 0) and (42.51968, 0
)

.. (42.51968, 0)
& cycle

The result becomes:

(45.35432, 2.83464) .. controls (45.35432, 14.11206) and (40.87372,
24.92624)

.. (32.89998, 32.89998) .. controls (24.92624, 40.87372) and (14.11206,
45.35432)

.. (2.83464, 45.35432) .. controls (2.83464, 45.35432) and (-2.83464,
45.35432)

.. (-2.83464, 45.35432) .. controls (-2.83464, 45.35432) and (-2.83464,
45.35432)

.. (-2.83464, 45.35432) .. controls (-14.11206, 45.35432) and (-24.92624,
40.87372)

.. (-32.89998, 32.89998) .. controls (-40.87372, 24.92624) and (-45.35432,
14.11206)

.. (-45.35432, 2.83464) .. controls (-45.35432, 2.83464) and (-45.35432,
-2.83464)

.. (-45.35432, -2.83464) .. controls (-45.35432, -2.83464) and (-45.35432,
-2.83464)

.. (-45.35432, -2.83464) .. controls (-45.35432,-14.11206) and
(-40.87372,-24.92624)

.. (-32.89998,-32.89998) .. controls (-24.92624,-40.87372) and
(-14.11206,-45.35432)

.. (-2.83464,-45.35432) .. controls (-2.83464,-45.35432) and (
2.83464,-45.35432)

127 Pushing the envelope

.. (2.83464,-45.35432) .. controls (2.83464,-45.35432) and (
2.83464,-45.35432)

.. (2.83464,-45.35432) .. controls (14.11206,-45.35432) and (
24.92624,-40.87372)

.. (32.89998,-32.89998) .. controls (40.87372,-24.92624) and (
45.35432,-14.11206)

.. (45.35432, -2.83464) .. controls (45.35432, -2.83464) and (45.35432,
2.83464)

.. (45.35432, 2.83464) .. controls (45.35432, 2.83464) and (45.35432,
2.83464)

.. cycle

Numerous experiments by Mikael and me lead to the conclusion that both stages can introduce the duplicate
points and that any messing with that during envelop generation time has negative side effects. However,
when we export the path we can definitely get rid of them. They are harmless but we're talking quality
control here and TEX and MetaPost is all about quality!

As usual, playing with mechanisms like this gets one wondering about similar cases, for instance variants
of dashing.

\startMPcode
vardef dashing (expr pth, shp, stp) =

for i within arcpointlist stp of pth :
shp

rotated angle(pathdirection)
shifted pathpoint

&&
endfor nocycle

enddef ;

path parrA ; parrA :=
(0,0) -- (0,-1) -- (2,-1) -- (2,-2) -- (4,0) -- (2,2) -- (2,1) -- (0,1) --

(0,0)
;
path parrB ; parrB :=

parrA -- (0,-1) -- (2,-1) -- (2,-2) -- (4,0)
;
path p ; p := fullcircle scaled 2cm ;

fill (dashing (p, parrA, 25) && cycle) withtransparency (1,.5) ;
draw (dashing (p, parrA, 25) && cycle) withtransparency (1,.5) ;
fill (dashing (p, parrB, 25) && cycle) shifted (3cm,0) withtransparency (1,.5) ;
draw (dashing (p, parrB, 25) && cycle) shifted (3cm,0) withtransparency (1,.5) ;
\stopMPcode

In figure 18.8 we see the result. Of course how well if comes out depends on the definition but what is special
here is that we use the double ampersand operator. That one will connect the paths without complaining
about the end and being point not colliding. I suppose there was a good reason for making that a condition
in the case of fonts, after all MetaFont is what it came from, but there is no real reason for it. It is a cheap
extension anyway. At the same time I decided to add a native ‘direction’ operator. The number of extra bytes

Pushing the envelope 128

in the binary is probably less than what is needed in memory to store the macro and the advantage is that
we save an extra run over the path to reach the point we're consulting.26

Figure 18.8 A somewhat related rendering.

In case you wonder why we need this feature, here is an argument:

\startMPcode
path s ; s := fullcircle scaled 4cm ; pickup pencircle scaled 5mm ;

draw (s shifted (0cm,0) && s shifted (3cm,0) && s shifted (6cm,0))
withcolor "darkred" withtransparency (1,.5) ;

currentpicture := currentpicture shifted (-8cm,0) ;

draw s shifted (0cm,0)
withcolor "darkblue" withtransparency (1,.5) ;

draw s shifted (3cm,0)
withcolor "darkblue" withtransparency (1,.5) ;

draw s shifted (6cm,0)
withcolor "darkblue" withtransparency (1,.5) ;

currentpicture := currentpicture shifted (-8cm,0) ;

nodraw s shifted (0cm,0) ;
nodraw s shifted (3cm,0) ;
nodraw s shifted (6cm,0) ;
dodraw origin withcolor "darkgreen" withtransparency (1,.5) ;

\stopMPcode

The results are shown in figure ??. Which if the alternatives you prefer also depends on how you generate
the shape. The nodraw variant for instance can be mixed with calculations without the need to revert to
hide.

26 In case you wonder, this is how the macro definition looks like: vardef direction expr t of p = postcontrol t of p - precon
trol t of p enddef ;. Because points are searched from from the start there are two lookups needed. Normally this is no problem
but Mikael and I are playing with really large paths, like those that come from drawing functions.

129 Pushing the envelope

Figure 18.9 Do you see the difference?

Figure 18.10 demonstrates how far we've come. Mikaels fancy arrows nicely follow the shape of the func
tion. Of course you need to make sure that these arrows are reasonably scaled. The definition of dashing
demonstrates a few primitives that permits efficient iteration over a path and arcpointlist is sort of a
path.

Figure 18.10 Advanced pseudo dashing.

\startMPcode
vardef dashing (expr pth, shp, stp) =

for i within arcpointlist stp of pth :
shp

rotated angle(pathdirection)
shifted pathpoint

&&
endfor nocycle

enddef ;

path e, p ; numeric n ;
e := (0,0) -- (0,-1) -- (2,-1) -- (2,-2) -- (4,0) -- (2,2) -- (2,1) -- (0,1) --

(0,0) ;
n := 10 * bbwidth(e) ;
p := function(1,"x","x/4 + sin(x)",epsed(0.1),epsed(4*pi),0.01) scaled 2cm ;

fill (dashing (p, e scaled 2.5, n) && cycle) withcolor .6white ;
draw (dashing (p, e scaled 2.5, n) && cycle) withcolor darkgreen ;

currentpicture := currentpicture shifted (0,-2cm) ;

n := 20 * bbwidth(e) ;
fill (dashing (p, e, n) && cycle) withcolor .6white ;
draw (dashing (p, e, n) && cycle) withcolor darkblue ;
\stopMPcode

Dealing with math fonts 130

19 Dealing with math fonts

Introduction

Here we will explain some of the tricks that we apply to math fonts so that they not only work better with the
LuaMetaTEX math engine but also look better, at least in our opinion. We will not show specific fonts because
after all, who can complain about something that comes for free, but you can see whatever we do to make
it work in action in ConTEXt where we setup these fonts. This is also a summary of what Mikael Sundqvist
and I have been doing for a while now: improve the rendering of math, a rather enjoyable experience, also
because we ran into humorous effects with and properties of fonts. Because we consider ourselves free from
any conventions we could happily explore solution.

Fences

Fences come in two variants: fixed sizes and so called extensibles that are constructed from recipes that
combine snippets that can partially overlap. Fenced material has an optional symbol at the start, an optional
one at the end and zero or more symbols in the middle. Here we have all three:

Ideally these symbols scale in the same way, depending on the other context. This means that TEX first has
to measure what sits in between but we will not dive into that. The left and right symbols are normally
pairs like parentheses or braces, but any mix is possible. Ideally a font is designed with this in mind but
unfortunately we see this:

And even this:

It might be a side effect of the limited amount fo available slots in traditional math fonts that also resulted
in non consistent sets in OpenType follow-ups and when one fonts does that more follow that approach.

You can find rendering like this:

131 Dealing with math fonts

and this

because a programmable language like TEX can use some tricks to force sizes: we just create some local
fence which dimension is determined by some invisible rule. In LuaMetaTEX we can actually enforce di
mensions and in ConTEXt we can filter specific sizes.

So how does this sizing work? A fence character starts out with the normal size but then a larger one is
needed, the math engine will check if there is a larger variant. An OpenType font can provide these and
in the engine that works out as following a linked list to a next size. When we run out of sizes there can
be an extension recipe present where a fence is made from snippets pasted together. Normally that goes
unnoticed because there is a little overlap between these snippets.

A larger fence will simply add more middle pieces, and it will not do as below:

Because we're talking of a deliberate design you cannot simply scale snippets and expect them to work out
well visually. However, in a pure vertical case one actually could and in practice all these extensibles have (of
course) vertical bars. Anyway, in the above example the larger middle piece actually is just several middle
pieces overlapping.

However, as we mentioned, fonts are not always consistent. First of all, when we run over the (increasing
in size) variants we have discrete steps and you're lucky if a font has more than half a dozen. As soon as we
end up with the extensible the size can be matched well.

So how do we compensate for misbehavior? There are two parameters in TEX then determine the matching:
\delimiterfactor and \delimitershortfall. Plain TEX set them to 901 and 5pt which works okay in

Dealing with math fonts 132

most cases. In ConTEXt we set them to 1000 and 0pt and instead use the parameters \UmathDelimiterPer
cent and \UmathDelimiterShortfall that are bound fo fonts. In addition to that we use the nooverflow
keyword with \Umiddle which makes sure that we always stay within the size of the outer fences. That just
looks better.

In addition we can tweak the dimensions of glyphs and apply effects such as expanding so that we get a bit
more consistent visual appearance. We can also signal that we should ignore sizes larger than a given index.

The next sequence show what happens in practice when we tell \Umiddle to never exceed the requested
size. Because we start with stepwise sizes the first part of this sequence has no matching sizes. At some
point we end up at the extensibles.

�²

opecon conmid
�³

midclo
�/ �²

opecon conmid
�³

midclo
�/ �²

opecon conmid
�³

midclo
�/ �²

opecon conmid
�³

midclo
�/ �²

opecon conmid
�³

midclo
�/ �²

opecon conmid
�³

midclo
�/ �´

opecon conmid
�µ

midclo
�� �´

opecon conmid
�µ

midclo
�� �¶

opecon conmid
�·

midclo
�¸ �¶

opecon conmid
�·

midclo
�¸ �¶

opecon conmid
�·

midclo
�¸ �¹

opecon conmid
�º

midclo
�" �¹

opecon conmid
�º

midclo
�" �»

opecon conmid
�¼

midclo
�½ �»

opecon conmid
�¼

midclo
�½

�»

opecon conmid
�¼

midclo
�½ �»

opecon conmid
�¼

midclo
�½ ��

opecon conmid
�¾

midclo
�� ��

opecon conmid
�¾

midclo
�� ��

opecon conmid
�¾

midclo
�� ��

opecon conmid
�¾

midclo
�� �¿

opecon conmid

À

midclo
�$ �¿

opecon conmid

À

midclo
�$ �¿

opecon conmid

À

midclo
�$ �¿

opecon conmid

À

midclo
�$ �¿

opecon conmid

À

midclo
�$

Á

opecon conmid

Â

midclo

Ã

Ä

opecon conmid

/

midclo

.

Å

opecon conmid

}

midclo

	

Æ

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

opecon conmid

Ç

midclo

È

É

opecon conmid

)

midclo

�

�

opecon conmid

Ê

midclo

Ë

Ì

opecon conmid

Í

midclo

Î

Ï

opecon conmid

Ð

midclo

Ñ

Ò

opecon conmid

Ó

midclo

Ô

Õ

opecon conmid

Ö

midclo

×

Ø

opecon conmid

Ù

midclo

Ú

Û

opecon conmid

Ü

midclo

Ý

Þ

opecon conmid

ß

midclo

à

á

opecon conmid

â

midclo

ã

ä

opecon conmid

å

midclo

æ

ç

opecon conmid

è

midclo

é

ê

opecon conmid

ë

midclo

ì

í

opecon conmid

î

midclo

ï

0

opecon conmid

ð

midclo

ñ

1

opecon conmid

ò

midclo

ó

ô

opecon conmid

2

midclo

õ

ö

opecon conmid

÷

midclo

ø

ù

opecon conmid

ú

midclo

x

û

opecon conmid

ü

midclo

ý

þ

opecon conmid

ÿ

midclo

�

²

opecon conmid

�

midclo

³

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

�

opecon conmid

�

midclo

�

Its is worth noticing that we tried several alternative approaches. For instance what happens when we only
use extensibles? In that case there will be no fit for the smaller ones because the at least two parts of an
extensible can seldom completely overlap that much.

