
SciTE
IN CONTEXT MkIV

1

About SCITE

This manual is under (re)construction.

For a long time at Pragma ADE we used TEXedit, an editor we’d written

in Modula. It had some project management features and recognized the

project structure in ConTEXt documents. Later we rewrote this to a platform

independent reimplementation called TEXwork written in Perl/Tk (not to be

confused with the editor with the plural name).

In the beginning of the century I can into SciTE, written by Neil Hodgson.

Although the mentioned editors provide some functionality not present in

SciTE we decided to use that editor because it frees us from maintaining

our own. I ported our TEX and MetaPost (line based) syntax highlighting to

SciTE and got a lot of others for free.

After a while I found out that there was an extension interface written in

Lua. I played with it and wrote a few extensions too. This pleasant experi-

ence later triggered the LuaTEX project.

A decade into the century SciTE got another new feature: you can write

dynamic external lexers in Lua using lpeg. As in the meantime ConTEXt has

evolved in a TEX/Lua hybrid, it made sense to look into this. The result is

a couple of lexers that suit TEX, MetaPost and Lua usage in ConTEXt MkIV.

As we also use xml as input and output format a lexer for xml is also pro-

vided. And because pdf is one of the backend formats lexing of pdf is also

implemented.1

In the ConTEXt (standalone) distribution you will find the relevant files un-

der:

<texroot>/tex/texmf-context/context/data/scite

Normally a user will not have to dive into the implementation details but in

principle you can tweak the properties files to suit your purpose.

1 In the process some of the general lexing framework was adapted to suit our demands for

speed. We ship these files as well.

2

The look and feel

The color scheme that we use is consistent over the lexers but we use more

colors that in the traditional lexing. For instance, TEX primitives, low level

TEX commands, TEX constants, basic file structure related commands, and

user commands all get a different treatment. When spell checking is turned

on, we indicate unknown words, but also words that are known but might

need checking, for instance because they have an uppercase character. In

figure 1 we some of that in practice.

Installing SCITE

Installing SciTE is straightforward. We are most familiar with MS Windows

but for other operating systems installation is not much different. First you

need to fetch the archive from:

www.scintilla.org

The MSWindows binaries are zipped in wscite.zip, and you can unzip this

in any directory you want as long as you make sure that the binary ends up

in your path or as shortcut on your desktop. So, say that you install SciTE

in:

c:\data\system\scite\wscite

You need to add this path to your local path definition. Installing SciTE to

some known place has the advantage that you can move it around. There

are no special dependencies on the operating system.

Next you need to install the lpeg lexers.2 These can be fetched from:

code.google.com/p/scintilla

On windows you need to copy the lexers subfolder to the wscite folder.

For Linux the place depends on the distribution and I just copy them in the

same path as where the regular properties files live.

For Unix, one can take a precompiled version as well. Here we need to split

the set of files into:

2 Versions later than 2.11 will not run on Windows 2K. In that case you need to comment the

external lexer import.

3

Figure 1 Nested lexers in action.

4

/usr/bin

/usr/share/scite

The second path is hard coded in the binary.

If you want to use ConTEXt, you need to copy the relevant files from

<texroot>/tex/texmf-context/context/data/scite

to the path were SciTE keeps its property files (*.properties). There is

a file called \type{SciteGlobal.properties}. At the end of that file

on windows it is in the path where the Scite binary) you then add a line to

the end:

import scite-context-user

You need to restart SciTE in order to see if things work out as expected.

Disabling the external lexer in a recent SciTE is somewhat tricky. In that

case the end of that file looks like:

imports.exclude=scite-context-external

import *

import scite-context-user

In any case you need to make sure that the user file is loaded last.

After this, things should run as expected (given that TEX runs at the console

as well).

Fonts

The configuration file defaults to the Dejavu fonts. These free fonts are part

of the ConTEXt suite (also known as the standalone distribution). Of course

you can fetch them from http://dejavu-fonts.org as well. You have to

copy them to where your operating system expects them. In the suite they

are available in

<contextroot>/tex/texmf/fonts/truetype/public/dejavu

5

An alternative approach

If for some reason you prefer not to mess with property files in the main

SciTE path, you can follow a different route and selectively copy files to

places.

The following files are needed for the lpeg based lexer:

lexers/scite-context-lexer.lua

lexers/scite-context-lexer-tex.lua

lexers/scite-context-lexer-mps.lua

lexers/scite-context-lexer-lua.lua

lexers/scite-context-lexer-cld.lua

lexers/scite-context-lexer-txt.lua

lexers/scite-context-lexer-xml*.lua

lexers/scite-context-lexer-pdf*.lua

lexers/context/data/scite-context-data-tex.lua

lexers/context/data/scite-context-data-context.lua

lexers/context/data/scite-context-data-interfaces.lua

lexers/context/data/scite-context-data-metapost.lua

lexers/context/data/scite-context-data-metafun.lua

lexers/themes/scite-context-theme.lua

The data files are needed because we cannot access property files from

within the lexer. If we could open a file we could use the property files

instead.