Actually, when we tested that we noticed that even in valid situations there can be strange overlap. At that
time for instance the Lucida fonts had overlapping artifact in some curly braces which we found out when
we tried to nil some of the larger, odd looking, step variants. Latin modern and some of the gyre fonts had
unexpected jumps to larger sizes which made us decide to make the delimiter parameters font specific so
that we could more easily adapt them: they basically became part of the math parameters of a font.

There are also inconsistencies in the perceived widths of glyphs used: often the bars are too thin. That can
be solved by applying effects like scaling horizontally or vertically and cheating a bit with the dimensions.
Another solution is that we ignore the variants after a certain size and force extensibles sooner but that of
course needs to be tested for unwanted overlaps too. All these tricks combined make it possible to use math
fonts with imperfect fences more or less reliable.

• Provide an equal amount of fixed size larger variants for all fences: assume arbitrary pairing.
• Because fonts have plenty room, provide some ten variants before going extensible.
• Try to make the variants and the extensibles similar in look.
• Ensure that the width of the vertical bar matches the design.
• Make sure that the odd entries in a extensible recipe don't overlap badly.

133 Dealing with math fonts

Accents

When traditional TEX showed up it was not that common to have pre-composed characters so when you
needed something with an accept on top the way to go was to typeset the base character and position the
accent on top using either the \accentprimitive or some macro. It always was a compromise but eventually
fonts with more assembled characters showed up. In OpenType fonts that operate in the Unicode domain
we have even more characters but even there characters can be composed. However, anchors that help
achieving this are part of the format. For text we use the mark features and for math we use the top anchor.
Given that, why do we need to tweak it?

Here we have a base character with an accent on top. The character is upright and the accent gets positioned
in the middle.

This doesn't work out well if we have a slanted or italic shape:

So we need to compensate, for instance like this:

However, what does determine the right anchor point? From this example you can conclude that it is the top
of the character. It is probably for that reason why the semi automated construction of Latin Modern and
the Gyre fonts have quite some anchors that are rather bad: getting the anchors right is more a visual job
than something that can be automated. The topmost point is not really the best one to focus on.

Here the topmost position is very off center. In for instance Latin Modern that means that on digits like 7
and 4 you get very weird anchoring. And this is why we have a tweak that just wipes all the anchors from
an alphabet: most alphabets don't need them anyway and the engine will use the center when no anchor
is defined. Just for the record: in traditional TEX engines the horizontal position is determined by the kern
between a so called skew character and the base character. The font format has no anchor field but it has
kerns, so this trick makes much sense.

We discussed vertical extensible that grow but horizontally we have accents that can grow. There are also
a few horizontal fences like braces that have extensibles but we will cover that later. Accents are such that
they only have a fixed set of variants and one problem is that there are often not enough of them. This means
that the engine has to choose one that is reasonable.

Dealing with math fonts 134

In the example above the first two are acceptable but the third and fourth are not. Just imagine that there is
a superscript or subscript involved. Here we apply another cheat: we lie about the dimensions. A glyph can
have left and right margins that get subtracted when the accent analyzer tries to make a fit which means
that we can sort of enforce the second solution. The ConTEXt font goodie files set the margins for some
problematic characters because (of course) these are not part of OpenType math fonts. This is an optical
issue mostly because the engine will not easily put a too wide one on top.

Watch how the larger accents also have a larger bounding box. That is all right but does interfere with a
consistent makeup. The solution is simple: we use the ConTEXt dimension tweak to reposition accents and
cheat with their height and depth to make sure that we get consistent rendering. We need to tweak anyway
because sometimes accents have bad dimensions. The smallest one is actually a text accent and therefore
can have properties that are inconsistent with its wider variants. This is typically a side effect of the fact that
math accents and text accents are not considered to be different.

• Only add anchors to some (forward leaning!) italic shapes.
• Make extensibles as much a possible consistent with respect to dimensions.

Kerning

In a text font there are two mechanisms that influence the spacing between individual characters: kerning
and italic corrections. In OpenType text fonts we have a more generalized relative positioning mechanism
which can be seen as kerning. The italic correction well known to TEX users can be implemented as a posi
tional font feature but very seldom is.

An OpenType math font has both kerning and italic correction. The kerning at the left top, left bottom,
right top and right bottom of a glyph can be specified as a staircase and is used to position scripts. The
italic correction is bit more curious and is applied is some cases. Keep in mind that in math a sequence
of alphabetic characters does not make a word but represents a multiplication of ordinary symbols and
thereby specific inter-atom spacing rules apply.

A traditional TEX font has kerns and italic correction and an OpenType font has staircase kerns and italic
correction. For practical (space and time) reasons the widths of italic shapes in traditional math fonts are
such that when you add the correction they kind of match the bounding box.

So, one way to suit both kind of fonts is to add the italic correction (often absent in OpenType glyphs but
very present in traditional ones) as well as the staircase kerns (present in OpenType fonts and unknown to
traditional fonts).

There are however some complications: what if a glyph has both? Which one is to be preferred? Should
we try our luck? Even worse: in the traditional the italic correction is always added to the box that wraps a

135 Dealing with math fonts

glyph but in some cases that correction gets removed.27 But should we also remove a staircase kern? When
we started with LuaMetaTEX it was a bit of a gamble because the specification only showed up later and
improved over time.28

In LuaTEX we often have to code paths. That was done after other attempts to deal with this weak aspect of
fonts worked for one font and not for the other. For instance at the time of this writing some fonts have italic
corrections for upright characters! In LuaMetaTEX that model was changed into a detailed control model at
the font as well as engine level. Later, when Mikael and I went over the fonts, usage of characters in math,
atoms and spacing, we decided to kick out that detailed control and use more general control mechanisms
assuming that we use OpenType fonts without bad italics. Whenever we had bad ones we could correct that
in a so called font goodie file. In other words: no heuristics in the engine but fixed fonts. For that we always
take Cambria as reference.

To be considered: should we finally turn italic correction into top and bottom kerns? Basically: model after Cambria?
Then we can kick out code! We just assume font goodies.

Here we have three shapes and as usual they have some space at the left and right. A text font like Lucida
is designed in such a way that no kerns between glyphs are needed but most text fonts have kerns. These
compensate for these average acceptable side bearings.

In these slanted versions we get wider shapes but not always. For some shapes the amount of perceived
spacing at the left top and right bottom increases and this is where we start thinking in terms of italic cor
rection:

That way, when we put characters next to each other on the average words look better. But how about math:
a superscript should be outside that bounding box and a subscript inside, assuming that we have a shape
like this. It is unfortunate that the widely used �(is the perfect candidate. When using that one as test case
things can look great but kick in a �D and it gets worse. The �Q and �R are also a fertile playground. It is hard to
come up with logic that satisfied all which is why glyph specific engine control was implemented (and later
dropped). In the previous graphic the fourth shape also cheats on the left and yes, there are some fonts that
do just that, which the of course interferes with prescripts.

27 In LuaMetaTEX we never remove but compensate so that we can track what happens.
28 This is true for much of OpenType which has the danger that bugs and side effects become features. Keep that in mind when you

criticize solutions that early adopters came up with!

Dealing with math fonts 136

Now think of using shapes in formulas: some are put in sequence, in which case inter atom spacing is added
so there is less danger of touching due to too a narrow width and TEXies somehow accepted that adding thin
spaces every now and then is fine29 But there's more than sequences: shapes end up in scripts, as degrees
in radicals, above and below fraction rules, as fences and accents. Just assume the worst possible scenarios!

In these examples the italic correction at the right is the difference between the red and green box. There is
no left italic correction and that is why OpenType math (driven by Cambria) has these four sets of kerns.

Here we show some possibilities for better anchoring but it will be clear that it is a compromise. Staircase
kerns as in OpenType therefore have a set of kerns going up or down for not only the base character but also
the one that ends up in a script as that one itself can have a ‘problematic’ shape.

Our solution to this problem is to tweak dimensions and italic correction of problematic characters. We
also can add four kerns that roughly compensate for tricky corrections needed. We therefore have more
glyph properties than the official OpenType specification provides (cheaper and easier than staircase kerns
that work on pairs of characters) . But we have more font parameters anyway, and with TEX being one of the
main math renderers and TEXies always being to tune and tweak we think this is okay. It is better to have
more control than to rely on (hard to fight) heuristics.

We're stuck with the fonts we have and (in the case of TEX fonts) the chosen traditional approach of dimen
sions and italic corrections (no staircase kerns) but the least we can ask is:

• Be consistent in dimensions and italic corrections. Get rid of limitations imposed by the 8 bit font era:
we have plenty slots available and some more glyph properties as well. And if you compromise: make
that clear.

• Don't just take the old properties but assume that OpenType math fonts are used in a modern OpenType
TEX engine.

• Assume that any character is used in any combination: that is what made it hard to satisfy all needs at
the engine end. Better play safe.

Scripts and primes

We start with showing a few shapes (in TEX speak: nuclei) with a different perceived spacing and with some
items attached to the corners: scripts.

The green ones represent the super- and sub-, pre- and postscripts. According to what we discussed previ
ously the anchoring depends on the shape

29 We don't think so which is why we came up with a more granular inter atom spacing mode.

137 Dealing with math fonts

But we will not take that into account here because this time we focus on support for primes and indices. A
prime normally is a narrow character that is positioned after the nuclues and sits in a similar position as a
superscript. When it is present a subscript doesn't move. Here the blue rectangle represents the prime.

An index, here yellow, is a subscript that applies to the whole so that one does move. We cannot have a
subscript and an index at the same time. The prescripts are not affected by primes and indices other than
that the engine has to do more work in getting it right.

Of course we can have primes and indices at the same time. A prime actually belongs to the nuclues so that
combination determines quite a bit of the vertical and horizontal spacing.

The problem with primes is that they were never part of the concept and OpenType math inherited that.
Thanks to Unicode (and the math community not being convincing enough) we ended up with a prime being
equivalent to minutes and double primes being minutes. The fact that we have triple and quadruple primes
as well as reverse primes is a consequence of not having symbols for sub second indicators. And even the
seconds are overloaded by meaning: time related and geographical.

What has this to do with primes? Well, it means that a font has a prime character that is already positioned at
a certain distance from the baseline. But in most math fonts the script and scriptscript sizes aren't. It looks
as if the assumption is that primes are treated like superscripts. But which one then gets superscripted at
the text level? The text one or the script one? Unfortunately fonts are somewhat inconsistent in the sizing
and positioning of primes and the math community not being convincing enough. It was a tough decision
to make: in some fonts using the text prime have nice output and in other fonts the script one.

Dealing with math fonts 138

So, because in the traditional approach primes had to be manually positioned, be able deal with super and
subscripts the old school approach was to make them active characters and pick up what follows in order
to deal with this situation. It probably is the main reason why we have a somewhat special active character
mechanism in math mode. In ConTEXt MkIV we followed a different approach, also because we wanted to
deal with collapsing multiple primes to their rightful Unicode slot.

In LMTX and LuaMetaTEX we (need to) go a step further because we want proper inter-atom space as well
as more fine tuned positioning. Primes became elements bound to a nucleus! We also wanted to solve this
issue once and for all (in MkIV we has several methods but in LMTX we only have one left). We not only
added a native prime element to nuclei but also introduced font parameters similar to those of superscripts.
Just keep in mind that in LuaMetaTEX we don't need to worry about having a few more fields in a math
node. There are not that many nodes involved and the amount of extra memory used can be neglected.
Of course there is plenty of code added to deal with it so the binary definitely is larger due to it and the
code way more complex. In fact we already introduced some missing parameters for the spacing related to
prescripts. Furthermore we can tune the prime spacing relative to the scripts.

In the goodie files you can add fixes that relate to primes and most of them involved quite a bit of experi
mental. We can safely say that we spent quite some prime time on this issue.

• It would be nice if fonts at least has prime shapes that are consistent because currently script one can
look quite different (tilt and shape).

• Because primes are also minutes and seconds we probably have to accept the current situation and deal
with it in the goodie files forever.

Two choices

Imagine a situation like this: a sequence of characters with a leading left fence but nothing at the right. The
fence is not really a fence but something that can grow and have its own super and subscripts, either after
it or on top and below. We leave these scripts (aka limits) out of the discussion.

There is a visual aspect here, which can be illustrated from a variant:

One can argue that the larger characters in the second sequence rightfully trigger a larger blue variant. But
for consistency one might actually go for:

139 Dealing with math fonts

Now imagine that you only have two choices? When do you go for the larger one? This situation occurs
with so called large operators like integrals and summations. The original TEX fonts have two sizes of these
characters. The smaller one is used in normal (text) math and the larger one in display math.

But what if, as in OpenType fonts there are more? There is a font parameter DisplayOperatorMinHeight
that tells what size to use (as a minimum) in display mode. Because the TEX engines never had to make a
decision the value of that variable in the Latin Modern and Gyre fonts is somewhat arbitrary. It is one of the
variables that we need to adapt in the goodie files: we roughly bump from 1300 to 1800 to get what we are
accustomed to in display mode.

So what are these large operators anyway? In traditional TEX they are just that: larger variants of smaller
ones. In OpenType math however, they are extensibles. That means that when there are more variants and
an extensible recipe it can grow on demand. That conflicts with the expectations of two sizes.

In order to support these two conflicting demands LuaMetaTEX provides so called left operators that either
act upon their own, in which case we talk of ‘auto’ mode, or they can be told to have a specific size, or they
can adapt, in which case they have the usual bogus right companion that ends the subformula. And, because
they are implemented as fences but are not really fences there are some provisions for the scripts: they bind
to the left fence and not the right one.

As side note: when we were experimenting with the usage of these (new) mechanisms we again ran into
the race condition that is imposed by the algorithm that determines the size of fences: the delimiters tar
get height is either a fraction of the total height of the sublist or the total height diminished by some con
stant amount. In LuaMetaTEX we therefore added the already discussed \UmathDelimiterPercent and
\UmathDelimiterShortfall but these only kick in when we have a wrapped integral or such.

• We can't be too picky but it would be nice if fonts have DisplayOperatorMinHeight set to a more rea
sonable value. We have to tweak most font for this now (and probably forever).

To the point

A nice feature of math fonts is that they have so called extensible characters. Fences can grow vertically
and accents horizontally. When we run out of discrete steps in size, we end up with a recipe that build large
characters from snippets as we discussed before.

The limitations in the size of fonts and the fact that the engine also had to impose some limits in the amount
of used fonts and complexity of their usage made for some exceptions to the rule and, no pun intended, it
might be why TEX has a concept of rules. Lines over and under something, arrows, fractions and radicals
all use rules. It is interesting to notice that when OpenType fonts showed up the converted TEX fonts didn't
make arrows and bars use the extension mechanism, thereby forcing the old school construction of them.
This doesn't hurt ConTEXt much because we can implement proper characters using the virtual character
mechanism and we did things different anyway (for instance we can kick in MetaFun replacements).

Dealing with math fonts 140

Nevertheless there is this curious in-between: radical. It comes in a set of fixed sized often sloped characters
and then switches to an upright one. In all cases there is that horizontal rule attached that covers the nucleus.
There is no mix of horizontal and vertical extensibles so there is no fancy end of rule thingie possible (the
little hook that we learned to draw at school): it's just a stupid rule.

Instead of a rule, these examples show a simple rectangle attached to another one. The idea is that the
center of that small one snaps onto the upper right corner of the large one. In these examples we show
how it looks when that is not exact. At small sizes it goes unnoticed but at larger ones it becomes visible.
Actually, when you start scaling up math you often see artifacts in shapes, which makes one wonder if high
resolution screens are really used for proofing.

In the first example the effect is small because we make sure that the right top corner is square but in the
second one we don't do that. Now it really becomes annoying, even if we remove the small errors in posi
tioning.

We have seen different effects. The most common was an inaccurate font dimension that determines what
the height of the rule is. That we can fix in the goodie file and we do that. Other artifacts were (in the stepwise
sizes) characters that were so sloped that there was not possibility for properly attaching the rule (we noticed

141 Dealing with math fonts

this best when checking the Lucida and Latin Modern fonts): one can cheat and move a little to the left but
the thickness of the sloped line was not enough for that, so it could qualify as a design error but a design
cannot simply be changed in such case: one has to compromise and assume no scaling (keep in mind that
we scale on screen while on print one has to take a magnifying glass and reading math that way is not much
fun).

Some of these extensible radicals have rather thin vertical lines but we can assume that their height is never
such that this becomes too annoying. One complication in designing these shapes is that when one uses a
font creator program it is unlikely to provide a math composer for testing. The same is true for overlapping
the end glyphs of e.g. curly braces: the middle piece can get into the way when we have the smallest exten
sible and have that one kick in too soon due to the lack of stepwise sizes. It's hard to check that without an
engine applying them to the extreme cases.

• Benefit from your high resolution screen and zoom in on the results. Take no risk.
• Play safe and create an top right corner that has some overlap and already starts out horizontally.
• If the design complicates rule attachments, move to an extensible sooner because that one can have a

horizontal attachment point as part of the design.

Removing slack

In the process of optimizing the spacing we ran into several cases where a bit of spacing was added that
eventually made that the resulting formula had small quite visible whitespace at the edges. Take for instance
the little bit of kerning between a nuclues and a superscript.

Normally one can predict this situation but when components are glued together that are typeset indepen
dently the (in this case red) spacing remains. The engine is capable to remove that kind of slack at the left
and right of the formula so that one gets a proper tight bounding box. There is a bit more logic on board now.

The fact that all kind of spacing gets added is one of the reasons for the more granular inter atom spacing:
that way we could remove for instance the spacing added to the left and right of fractions (which is buried
in the constructed box).

• There is not much we can advice here because it doesn't relate to fonts. However, given that Lucida text
fonts have no kerning could make one wonder to what extend math fonts needs all these compensations.

• Some of the inter atom/script kerning is probably there as safeguard for italic shapes where staircase
kerns are lacking. The question then is how the related font parameters themselves relate to staircase
kerns. We suppose that this puts some stress on the font designer.

Dealing with math fonts 142

Initializing fonts

introduction

When a math font is initialized there are (as with any font) features applies. The only official one is the ssty
feature that defines the substitution sets for script and scripscript size. In traditional TEX one has to set up
multiple fonts because one can only have 256 characters and because one might want to map alphabets
on the regular ascii slots. In an OpenType font all these alphabets are on the same font so basically one
can do with three instances per size: text, script and scriptscript. What actually is done depends on the
philosophy of the macro package but we will not discuss that here. So let's assume three instances in the
default case. In LuaMetaTEX we can scale on the fly and therefore we can stick to one instance: as long
as we know what the slots of the (optionally provided) smaller sizes are. Supporting this had quite some
consequences for the engine as scaling happens all over the place (also think of font parameters) and we're
talking two independent dimensions here: horizontal and vertical sizing.

In addition to this size related font feature ConTEXt provide some additional ones (and always had). Some are
set up as regular features and some are driven by the font goodie features which organizes a lot of features
under one umbrella. Font goodies always have been part of MkIV and LMTX.

also mention the non tweak related ones

wipeitalics

This tweak wipes the italics from one or more characters, most noticeable upright characters. Because
locating the individual characters took too much time, we added the option complete alphabets.

example

wipeanchors

This tweak removes the top anchors from one or more characters, most noticeable upright characters. As
with wiping italics, we often wipe complete alphabets.

example

accentdimensions

Configure the position of overbar, underbar, overbrace, underbrace, overparent, underparent, overbracket
and underbracket. More? Added 220307.

addrules

I think we did not get overbars for some fonts (kpfonts and erewhon come to mind).

addscripts

Maybe something done for Ton? (math-act)

143 Dealing with math fonts

checkspacing

I don't know how it works. Seems there is not really any settings. But you once wrote

\liminf \quad
\limsup \quad [\sixperemspace] \quad
$x\sixperemspace x$

\setbox0\hbox{$x\sixperemspace x$} \showbox0

in an email (220118).

dimensions

We use this to change anchor points of accents, to raise/lower them, and of course to change bounding boxes
and italic correction for many letters/symbols. We use it in bonum to resize the whole lower case fraktur
alphabet (and maybe more should be added)

fixprimes

Maybe explained elsewhere? But it could belong here.

fixradicals

I don't know what it does. Could be: In some fonts the radicals are just positioned wrongly, and this moves
them up/down to have something uniform to work with. (math-act)

kerns

A bit like staircase kerning. The ‘topleft’ and ‘bottomright’ come in handy, in particular the last one when it
comes to the position of subscripts.

margins

We fake the width of some characters. Useful, for example, not to get too large/too small accents when using
\widehat (also to get a uniform size over some alphabets or glyphs that often go togeter).

variants

Some fonts (lucida, xits, stixtwo) have calligraphic (chancery) and script (roundhand) alphabets. Of course
not the same as default, and of course not the same ss0X.

wipecues

Only added to cambria and dejavu. Added 220327. I think it has to do with characters like 2061, 2062 and
2063. From the mails I think it has why does 2061 render a shape in some fonts so we need an 'wipe char'
tweak (basically making it a zero dimensions symbol)

\mathspacingmode2

Dealing with math fonts 144

\showmakeup[mathglue]
$ \sin \Uchar"2061 (y) $ \quad
$ x \Uchar"2062 y $ \quad
$ x \Uchar"2063 y $ \par
$ \sin \mathghost{\Uchar"2061} (y) $ \quad
$ x \mathghost{\Uchar"2062} y $ \quad
$ x \mathghost{\Uchar"2063} y $ \par

bigslots

Fences are chosen automatically to match what they surround. However, in traditional engines a fenced sub
formula won't break across lines. In ConTEXt we have sveral st

1, 3, 5, 7 that could fit here, if we find a font where the linking is not present.

parameters

I don't know if all of them are parameters that typically moved from document to font level.

145 Dealing with math fonts

Constants 146

20 Constants

Strings don't really fit into the concept of TEX. There everything we input and store is tokens and nodes, so
when you define a macro like

\def\foo{foo}

you don't store a string but a tokenlist with three tokens:

control sequence: foo

827212 11 102 letter f U+00066
596486 11 111 letter o U+0006F
923274 11 111 letter o U+0006F

We have three single byte characters but end up with 32 bytes memory used because we have a linked list
with a housekeeping initial token; such a token has a value (operator & operand) as well as a pointer to a
next token. This is quite ok because whenever we need that macro the body has to be interpreted and it
already being tokenized is what makes TEX fly.

There are occasions where the expansion of a list that itself can contain references to macros produces a
new list in which case copies are being made. Take this:

\def\oof{foo}
\def\foo{foo \oof}

control sequence: foo

931576 11 102 letter f U+00066
724862 11 111 letter o U+0006F
714540 11 111 letter o U+0006F
924069 10 32 spacer
930368 140 0 call oof

When \foo is expanded, the macro body is pushed onto the input stack and traversed and when \oof is
seen, that one gets pushed and processed. No copy is needed. Now take this:

\def\oof{foo}
\edef\foo{foo \oof}

control sequence: foo

923947 11 102 letter f U+00066
930251 11 111 letter o U+0006F
932080 11 111 letter o U+0006F
703845 10 32 spacer
931683 11 102 letter f U+00066
823897 11 111 letter o U+0006F
930278 11 111 letter o U+0006F

147 Constants

Here \foo gets the expanded result but again \oof got pushed onto the stack. This doesn't involved copying
either but there is still the pushing and popping input overhead. So when does copying occur? Here is an
example:

\def\oof{oof}
\def\ofo{ofo}
\def\foo{\begincsname \oof:\ofo\endcsname}

control sequence: foo

826984 136 2 cs name begincsname
931766 140 0 call oof
923547 12 58 other char : U+0003A
932413 140 0 call ofo
931806 79 0 end cs name endcsname

When a csname is checked, the engine needs to construct a string in order to access the hash table. Here is
what happens:

• everything upto the \endcsname is collected
• in the process macros are expanded (with pushing and popping input) and the expanded tokens are

appended to the result
• when we're okay that list get converted to a string
• that string is used as lookup into the hash

Normally we're okay but when there is some unexpected unexpandable token (an assignment, node gener
ator, protected macro, etc.) the collection stops and the list so far is recycled. This process is quite efficient,
as is everything TEX, but given that going from token list to string involved some utf8 juggling too there def
initely is some overhead.

In ConTEXt we use csname checking and usage quite a lot. The first line is the traditional way. It has the
disadvantage that it creates an hash entry with alias \relax if there is no such name. That is why �� -TEX
came up with the test as in the second line. In LuaTEX we introduced \lastnamedcs so that we don't have
to construct the mentioned) token list again which saves time. The fourth line is similar to the first line but
doesn't create a new command.

\csname \namespace\key\endcsname ...
\ifcsname \namespace\key\endcsname \csname \namespace\key\endcsname ... \fi
\ifcsname \namespace\key\endcsname \lastnamedcs ... \fi
\begincsname \namespace\key\endcsname

One of the things all versions of ConTEXt have in common (right from the start) is that we use this namespace
model consistently. In MkIV we changed the subsystem that deals with this: it's more flexible and uses
less memory but it also has way more overhead. But on the average performance is about the same so users
didn't notice that.

There is however a trick to speed this up a bit. In the 360 page LuaMetaTEX manual we expand macros like
\namespace and \key 4.3 million times (beginning of June 2023). Because Mikael Sundqvist and I are in
the middle of some math magic, we also checked his 300 page math book, and that also does it 4.2 million
times (the gain was about 0.5 seconds). The upcoming math manual has some 1.2 million. How come that
we have so many expansions? First of all we use abstraction when possible and that means that there's

Constants 148

plenty of checking of options and some constructs fall back on parent classes (sometimes more that two
times up the parent chain). Also, we often have three macros to expand:

\ifcsname\namespace\currentinstance\key\endcsname

But these have an important property: their body is basically a string. Nothing in there needs expansion
and if it does, it's an indication of rubish that doesn't contribute for a valid csname anyway. Once we know
that we can improve performance:

\cdef\oof{oof}
\cdef\ofo{ofo}
\def\foo{\begincsname \oof:\ofo\endcsname}

So, \cdef (or \constant\edef flags the macro as being a constant that doesn't require expansion. For the
record, when you define that macro having arguments it just becomes an \edef.

control sequence: foo

924792 136 2 cs name begincsname
932128 143 0 constant call oof
931756 12 58 other char : U+0003A
930795 143 0 constant call ofo
932126 79 0 end cs name endcsname

Here we define the two macros as constant ones which in practice means that they are just macros but also
indicates that in some scenarios we can directly use their body. Now when in this csname construction we
do this instead:

• everything upto the \endcsname is collected
• in the process macros are expanded (with pushing and popping input) but when we have a constant

we add reference token when there is more than one body token, otherwise the expanded tokens are
appended to the result

• when we're okay that list get converted to a string and in that stage we just convert the referenced body
of the constant

• that string is used as lookup into the hash

So, instead of immediately injecting an expanded body of a macro that needs no expansion we inject a ref
erence and use that later on for the conversion into characters. On the 4242938 times in LuaMetaTEX (at the
time of writing this) this trick gives the following results.

\edef\foo{xxxx} \begincsname\foo\endcsname 0.37
\cdef\foo{xxxx} \begincsname\foo\endcsname 0.28
\edef\foo{xxxx} \ifcsname\foo\endcsname\fi 0.53
\cdef\foo{xxxx} \ifcsname\foo\endcsname\fi 0.35

And here for an existing command (\relax):

\edef\foo{relax} \begincsname\foo\endcsname 0.55
\cdef\foo{relax} \begincsname\foo\endcsname 0.36
\edef\foo{relax} \ifcsname\foo\endcsname\fi 0.62
\cdef\foo{relax} \ifcsname\foo\endcsname\fi 0.36

149 Constants

When I used that trick in for instance some font switching macros it also had some gain. For instance 200000
times \itwent from 0.60 down to 0.54 seconds but it is unlikely that in a document one does that many font
switches.30

In practice other operations play a role, so here we might also benefit from the data being in the cpu cache
but on the manual I gained a decent .2 seconds. One can question if on a 8.5 second run this is worth the
trouble. However, in this particular manual we spend 3.5 seconds on font processing, some 1.5 seconds on
the backend and have a unique MetaPost graphics on every page. We spend more time in Lua than in TEX!
On 4 seconds TEX, these .2 seconds is some 2.5 gain, and it might actually be even more percent wise.

In case one wonders why I spend time on this, one reason is that the last decade I was not that impressed
by performance gains of a single core and TEX is a single core process. I also can't afford the latest greatest
laptops and definitely don't want to contribute more e-waste. Also, with TEX and friends running on virtual
machines and competing for resources (memory, cpu and disk or network drives) any gain is good gain. Of
course it is also fun to improve LuaMetaTEX and this string-like property has always bothered me.31

30 There are a few more places where constants can gain a little but those don't add up much.
31 I did some experiment with a native string register but that made no sense because then tokenization in other places takes a toll. With

the mentioned constants we don't pay that price.

Active characters 150

21 Active characters

Each character in TEX has a so called category code. Most are of category ‘letter’ or ‘other character’ but
some have a special meaning, like ‘superscript’ or ‘subscript’ or ‘math shift’. Of course the backslash is
special too and it has the ‘escape’ category.

A single character can also be a command in which case it has category ‘active’. In ConTEXt the | is an
example of that. It grabs an argument delimited by yet another such (active) bar and handles that argument
as compound character.

From the perspective of ConTEXt we have a couple of challenges with respect to active characters.

• We want to limit the number of special symbols so we only really have to deal with the active bar and
tilde. Both have a history starting with MkII.

• There are cases where we don't want them to be not active, most noticeably in math and verbatim. This
means that we either have to make a sure that they are not active bit in nested exceptions, for instance
when we flush a page halfway verbatim, made active again.

• In text we always hade catcode regimes to deal with this (which is actually why in LuaTEX efficient catcode
tables were one of the first native features to implement. This involves some namespace management.

• In math we have to fall back on a different meaning which adds another (meaning) axis alongside catcode
regimes: in math we use the same catcode regime as in text so we have a mode dependent meaning on
top of the catcode regime specific one.

• In math we have this special active class/character definition value "8000 that makes characters active
in math only. We use(d) that for permitting regular hat and underscore characters in text mode but let
them act as superscript and subscript triggers in math mode.

• Active characters travel in a special way trough the system: they are actually stored as macro calls in
token lists en macro bodies. This normally goes unnoticed (and is not that different from other catcodes
being frozen in macros).

So far we could always comfortably implement whatever we wanted but sometimes the code was not that
pretty. Because part of the LuaMetaTEX project is to make code cleaner, I started wondering if we could come
up with a better mechanism for dealing with active characters especially in math. Among the other reasons
were: less tracing clutter, a bit more natural approach, and less intercepts for special cases. Of course we
have to be compatible. Some first experiments were promising but as usual it took a while to identify all the
cases we have to deal with. At moments I wondered if I should go forward but as I stepwise adapted the
ConTEXt code to the experiment there was no way back. I did however reject experiments that out active
characters in the catcode table namespaces.

In LuaTEX (and its predecessors) internally active characters are stored as a reference to a control sequence,
although a \show or trace will report the character as ‘name’. For example:

\catcode `!=\activecatcode
\def !{whatever} % we also have \letcharcode
\def\foo{x!x}

is stored as (cs, cmd, chr):

151 Active characters

control sequence: foo

931943 11 120 letter x U+00078
930787 140 0 call whatever
827036 11 120 letter x U+00078

However, when we want some more hybrid approach, a text versus math mix, we need to postpone resolving
into a control sequence. Examples are macro bodies and token registers. When we flag a character (with
amcode) as being of a different catcode than active in math mode, we get the following:

\amcode`! \othercatcode
\catcode `!=\activecatcode
\def !{whatever}
\def\foo{x!x}

control sequence: foo

924150 11 120 letter x U+00078
781170 13 33 active char
931785 11 120 letter x U+00078

The difference is that here we get the active character in the body of the macro. Interesting is that this is not
something that parser is prepared for so the main loop has now to catch active characters. This is no big
deal but also not something to neglect. The same is true for serialization of tokens.

Other situations when we need to be clever is for instance when we try to enter math mode. In math mode we
want the (in text) active character as math character and a convenient test is checking the mode. However,
when we see $we are not yet in math mode and as TEX looks for a potential next $we grab a active character
it should not resolve in a reference to an command. The reason for that is that when TEX pushes back the
token (because it doesn't see a $) we need it to be an active character and not a control sequence. If it were
a control sequence we would see it as such in math mode which is not what we intended. It is one of these
cases where TEX is not roundtrip. Similar cases occur when TEX looks ahead for (what makes a) number
and doesn't see one which then results in a push back. Actually, there are many look ahead and push back
moments in the source.

text: \def\foo{x|!|x}

\meaningasis\foo

\luatokentable\foo

$x\foo x$ \foo

text:

\def \foo {x|!|x}

control sequence: foo

827251 11 120 letter x U+00078
924528 13 124 active char
781108 12 33 other char ! U+00021

Active characters 152

923660 13 124 active char
932660 11 120 letter x U+00078

�� �� �³ �*

facord
�³ �� �� x!x

math: $\gdef\oof{x|!|x}$

\meaningasis\oof

\luatokentable\oof

$x\oof x$ \oof

math:

\def \oof {x|!|x}

control sequence: oof

932494 11 120 letter x U+00078
932421 13 124 active char
930802 12 33 other char ! U+00021
931001 13 124 active char
923470 11 120 letter x U+00078

�� �� �³ �*

facord
�³ �� �� x!x

toks: \scratchtoks{x|!|x}

\detokenize\expandafter{\the\scratchtoks}

\luatokentable\scratchtoks

$x\the\scratchtoks x$ \the\scratchtoks

toks:

x|!|x

token register: scratchtoks

932138 11 120 letter x U+00078
924731 13 124 active char
931841 12 33 other char ! U+00021
932436 13 124 active char
932502 11 120 letter x U+00078

�� �� �³ �*

facord
�³ �� �� x!x

A good test case for ConTEXt is:

\def\foo{x|!|x||x}

x|!|x||x + \foo

153 Active characters

$x|!|x||x + \foo$

Here we expect bars in math mode but the compound mechanism applied in text mode:

x!x--x + x!x--x
�� �³ �*

facord
�³ �� �³ �³ ��

ordbin
�	

binord
�� �³ �*

facord
�³ �� �³ �³ ��

So the bottom line is this:

• Active characters should behave as expected, which means that they get replaced by references to com
mands.

• When the \amcode is set, this signal the engine to delay that replacement and retain the active character.

• When the moment is there the engine either expands it as command (text mode) or injects the alternative
meaning based on the catcode. There we support letters, other characters, super- and subscripts and
alignment codes. The rest we simply ignore (for now).

Of course you can abuse this mechanism and also retain the character's active property in text mode by
simply setting the \amcode. We'll see how that works out. Actually this mechanism was provided in the
first place to get around the "8000 limitations! So here is another cheat:

\catcode `^ \othercatcode % so a ^ is just that
\amcode `^ \superscriptcatcode % but a ^ in math signals a superscript

So, the a in \amcode stands for both ‘active’ and ‘alternative’. As mentioned, because we distinguish be
tween math and text mode we no longer need to adapt the meaning of active commands: think of using
\mathtext in a formula where we leave math mode and then need to use the text meaning of the bar, just
as outside the formula.

In the end, because we only have a few active characters and no user ever demanded name spaces that
mechanism was declared obsolete. There is no need to keep code around that is not really used any more.

Internally an active character is stored in the hash that also stores regular control sequences. The character
becomes an utf string prefixed by the utf value of 0xFFFF which doesn't exist in Unicode. The \csactive
primitive is a variant on \csstring that returns this hash. Its companion \expandactive (a variant on
\expand) can be used to inject the related control sequence. If \csactive is not followed by an active
character it expands to just the prefix, as does \Uchar"FFFF but a bit of abstraction makes sense.

Accuracy 154

22 Accuracy

One of the virtues of TEX is that it can produce the same output over a long period. The original engine only
uses integers and although dimensions have fractions but these are just a way to present then to the user
because internally they are scaled points.

\dimexpr .4999pt : 2 \relax 0.24994pt
\dimexpr .4999pt / 2 \relax 0.24995pt

\scratchdimen .4999pt \divide\scratchdimen 2 \the\scratchdimen 0.24994pt
\scratchdimen .4999pt \edivide\scratchdimen 2 \the\scratchdimen 0.24995pt

\scratchdimen 4999pt \divide\scratchdimen 2 \the\scratchdimen 2499.5pt
\scratchdimen 4999pt \edivide\scratchdimen 2 \the\scratchdimen 2499.5pt
\scratchdimen 4999pt \rdivide\scratchdimen 2 \the\scratchdimen 2500.0pt

\numexpr 1001 : 2 \relax 500
\numexpr 1001 / 2 \relax 501

\scratchcounter 1001 \divide\scratchcounter 2 \the\scratchcounter 500
\scratchcounter 1001 \edivide\scratchcounter 2 \the\scratchcounter 501

The above table shows what happens when we divide an odd integer or for that matter odd fraction. Note
the incompatibility between \numexpr and \dimexpr on the one hand and \divide on the other. This is
why in LuaMetaTEX we have the : variant that does the same integer divide (no rounding) as \divide does,
and why we have \edivide that divides like an expression using the /. The \rdivide only makes sense for
dimensions and rounds the result.

As soon as one start calculating or comparing accumulated values one can run into the values being a few
scaled points off. This means that when one tests against a criterium it might be that some range compari
son is better. The most likely place for that to happen is in the output routine and when special constructs
like floats, tables and images come into play. Just like not every number can be represented in a float (dou
ble), we saw that dividing an odd integer can give some unexpected rounding as part of the integer is con
sidered a fraction. So, in practice, even when the calculations are the same, there is a certain unpredictable
outcome from the user perspective: “Why does it fit here and not there?” Well, we can be a few scaled points
off due to some not entirely round-trip calculation.

When TEX showed up it came with fonts and in those times once a font was released it was unlikely to change.
But today fonts do change. And changes means that a document can render differently after an update.
Of course this is an argument for keeping a font in the TEX tree but even then updating is kind of normal.
Take math: the fact that fonts often have issues makes that we need to tweak them and some tweaks only
get added when we run into some issue. If that issue has been there for a while we are incompatible.

Hyphenation patterns are another source of breaking compatibility but normally they change little. And
here one can also assume that the user want words to be hyphenated properly. Even with such fundamental
changes as a syllable being able to move to the next line, it is often unlikely that the paragraphs gets less or
more lines. I bet that users are more worried about the impact on vertical rendering that has consequences
for page breaks that for lines coming out differently (hopefully better).

So, what are other potential areas in addition to slight differences due to division, fonts and patterns? We
now enter the world of LuaMetaTEX and ConTEXt. As soon as one starts to use Lua code, doubles show up. It
means that we can do calculation with little loss because a double can safely hold the maximum dimension

155 Accuracy

(in scaled point). However, mixing 64 bit doubles at the Lua end with 32 bit integers in the engine can have
side effects. As soon as set some property at the TEX end using Lua rounding takes place. Of course we can
do all calculations like TEX does, but that would have too much of an impact on performance.

So, going back and forth between TEX and Lua can introduce some inaccuracies creeping in but as long as
it is consistent, there is no real issue. It mostly involves fonts and especially the dimensions of characters:
the width, height and depth but when one uses the xheight as relative measure there is also some influence
on for instance interline spacing, offsets and such.

So how can fonts make a difference? In ConTEXt there are two ways to use fonts: normal mode and compact
mode. In normal mode every size is an instance, where the dimension properties of characters are scaled.
In compact mode we use one size and delegate scaling to the engine which means that we end up with the
(usual) 1000 being scale 1 kind of calculations. In the end a font with design size of 10bp (most fonts) scaled
to 12pt normal is not behaving the same as a 10pt setup where a 12pt size is scaled on demand. First there
is the scaling from 10bp loaded font to the 10pt used font that gets passed to TEX. Here we have to deal with
history: defining a font in pt points is quite normal. Then applying a 1200 scale (later divided by 1000) in
the engine again involves some rounding to integers because that is what is used internally. I will come back
to this later.

The main conclusion to draw is that normal mode and compact mode come close but give different results.
We can come closer when we a more accurate normal mode. In order to limit the number of font instances
we normally limit the number of digits (also in compact mode but there accuracy comes a little cost). There
is a pitfall here: While TEX can happily work with any resolution, the backend has to make sure that embed
ded fonts get scaled right and that (in the case of pdf) we compensate for drift in the page stream, because
there character widths determine the advance and these are in (often rounded) bp (big postscript points).
Especially when we enable font expansion drift prevention comes with a price as there we are dealing with
real small difference in dimensions.

As an experiment I played with clipping measures in the engine which boils down to rounding the last digit
but that didn't work out well. For simple text we can get normal and compact mode identical but kick in some
math (many parameters involved), font expansion and/or protrusion, additional inter-character kerning
and so on, and one never get the same output. Keep in mind that we are not talking visual differences here,
although there can be cases. More think of due to a slightly different vertical spacing triggering a different
page break, for instance when footnotes are involved. In ConTEXt the line height (and therefore derived
parameters) is defined in terms of the xheight so even a few scaled points off makes a difference.

At the user level, currently compact mode is enabled with:

\enableexperiments[fonts.compact]

It works quite okay already for years (writing end 2023) in most scenarios but there might be cases where
existing code still needs to be adapted, which is no big deal. The additional overhead is compensated by
loading less font instances and a smaller output file. In some cases documents actually process faster and
it definitely pays of for large fonts (cjk) and demanding mix size feature processing.

A more accurate normal mode is set by:

\enableexperiments[fonts.accurate]

but it doesn't bring much. It was introduced in order for Mikael Sundqvist and me to compare and check
math tweaks, especially those that depend on precise combinations of glyphs. We temporary had some
additional control in the engine but after experiments and comparing variants the decision was made to
remove that feature.

Accuracy 156

We ran experiments with large documents where different versions were overlaid and depending on sce
narios indeed there can be differences, but when there are chapters starting on new pages and when verti
cal spacing has stretch, there are not that many differences. When you compare the so called tuc files you
might notice small difference is position tracking but these values are seldom used in a way that influences
the rendering of text, line and page breaks.

To come back to the bp vs pt issue. Among the options considered are moving the character and font prop
erties from integers to doubles, but that would impact the memory footprint quite a bit. Another idea is that
compact mode goes 10bp instead of 10pt but that would not help. One bp is 657817 scaled points and one
pt is 655360 sp. The ratio between them is 1.0037490844727, so a TEX scale 1200 effectively becomes
1204.499, and assuming rounding to an integer we then get 1204. So in the end we get a less fortunate num
ber instead of 1200 and it's not even accurate. Therefore this option was also rejected. For the record: an
intermediate approach would have been to cheat: use an internal multiplier (the shown ratio) and although
it is not hard to support, it also means that at the Lua end we always need to take this into account, so again
a no-go.

In the end the only outcome of this bit of ‘research’ has been that we can have accurate normal font handling
(which is not that useful) and have two additional divide related primitives that might be useful and add some
consistency (and these might actually get used).

157 Accuracy

Characters in math 158

23 Characters in math

This chapter goes into some more details about math characters but after some remarks goes on about
about discretionaries. Traditionally TEX users enter ascii characters mixed with commands and expect to
get the right visual representation. Because there are plenty math characters outside the ascii range this
means that most are accessed by a command. However, Unicode changes that: when an editor can show the
character there is no reason not to use that feature. In that case we end up with utf characters in the input.
In this perspective is it important to realize that there is a distinction between such a direct utf character
and a command, especially when it is defined as follows:

\Umathchardef\mathcharacterf 0 \mathordinarycode `f

\startformula
f = \mathcharacterf = \Uchar"1D453

\stopformula

This gives the expected:

�(

ordrel
��

relord
�(

ordrel
��

relord
�(

The ascii f will eventually become character U+1D453 but let's not worry here about how that is done; what
is more important is that this character has some extra properties. Just like the definition of the command
we use a primitive \Umathcode that registers that we have an ordinary and that the origin is family zero, we
also need to make sure that the U+1D453 has those properties. The way it works is that the engine injects a
math noad with a math character nucleus and when it does that it needs to resolve the family and the class.
Depending on the style the family will resolve in a text, script or scriptscript font. The class determines the
spacing and some specific engine behavior.

In ConTEXt and therefore in LuaMetaTEX we go as step further. There we also have dictionary fields, which
makes it possible to adapt properties like the class as we like after the user has entered them. This (ex
perimental) features relates to the fact that often Unicode math, TEX character names, and usage doesn't
really reveal what the character is about and if it is needs to have class binary, relation or something else.
If the command does carry some meaning it gets lost when we end up with these injected math characters.
In LuaMetaTEX we do carry more around. Because this is experimental and evolving we stick to mention
ing that there is for instance a primitive \Umathdictdef that does what \Umathchardef does but expects
three additional numbers: properties, group and index.

In LuaMetaTEX we try to be as detailed as possible when we resolve and store references to characters in the
math nodes (noads), even if the engine itself doesn't always need that information, for instance: for handling
a single character superscript we don't need to know its class.

This detour was needed in order to understand the following: discretionaries in math mode. In LuaMetaTEX
we are already more tolerant with respect to what can end up in a discretionary and math discretionaries
have been supported for a while now. In the next examples, class 2 is used: binary.

test $ \dorecurse{50}{a \discretionary class 2 {$+$}{$+$}{$+$} } b$ test

test �?
ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�?

ordbin
�	

binord
�@

test

159 Characters in math

But this is not nice: we need to enter math mode in the three snippets and likely also need to make sure that
we do that in the right style. So, that was why we can now also do this:

test $ \dorecurse{50}{a \mathdiscretionary class 2 {<}{>}{=} } b$ test

test �?
ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�?

ordbin
��

binord
�@

test

We can wrap this in a command:

\def\weirdrelation{\mathdiscretionary class 2 {<}{>}{=}}

but this is not what we want when we are talking + and - which are candidates for repetition. And these are
entered as utf character so there is indication of them being treated special. This is why LuaMetaTEX has a
new vector \hmcode where one can trigger specific characters to become discretionaries.

\hmcode"002B=1 % +
\hmcode"2212=1 % -

test $ \dorecurse{50}{a + b - } c$ test

test �?
ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�?

ordbin
�	

binord
�@

ordbin
�+

binord
�A

test

Setting bit one of the code will enable this feature. But as usual with TEX and math there is a pitfall. Take
this (unusual) example:

\hmcode"1D453=1 % we trigger promotion to discretionary

test $\dorecurse{50}{a \Umathchar 2 0 "1D453 b} b$ test

test �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �@ test

We see the fbeing repeated but also notice that the italic correction disappears because that is what happens
in the line break. But in math this correction is actually part of the width (we've written plenty about that
over the years). However, when we set bit two of the code, the correction is moved into the discretionary:

\hmcode"1D453=3 % we carry the italic correction along

test $\dorecurse{50}{a \Umathchar 2 0 "1D453 b} b$ test

test �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �?

ordbin
�(

binord
�@ �@ test

So, where characters need to retain their family and class, we also need to make sure that we retain the fact
that a character is to be automatically repeated at a line break. The reason why this ended up in the engine
while it could be delegated to a callback is that we do need to process discretionaries in math anyway and

Characters in math 160

also want to avoid it when we're not at the outer level. And because we already carry around all kind of
options with noads and glyphs it was not that hard to support this.

It is a bit of a side track but discretionaries in LuaMetaTEX are a bit more permissive anyway. Take this:

\dorecurse{20}{%
xxxxxx
\discretionary {>>} {<<} {==}
xxxxxxxxxx

}

xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx ==
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx
xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx ==
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx
xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx

Here we depend on the tolerance and stretch settings in order to not overflow the text boundaries. But how
about the next:

\dorecurse{20}{%
xxxxxx
\discretionary
{>\hskip0pt plus 5pt>}
{<\hskip0pt plus 5pt<}
{=\hskip0pt plus 5pt=}

xxxxxxxxxx
}

xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = =
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx
xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = = xxxxxxxxxx xxxxxx = =
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx
xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx

This time we have some glue in the snippets. But we can even do the next trickery, where we can stretch the
boxed content after the line break routine has done it work. It is this mechanism that we use deep down in
the math engine too.

\dorecurse{20}{%
xxxxxx
\discretionary

{\uleaders \hbox to 2em{>\hss>}\hskip0pt plus 10pt minus 5pt}
{\uleaders \hbox to 2em{<\hss<}\hskip0pt plus 10pt minus 5pt}

% {\uleaders \hbox to 2em{=\hss=}\hskip0pt plus 10pt minus 5pt}
{==}

% xxxxxxx
xxxxxxxxxx

}

xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx ==
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx

161 Characters in math

xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx ==
xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx
xxxxxx == xxxxxxxxxx xxxxxx == xxxxxxxxxx

So, in some way, extending the math engine lets features trickle back into the text engine and vise versa. It is
all about seeing (weird) opportunities because it is often after playing with this that one sees more potential.

Standardizing math fonts 162

24 Standardizing math fonts

24.1 Introduction

ConTEXt has always had a good support for the typesetting of mathematics. ConTEXt MkII uses the pdfTEX
engine and hence traditional (Type1) fonts. Several math fonts are available, specifically designed to work
seamlessly with TEX. ConTEXt MkIV, the successor version, utilizes the LuaTEX engine, providing support
not only for traditional fonts but also for OpenType Unicode math fonts. Unlike the X ETEX engine, which
interpreted these new fonts in a manner similar to traditional TEX fonts, LuaTEX adheres more closely to the
(unfortunately somewhat vague) OpenType specification.32 When new fonts appeared, some were more like
the traditional fonts, others more like OpenType Unicode math fonts. This leads to difficulties in achieving
consistent results across different fonts and might be one reason that the Unicode engines are not yet used
as much as they probably should.

In autumn 2021 we started to discuss how to improve the typesetting of OpenType Unicode mathematics,
and it was natural to go on and do this for the LuaMetaTEX engine, and hence for ConTEXt LMTX. Since then,
we have been engaging in daily discussions covering finer details such as glyphs, kerning, accent placement,
inter-atom spacing (what we refer to as math microtypography), as well as broader aspects like formula
alignment and formula line breaking (math macrotypography). This article will primarily focus on the finer
details. Specifically, we will explore the various choices we have made throughout the process. The Open
Type Unicode math specification is incomplete; some aspects are missing, while others remain ambiguous.
This issue is exacerbated by the varying behaviors of fonts.

We make runtime changes to fonts, and add a few additional font parameters that we missed. As a result, we
deviate from the standard set by Microsoft (or rather, we choose to interpret it in our own way) and exercise
the freedom to make runtime changes to font parameters. Regarding this aspect, we firmly believe that our
results often align more closely with the original intentions of the font designers. Indeed, the existence of
“oddities” in these fonts may be attributed to the lack of an engine, during their creation, that supported
all the various features, making testing difficult, if not essentially impossible. Within ConTEXt LMTX, we
have the necessary support, and we can activate various helpers that allow us to closely examine formulas.
Without them our work would not have been possible.

Ultimately, we hope and believe that we have made straightforward yet effective choices, rendering the ex
isting OpenType Unicode math fonts usable. We hope that this article might be inspiring and useful for oth
ers who aim to achieve well-designed, modern math typesetting.

24.2 Traditional vs. OPENTYPE math fonts

There is a fundamental difference between traditional TEX math fonts and OpenType Unicode fonts. In the
traditional approach, a math setup consists of multiple independent fonts. There is no direct relationship
between a math italic �� and an

�§

on top of it. The engine handles the positioning almost independently of the
shapes involved. There can be a shift to the right of �§

�� triggered by kerning with a so-called skew character
but that is it.

A somewhat loose coupling between fonts is present when we go from a base character to a larger variant
that itself can point to a larger one and eventually end up at an extensible recipe. But the base character and

32 See https://learn.microsoft.com/en-us/typography/opentype/spec/math

163 Standardizing math fonts

that sequence are normally from different fonts. The assumption is that they are designed as a combination.
In an OpenType font, variants and extensibles more directly relate to a base character.

Then there is the italic correction which adds kerns between a character and what follows depending on the
situation. It is not, in fact, a true italic correction, but more a hack where an untrue width is compensated
for. A traditional TEX engine defaults to adding these corrections and selectively removes or compensates
for them. In traditional TEX this fake width helps placing the subscript properly while the italic correction
is added to the advance width when attaching subscripts and/or moving to the next atom.

In an OpenType font we see these phenomena translated into features. Instead of many math fonts we have
one font. This means that one can have relations between glyphs, although in practice little of that happens.
One example is that a specific character can have script and scriptscript sizes with a somewhat different
design. Another is that there can be alternate shapes for the same character, and yet another is substitution
of (for instance) dotted characters by dotless ones. However, from the perspective of features a math font is
rather simple and undemanding.

Another property is that in an OpenType math font the real widths are used in combination with optional
italic correction when a sequence of characters is considered text, with the exception of large operators
where italic correction is used for positioning limits on top and below. Instead of abusing italic corrections
this way, a system of staircase kerns in each corner of a shape is possible.

Then there are top (but not bottom) anchor positions that, like marks in text fonts, can be used to position
accents on top of base characters or boxes. And while we talk of accents: they can come with so-called flat
substitutions for situations where we want less height.

All this is driven by a bunch of font parameters that (supposedly) relate to the design of the font. Some of
them concern rules that are being used in constructing, for instance, fractions and radicals but maybe also
for making new glyphs like extensibles, which is essentially a traditional TEX thing.

So, when we now look back at the traditional approach we can say that there are differences in the way
a font is set up: widths and italic corrections, staircase kerns, rules as elements for constructing glyphs,
anchoring of accents, flattening of accents, replacement of dotted characters, selection of smaller sizes, and
font parameters. These differences have been reflected in the way engines (seem to) deal with OpenType
math: one can start with a traditional engine and map OpenType onto that; one can implement an OpenType
engine and, if needed, map traditional fonts onto the way that works; and of course there can be some mix
of these.

In practice, when we look at existing fonts, there is only one reference and that is Cambria. When mapped
onto a traditional engine, much can be made to work, but not all. Then there are fonts that originate in the
TEX community and these do not always work well with an OpenType engine. Other fonts are a mix and work
more or less. The more one looks into details, the clearer it becomes that no font is perfect and that it is hard
to make an engine work well with them. In LuaMetaTEX we can explicitly control many of the choices the
math engine makes, and there are more such choices than with traditional TEX machinery. And although
we can adapt fonts at runtime to suit the possibilities, it is not pretty.

This is why we gradually decided on a somewhat different approach: we use the advantage of having a single
font, normalize fonts to what we can reliably support, and if needed, add to fonts and control the math
engine, especially the various subsystems, with directives that tell it what we want to be done. Let us discuss
a few things that we do when we load a math font.

Standardizing math fonts 164

24.3 Getting rid of italic corrections

OpenType math has italic corrections for using characters in text and large operators (for limits), staircase
kerns for combining scripts, and top anchor for placement of accents. In LuaMetaTEX we have access to
more features.

Let's remind ourselves. In a bit more detail, OpenType has:

• n \typ{italic correction} is injected between characters in running text, but: a se
quence of atoms is {\em not} text, they are individually spaced. \stopitem \star
titem n italic correction value in large operators that reflects where limits are attached in display
mode; in effect, using the italic correction as an anchor.

• Top anchors are used to position accents over characters, but not so much over atoms that are com
posed from not only characters.

• Flat accents as substitution feature for situations where the height would become excessive.
• Script and scriptscript as substitution feature for a selection of characters that are sensitive for

scaling down.

This somewhat limited view on math character positioning has been extended in LuaMetaTEX, and we remap
the above onto what we consider a bit more reliable, especially because we can tweak these better. We have:

• Corner kerns that make it possible to adjust the horizontal location of sub- and superscripts and pre
scripts.

• Although flat accents are an existing feature, we extended them by providing additional scaling when
they are not specified.

• In addition to script sizes we also have mirror as a feature so that we can provide right to left math
typesetting. (This also relates to dropping in characters from other fonts, like Arabic.)

• In addition to the top anchorswe also have bottom anchors in order to properly place bottom accents.
These are often missing, so we need to construct them from available snippets.

• An additional extensible italic correction makes it possible to better anchor scripts to sloped
large operators. This is combined with keeping track of corner kerns that can be specified per charac
ter.

• Characters can have margins which makes it possible to more precisely position accents that would
normally overflow the base character and clash with scripts. These go in all four directions.

• In order to be able to place the degree in a radical more precisely (read: not run into the shape when
there is more than just a single degree atom) we have radical offsets.

There are plenty more tuning options but some are too obscure to mention here. All high level constructors,
like fences, radicals, accents, operators, fractions, etc. can be tuned via optional keyword and key/values at
the macro end.

We eliminate the italic correction in math fonts, instead adding it to the width, and using a negative bottom
right kern. If possible we also set a top and bottom accent anchor. This happens when we load the font. We
also translate the italic correction on large operators into anchors. As a result, the engine can now com
pletely ignore italic corrections in favor of proper widths, kerns and anchors. Let us look at a few examples.

The italic �(is used a lot in mathematics and it is also one of the most problematic characters. In TEX Gyre
Bonum Math the italic f has a narrow bounding box; the character sticks out on both the left and right. To the
right, this is compensated by a large amount of italic correction. This means that when one adds sub- and
superscripts, it works well. We add italic correction to the width, and introducing a negative corner kern at
the bottom right corner, and thus the placement of sub- and superscripts is not altered. Look carefully at
the bounding boxes below.

165 Standardizing math fonts

�(

�

��

�(

�

��

original tweaked

Compare with Lucida Bright Math, which comes with staircase kerns instead of italic correction. We convert
these kerns into corner kerns.

𝑓1
0 𝑓1

0
original tweaked

For characters that stick out to the left, we also increase the width and shift the glyph to ensure that it does
not stick out on the left side. This prevents glyphs from clashing into each other.

�.

opeord
�(

ordclo
�/ �.

opeord
�(

ordclo
�/

original tweaked

As mentioned, for the integral, one of the most common big operators, the limits are also placed with help
of the italic correction. When the limits go below and on top, proper bottom and top anchor points are
introduced, calculated from the italic correction. (The difference in size of the integral signs is a side effect
of the font parameter DisplayOperatorMinHeight being tweaked, as we'll discuss more later. OpenType
fonts can come with more than two sizes.)

�%

�'

��

intord
�(�.

opeord
��

ordclo
�/

clodif
�B �� ��

�'

��

intord
�(�.

opeord
��

ordclo
�/

clodif
�B ��

�'

��

��

intord
�(�.

opeord
��

ordclo
�/

clodif
�B ��

original tweaked, nolimits tweaked, limits

Compare these integrals with the summation, that usually does not have any italic correction bound to it.
This means that the new anchor points end up in the middle of the summation symbol.

�8

��

�.

ordrel
��

reldig
�

opeord
�?

�.

�8

��

�.

ordrel
��

reldig
�

opeord
�?

�.

original tweaked

We also introduce some corner kerns in cases where there were neither italic corrections nor staircase
kerns. This is mainly done for delimiters, like parentheses. We can have a different amount of kerning for
the various sizes. Often the original glyph does not benefit from any kerning, while the variants and exten
sibles do.

�#

opefra

�

�

digbin
�	

binord
��

��

fraclo
�$

��

��

opefra

�

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�

digbin
�	

binord
��

��

fraclo
��

��

original tweaked

Standardizing math fonts 166

Note also the different sizes of the parentheses in the example above. Both examples are set with \left(
and \right), but the font parameters are chosen differently in the tweaked version. Font designers should
have used the opportunity to have more granularity in sizes. Latin Modern Math has four, many others have
steps in between, but there is a lack of consistency.

24.4 Converting staircase kerns

We simplify the staircase kerns, which are often somewhat sloppy and seldom complete (see figure below),
into more reliable corner kerns. It's good enough and looks better on the whole. We also avoid bugs that way.

italic V upright V

24.5 Tweaking accents

We ignore the zero dimensions of accents, simply assuming that one cannot know if the shape is centered or
sticks out in a curious way, and therefore use proper widths with top and bottom anchors derived from the
bounding box. We compensate for negative llx values being abused for positioning. We check for overflows
in the engine. In case of multiple accents, we place the first one anchored over the character, and center the
others on top of it.

�§

�§

�§

�(

We mentioned in an earlier TugBoat article that sometimes anchor points are just wrong. We have a tweak
that resets them (to the middle) that we use for several fonts and alphabets.

Some accents, like the hat, can benefit from being scaled. The fonts typically provide the base size and a
few variants.

��

�(

ordbin
�	

binord
�D

��

�(

ordbin
�	

binord
�D

original tweaked

The only fonts we have seen that support flattened accents are Stix Two Math and Cambria Math.

̂𝑎 ̂𝐴 ̂𝐶 �̂��̂��̂�
stix two cambria

If you look carefully, you notice that the hats over the capital letters are not as tall as the one over the lower
case letter. There is a font parameter FlattenedAccentBaseHeight that is supposed to specify when this
effect is supposed to kick in. Even though other fonts do not use this feature, the parameter is set, some
times to strange values (if they were to have the property). For example, in Garamond Math, the value is 420.

167 Standardizing math fonts

We introduced a tweak that can fake the flattened accents, and therefore we need to alter the value of the
font parameter to more reasonable values. We communicated to Daniel Flipo, who maintains several math
fonts, that the parameter was not correctly set in Erewhon math. In fact, it was set such that the flattened
accents were used for some capital letters (C in the example below) but not for others (A below). He quickly
fixed that. The green rules in the picture have the height of FlattenedAccentBaseHeight; it did not need
to be decreased by much.

�̂� �̂� ̂𝐶 �̂� �̂� ̂𝐶
Erewhon, not fixed Erewhon, fixed

24.6 Getting rid of rules

We get rid of rules as pseudo-glyphs in extensibles and bars. This also gives nicer visual integration because
flat rules do not always fit in with the rest of the font. We also added support for this in the few (Polish) Type 1
math fonts that we still want to support, like Antykwa Toruńska.

√1
digbin
+

binord
𝑥

1
digbin
−

binord
𝑥 �

−−−−−−−−−−−−1
digbin
+

binord
𝑥−−−−−−−−−−−−1

digbin
−

binord
𝑥

�����1
digbin
+

binord
𝑥����1

digbin
−

binord
𝑥

With rule With glyph Antykwa

Here is an enlarged example of an Antykwa rule. Latin Modern has rounded corners, here we see a rather
distinctive ending.

𝑥2
ordbin
+

bindig
2𝑥

ordbin
+

bindig
2�������

24.7 Tweaking primes

We make it no secret that we consider primes in math fonts a mess. For some reason no one could convince
the Unicode people that a ‘prime’ is not a ‘minute’ (that is, U+2032 PRIME is also supposed to be used as the
symbol for minutes); in case you'd like to argue that “they often look the same”, that is also true for the Latin
and Greek capital ‘A’. This lost opportunity means that, as with traditional TEX fonts, we need to fight a bit
with placement. The base character can or cannot be already anchored at some superscript-like position,
so that makes it basically unusable. An alternative assumption might be that one should just use the script
size variant as a superscript, but as we will see below, that assumes that they sit on the baseline so that we
can move it up to the right spot. Add to that the fact that traditional TEX has no concept of a prime, and we
need some kind of juggling with successive scripts. This is what macro packages end up doing.

But this is not what we want. In ConTEXt MkIV we already have special mechanisms for dealing with primes,
which include mapping successive primes onto the multiple characters in Unicode, where we actually have
individual triple and quadruple primes and three reverse (real) primes as well. However, primes are now a
native feature, like super- and subscripts, as well as prescripts and indices. (All examples here are uniformly
scaled.)

Standardizing math fonts 168

lm st sts

lucida ssty

erewhon st sst

libertinus ssty1

Because primes are now a native feature, we also have new font parameters PrimeShiftUp and Prime
ShiftUpCramped, similar to SuperscriptShiftUp and SuperscriptShiftUpCramped, which add a hor
izontal axis where the primes are placed. There is also a fixprimes tweak that we can use to scale and fix
the glyph itself. Below, we see how very different the primes from different fonts look (all examples are uni
formly scaled), and then examples comparing the original and tweaked primes.

𝑓′(
opeord
𝑥

ordclo
)

clobin
+

binord
𝑒𝑓′(

opeord
𝑥

ordclo
) 𝑓′(𝑥)

clobin
+

binord
𝑒𝑓′(𝑥)

lm original lm tweaked

𝑓′(
opeord
𝑥

ordclo
)

clobin
+

binord
𝑒𝑓′(

opeord
𝑥

ordclo
) 𝑓′(

opeord
𝑥

ordclo
)

clobin
+

binord
𝑒𝑓′(

opeord
𝑥

ordclo
)

lucida original lucida tweaked

𝑓′(
opeord
𝑥

ordclo
)

clobin
+

binord
𝑒𝑓

′(
opeord
𝑥

ordclo
) 𝑓′(

opeord
𝑥

ordclo
)

clobin
+

binord
𝑒𝑓

′(
opeord
𝑥

ordclo
)

erewhon original erewhon tweaked

𝑓′(
opeord
𝑥

ordclo
)

clobin
+

binord
𝑒𝑓

′(
opeord
𝑥

ordclo
) 𝑓 ′(

opeord
𝑥

ordclo
)

clobin
+

binord
𝑒𝑓

′(
opeord
𝑥

ordclo
)

libertinus original libertinus tweaked

169 Standardizing math fonts

24.8 Font parameters

We add some font parameters, ignore some existing ones, and fix at runtime those that look to be subopti
mal. We have no better method than looking at examples, so parameters might be fine-tuned further in the
future.

We have already mentioned that we have a few new parameters, PrimeShiftUp and PrimeShiftUp
Cramped, to position primes on their own axis, independent of the superscripts. They are also chosen to
always be placed outside superscripts, so the inputs f'^2 and f^2' both result in �(

�� �/ . Authors should
use parentheses in order to avoid confusion.

h3 + h2 + h3
2 + h′

ℎ3 + ℎ2 + ℎ3
2 + ℎ′

ℎ3 + ℎ2 + ℎ32 + ℎ′
Let us briefly mention the other parameters. These are the adapted parameters for TEX Gyre Bonum:

AccentTopShiftUp = -15
FlattenedAccentTopShiftUp = -15
AccentBaseDepth = 50
DelimiterPercent = 90
DelimiterShortfall = 400
DisplayOperatorMinHeight = 1900
SubscriptShiftDown = 201
SuperscriptShiftUp = 364
SubscriptShiftDownWithSuperscript = "1.4*SubscriptShiftDown"
PrimeShiftUp = "1.25*SuperscriptShiftUp"
PrimeShiftUpCramped = "1.25*SuperscriptShiftUp"

Some of these are not in OpenType. We can set up much more, but it depends on the font what is needed,
and also on user demands.

We have noticed that many font designers seem to have had problems setting some of the values; for exam
ple, DisplayOperatorMinHeight seems to be off in many fonts.

24.9 Profiling

Let us end with profiling, which is only indirectly related to the tweaking of the fonts. Indeed, font parame
ters control the vertical positioning of sub- and superscripts. If not carefully set, they might force a non-
negative \lineskip where not necessary. In the previous section we showed how these parameters were
tweaked for Bonum.

Sometimes formulas are too high (or have a too large depth) for the line, and so a \lineskip is added so
that the lines do not clash. If the lowest part of the top line (typically caused by the depth) and the tallest
part of the bottom line (caused by the height) are not close to each other on the line, one might argue that

Standardizing math fonts 170

this \lineskip does not have to be added, or at least with reduced amount. This is possible to achieve by
adding \setupalign[profile]. Let us look at one example.

So the question is: how good an approximation to 𝜎 is 𝜎
ordbin
∗

binord
𝑊𝜙? But the attentive reader willL__

realize that we have already answered this question in the course of proving the sharp GårdL__

ing inequality. Indeed, suppose 𝜙
ordrel
∈

relord
𝒮 is even and ‖𝜙‖2clorel

=
reldig
1, and set 𝜙𝑎(𝑥)

clorel
=

relord
𝑎𝑛/4

right
𝜙(𝑎1/2

right
𝑥).L__

Then we have shown (cf. Remark (2.89)) that 𝜎
ordbin
−

binord
𝜎

ordbin
∗

binord
𝑊𝜙𝑎

ordrel
∈

relord
𝑆𝑚

ordbin
−

binope
(𝜌

ordbin
−

binord
𝛿)

𝜌,
punord
𝛿 whenever 𝜎

ordrel
∈

relord
𝑆𝑚

𝜌,
punord
𝛿L__

is supported in a set where ⟨𝜉⟩𝜌ordbin
+

binord
𝛿

clorel
≈

relord
𝑎.L__

No profiling

So the question is: how good an approximation to 𝜎 is 𝜎
ordbin
∗

binord
𝑊𝜙? But the attentive reader willL__

realize that we have already answered this question in the course of proving the sharp GårdL__

ing inequality. Indeed, suppose 𝜙
ordrel
∈

relord
𝒮 is even and ‖𝜙‖2clorel

=
reldig
1, and set 𝜙𝑎(𝑥)

clorel
=

relord
𝑎𝑛/4

right
𝜙(𝑎1/2

right
𝑥).L__

LI:0.000

Then we have shown (cf. Remark (2.89)) that 𝜎
ordbin
−

binord
𝜎

ordbin
∗

binord
𝑊𝜙𝑎

ordrel
∈

relord
𝑆𝑚

ordbin
−

binope
(𝜌

ordbin
−

binord
𝛿)

𝜌,
punord
𝛿 whenever 𝜎

ordrel
∈

relord
𝑆𝑚

𝜌,
punord
𝛿L__

LI:0.000

is supported in a set where ⟨𝜉⟩𝜌ordbin
+

binord
𝛿

clorel
≈

relord
𝑎.L__

Profiling

In the above paragraphs we enabled a helper that shows us where the profiling feature kicks in. We also
show the lines (\showmakeup[line]). Below we show the example without those helpers. You can judge
for yourself which one you prefer.

So the question is: how good an approximation to 𝜎 is 𝜎
ordbin
∗

binord
𝑊𝜙? But the attentive reader will

realize that we have already answered this question in the course of proving the sharp Gård
ing inequality. Indeed, suppose 𝜙

ordrel
∈

relord
𝒮 is even and ‖𝜙‖2clorel

=
reldig
1, and set 𝜙𝑎(𝑥)

clorel
=

relord
𝑎𝑛/4

right
𝜙(𝑎1/2

right
𝑥).

Then we have shown (cf. Remark (2.89)) that 𝜎
ordbin
−

binord
𝜎

ordbin
∗

binord
𝑊𝜙𝑎

ordrel
∈

relord
𝑆𝑚

ordbin
−

binope
(𝜌

ordbin
−

binord
𝛿)

𝜌,
punord
𝛿 whenever 𝜎

ordrel
∈

relord
𝑆𝑚

𝜌,
punord
𝛿

is supported in a set where ⟨𝜉⟩𝜌ordbin
+

binord
𝛿

clorel
≈

relord
𝑎.

No profiling

So the question is: how good an approximation to 𝜎 is 𝜎
ordbin
∗

binord
𝑊𝜙? But the attentive reader will

realize that we have already answered this question in the course of proving the sharp Gård
ing inequality. Indeed, suppose 𝜙

ordrel
∈

relord
𝒮 is even and ‖𝜙‖2clorel

=
reldig
1, and set 𝜙𝑎(𝑥)

clorel
=

relord
𝑎𝑛/4

right
𝜙(𝑎1/2

right
𝑥).

Then we have shown (cf. Remark (2.89)) that 𝜎
ordbin
−

binord
𝜎

ordbin
∗

binord
𝑊𝜙𝑎

ordrel
∈

relord
𝑆𝑚

ordbin
−

binope
(𝜌

ordbin
−

binord
𝛿)

𝜌,
punord
𝛿 whenever 𝜎

ordrel
∈

relord
𝑆𝑚

𝜌,
punord
𝛿

is supported in a set where ⟨𝜉⟩𝜌ordbin
+

binord
𝛿

clorel
≈

relord
𝑎.

Profiling

It is worth emphasizing that, contrary to what one might believe at first, the profiling does not substantially
affect the compilation time. On a 300-page math book we tried, which usually compiles in about 10 seconds,
profiling did not add more than 0.5 seconds. The same observation holds for the other math tweaks we have
mentioned: the overhead is negligible.

24.10 Conclusions

All these tweaks can be overloaded per glyph if needed; for some fonts, we indeed do this, in so-called goodie
files. The good news is that by doing all this we present the engine with a font that is consistent, which also
means that we can more easily control the typeset result in specific circumstances.

The reader may wonder how we ended up with this somewhat confusing state of affairs in the font world.
Here are some possible reasons. There is only one reference font, Cambria, and that uses its reference word
processor renderer, Word. Then came X ETEX that as far as we know maps OpenType math onto a traditional
TEX engine, so when fonts started coming from the TEX crowd, traditional dimensions and parameters sort of
fit in. When LuaTEX showed up, it started from the other end: OpenType. That works well with the reference
font but less so with that ones coming from TEX. Eventually more fonts showed up, and it's not clear how

171 Standardizing math fonts

these got tested because some lean towards the traditional and others towards the reference fonts. And, all
in all, these fonts mostly seem to be rather untested in real (more complex) math.

The more we looked into the specific properties of OpenType math fonts and rendering, the more we got the
feeling that it was some hybrid of what TEX does (with fonts) and ultimately desired behavior. That works well
with Cambria and a more or less frozen approach in a word processor, but doesn't suit well with TEX. Bits and
pieces are missing, which could have been added from the perspective of generalization and imperfections
in TEX as well. Lessons learned from decades of dealing with math in macros and math fonts were not
reflected in the OpenType fonts and approach, which is of course understandable as OpenType math never
especially aimed at TEX. But that also means that at some point one has to draw conclusions and make
decisions, which is what we do in ConTEXt, LuaMetaTEX and the runtime-adapted fonts. And it gives pretty
good and reliable results.

Somewhat radical 172

25 Somewhat radical

Here we will discuss an aspect of radicals, namely how variants get applied. Take the following situation:√
𝑥

ordbin
+

bindig
1

√
𝑥

ordbin
−

bindig
1√

1
digbin
+

binord
𝑥

√
1

digbin
−

binord
𝑥

Watch the slight difference in radical heights. Now look at this:

√𝑥
ordbin
+

bindig
1

𝑥
ordbin
−

bindig
1 √1

digbin
+

binord
𝑥

1
digbin
−

binord
𝑥

Here we need to make sure that we don't run into the slope, because, when we have a close look at the shapes
we see that the radical symbol has a tight bounding box:√

𝑥
ordbin
+

bindig
1

√
𝑥

ordbin
−

bindig
1√

1
digbin
+

binord
𝑥

√
1

digbin
−

binord
𝑥

In pagella we get:

√𝑥
ordbin
+

bindig
1

𝑥
ordbin
−

bindig
1 √1

digbin
+

binord
𝑥

1
digbin
−

binord
𝑥

and in antykwa:���𝑥
ordbin
+

bindig
1��𝑥

ordbin
−

bindig
1
���1

digbin
+

binord
𝑥��1

digbin
−

binord
𝑥

But now look at this formula:

173 Somewhat radical

���𝑥
ordbin
+

bindig
1��𝑥

ordbin
−

bindig
1
���1

digbin
+

binord
𝑥��1

digbin
−

binord
𝑥
���𝑥

ordbin
+

bindig
1��𝑥

ordbin
−

bindig
1
���1

digbin
+

binord
𝑥��1

digbin
−

binord
𝑥

Here we see several mechanisms in action and for a good reason. First of all we want similar subformulas
(under the symbol) to have compatible radicals. For this we use special struts so that we always have at least
some height. We also compensate for slight differences in depth by setting a minimum depth. Finally we
add a bit of margin. That last feature moves the content free from the symbols which means that we can
have less distance between the top of the content and the rule. In many fonts that distance is set to a value
that prevents clashes and the more slope we have, the more opportunity there is to clash.

When the best fit decision is made for a radical, the effective height of the content (height plus depth of
the box) is incremented by a gap variable. The standard specifies the RadicalVerticalGap as “Space
between the (ink) top of the expression and the bar over it. Suggested: 1.25 default rule thickness.” and
RadicalDisplayStyleVerticalGap as “Space between the (ink) top of the expression and the bar over it.
Suggested: default rule thickness plus .25 times x-height.”. These values are actually rather font dependent
because the slope needs to be taken into account; there is also a visual aspect to it.

We can't tweak the radical width because the rule has to be attached. If we could we'd have to do it for every
variant. So, instead we set up radical like this:

\setupmathradical
[strut=height, % only height
leftmargin=.05mq, % fraction of math quad
mindepth=.05mx] % fraction of math x height

When deciding what size to use, a list of variants is followed till there is a match and when we run out of
variants an extensible is constructed. Here is the list of possible sizes in the current font:

�0 �w �1 �y �2 �3 �z

However, when we don't center around the math axis we get a more distinctive view on the steps:

�0

�w

�1

�y

�2

�3

�z

It will be clear that the steps can't be too large but there are fonts out there that behave rather extreme, like
Cambria:

√ � � � � �

Somewhat radical 174

The only way out here is to either inject scaled variants into the list of possibilities or to simply ignore all
except the first one and go straight to the extensible, so that's what we do, in combination with tweaked
parameters and a margin:

√ � � � � �

As with many font parameters (also in text) one sometimes wonder if font designer test with real examples.
There are of course exceptions, for instance the ebgaramond font, but that one goes over the top in other
areas. Here one can also wonder if the upper half of the range makes sense over an extensible. For consis
tency one wants steps to be not too small, so that a sequence of radicals looks simular, but steps larger than
for instance the height are probably bad.

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√
QUAD:1.667

√

QUAD:1.667

√

QUAD:1.667

√

QUAD:1.667

√

QUAD:1.667

√

QUAD:1.667

√

QUAD:1.667

√

QUAD:1.667

√

QUAD:1.667

√

QUAD:1.667

√

So, as with other examples that we give of tweaking math, it is clear that there is no way around also tweaking
radicals, and we're not even talking of the way we fine tune the positioning of degrees in radicals because
that is also a neglected area in OpenType math fonts.

175 Somewhat radical

Between bars 176

26 Between bars

Inconsistencies

The bar in math can a real pain. There are several reasons for this, for instance there is no proper left,
middle and right bar in Unicode and as a result there is more work involved in getting them spaced well.
Another possible issue can be to make them fit well with other fences. You expect the bars in �.

opeord
��

ordmid
�³

midord
�S

ordclo
�/ and

�³

opeord
��

ordmid
�³

midord
�S

ordclo
�³ to look similar.

�æ �³ �/ �4�µ�� �5�·�¸ ���º�" �6�¼�½ �7�¾�� �8�9�$

However, math fonts have their surprises:

[|) [∣) [∣) [∣) [∣) [∣) [∣) [∣)

In Latin Modern only the first variant is tuned to work together but for larger sizes the bars stick out. This is
a problem when we want fences to adapt. The fact that such side effects probably get unnoticed comes from
the fact that macro packages assume \bigg and friends to be used but in ConTEXt, and especially LMTX, we
have various mechanisms for this. One method is based on selecting specific variants, in the case of Latin
Modern 1, 4, 6 and 7, where in in fact 7 is the last one before we switch to extensible fences. One can try
to use a different selection for brackets and bars when there is no nice match but there are no equal height
matches.

\im {\left| x \right|}
\im {\left| x^2 \right|}
\im {\left| x^{1/n} \right|}

These example formulas can trigger a larger fence:

�³

opeord
��

ordclo
�³ �µ

opeord
��

��

ordclo
�µ �µ

opeord
��

�
 �� �8

ordclo
�µ

In untweaked Latin Modern we get this:

|
opeord
𝑥

ordclo
| ∣

opeord
𝑥2

ordclo
∣ ∣

opeord
𝑥1/𝑛

ordclo
∣

177 Between bars

The slash in this font is rather high and therefore triggers the larger fence. One can configure this with the
\delimiterfactor and \delimitershortfall but as you can see values have to relate to the font. In
LMTX we set them to 1000 and 0pt and use the LuaMetaTEX equivalent font variables instead, so we can
indeed fine tune per font.

To come back to the mismatch in fences, this is dealt with in a tweak: we scale the single, double and triple
bars to match the brackets:

[|) �∣� �∣� �∣� �∣� �∣� �∣� �∣�

Combined with proper settings for the factor (or percentage in OpenType math speak) and shortfall, we now
get:

|𝑥| ∣𝑥2
right
∣ ∣𝑥1/𝑛

right
∣

When we let the upgraded math subsystem evolve we make many examples. Unfortunately there is always
an exception. For instance, we test a specific font, notice something, deal with it, even test all fonts in inline
and display math and then after months the exception shows up. In this case it was the ����- in a superscript
that (only?) in Latin Modern goes over the top. Actually we had noticed that bars are often inconsistent so we
had a fixbars tweak, However, for Latin Modern we found that the inconsistency between bars and other
fences needed something more drastic. Of course fixing the font is best but we're beyond that stage now:
the fonts are basically frozen.

A close inspection of the too large fence which itself results from it being larger than expected by design
(which we noticed by adding parentheses) itself was the result from deciding to configure additional inter-
atom spacing for open and close fences (see below) which then brings us back to the fact that one bar serves
three purposes. We might actually introduce these three (left, middle and right) at some point.

∣
opefra

𝑛3
ordbin
−

bindig
2𝑛

ordbin
+

bindig
1−−−−−−−−−−−−−−−−−−−−−−−−−

𝑛5
ordbin
−

bindig
3 frabin

−
bindig
0∣

clorel
<

relfra

4−−−−−
𝑛2 ∣

opefra

𝑛3
ordbin
−

bindig
2𝑛

ordbin
+

bindig
1−−−−−−−−−−−−−−−−−−−−−−−−−

𝑛5
ordbin
−

bindig
3 frabin

−
bindig
0∣

clorel
<

relfra

4−−−−−
𝑛2

Missing shapes

The tweak discusses in the previous section is a brute force one: we put an extensible on the base glyph.
Among the arguments for doing this is that we want to be able to add consistent double and triple bars. With
out mentioning fonts explicitly (as some might get fixed after we files bug reports) this is what we observed:

• There are single bars, double bars and triple bars and each has variants and extensibles. This is okay.
• Most are there but the triple bar has no variants and extensibles
• We have all three base characters but no variants. The extensible has a different width.
• Single, double and triple bars are inconsistent with each other.
• Everything is there but widths differ per variant; some match the parenthesis, brackets and braces but

not consistently.

Between bars 178

• The different variant sizes are out of sync with the sizes of parenthesis etc. and this makes for inconsis
tent matches, especially when also the width and positioning differs.

• Spacing between and around double and triple bars isn't always consistent.

These observations lead us to the conclusion that there is no single tweak that can fix this. Adapting the ‘ad
dbars’ tweak to deal with all this made for too many alternatives in checks and fixes to feel comfortable with.
This is why we decided to come up with companion fonts that provide the missing double and triple vari
ants and extensibles consistent with the single ones, fix spacing in double and triple ones, fix inconsistent
widths of bars, etc. Minor details like bad positioning are already handled well do we can keep the ‘design’
as it is.

�æ�²�.�³�/���ç �4�´���µ���:�; �5�¶�<�·�¸�=�> ���¹�!�º�"�?�� �6�»�@�¼�½�A�B �7�����¾�����C �8�¿�#�9�$�D�E

�³ �¡ ⦀ �µ �F ⦀ �· �G ⦀ �º �H ⦀ �¼ �I 𞻰 �¾ �J 𞻰 �9 �K 𞻰

Different sizes

middle

179 Between bars