These files go to the lexers subpath in your SciTE installation. Normally

this sits in the binary path. The following files provide some extensions. On

windows you can copy these files to the path where the SciTE binary lives.

scite-ctx.lua

Because property files can only be loaded from the same path where the

(user) file loads them you need to copy the following files to the same path

where the loading is defined:

scite-context.properties

6

scite-context-internal.properties

scite-context-external.properties

scite-pragma.properties

scite-tex.properties

scite-metapost.properties

scite-context-data-tex.properties

scite-context-data-context.properties

scite-context-data-interfaces.properties

scite-context-data-metapost.properties

scite-context-data-metafun.properties

scite-ctx.properties

scite-ctx-context.properties

scite-ctx-example.properties

On Windows these go to:

c:/Users/YourName

Next you need to add this to:

import scite-context

import scite-context-internal

import scite-context-external

import scite-pragma

to the file:

SciTEUser.properties

Of course the pragma import is optional. You can comment either the inter-

nal or external variant but there is no reason not to keep them both.

Extensions

Just a quick not to some extensions. If you select a part of the text (normally

you do this with the shift key pressed) and you hit Shift-F11, you get a

menu with some options. More (robust) ones will be provided at some point.

7

Spell checking

If you want to have spell checking, you need have files with correct words

on each line. The first line of a file determines the language:

% language=uk

When you use the external lexers, you need to provide some files. Given

that you have a text file with valid words only, you can run the following

script:

mtxrun --script scite --words nl uk

This will convert files with names like spell-nl.txt into Lua files that you

need to copy to the lexers/data path. Spell checking happens realtime

when you have the language directive (just add a bogus character to disable

it). Wrong words are colored red, and words that might have a case problem

are colored orange. Recognized words are greyed and words with less than

three characters are ignored.

In the case of internal lexers, the following file is needed:

spell-uk.txt

If you use the traditional lexer, this file is taken from the path determined

by the environment variable:

CTXSPELLPATH

As already mentioned, the lpeg lexer expects them in the data path. This

is because the Lua instance that does the lexing is rather minimalistic and

lacks some libraries as well as cannot access the main SciTE state.

Spell checking in txt files is enabled by adding a first line:

[#!-%] language=uk

The first character on that line is one of the four mentioned between square

brackets. So,

language=uk

8

should work. For xml files there are two methods. You can use the following

(at the start of the file):

<?xml ... language="uk" ?>

But probably better is to use the next directive just below the usual xml

marker line:

<?context-xml-directive editor language uk ?>

Interface selection

In a similar fashion you can drive the interface checking:

% interface=nl

Property files

The internal lexers are controlled by the property files while the external

ones are steered with themes. Unfortunately there is hardly any access to

properties from the external lexer code nor can we consult the file system

and/or run programs like mtxrun. This means that we cannot use configu-

ration files in the ConTEXt distribution directly. Hopefully this changes with

future releases.

The external lexers

These are the more advanced. They provide more detail and the ConTEXt

lexer also supports nested MetaPost and Lua. Currently there is no detailed

configuration but this might change once they are stable.

The external lexers operate on documents while the internal ones oper-

ate on lines. This can make the external lexers slow on large documents.

We’ve optimized the code somewhat for speed and memory consumption

but there’s only so much one can do. While lexing each change in style

needs a small table but allocating and garbage collecting many small ta-

bles comes at a price. Of course in practice this probably gets unnoticed.3

3 I wrote the code in 2011 on a more than 5 years old Dell M90 laptop, so I suppose that

speed is less an issue now.

9

In principle the external lexers can be used with textadept which also uses

scintilla. Actually, support for lpeg lexing originates in textadept. Cur-

rently textadept lacks a couple of features I like about SciTE (for instance

it has no realtime logpane) and it’s also still changing. At some point the

ConTEXt distribution might ship with files for textadept as well.

The external lpeg lexers work okay with the MSWindows and linux versions

of SciTE, but unfortunately at the time of writing this, the Lua library that

is needed is not available for the MacOSX version of SciTE. Also, due to the

fact that the lexing framework is rather isolated, there are some issues that

cannot be addressed in the properly, at least not currently.

In addition to ConTEXt and MetaFun lexing a Lua lexer is also provided so

that we can handle ConTEXt Lua Document (cld) files too. There is also an

xml lexer. This one also provides spell checking. The pdf lexer tries to do a

good job on pdf files, but it has some limitations. There is also a simple text

file lexer that does spell checking.

Don’t worry if you see an orange rectangle in your TEX or xml document.

This indicates that there is a special space character there, for instance

0xA0, the nonbreakable space. Of course we assume that you use utf8 as

input encoding.

The internal lexers

SciTE has quite some built in lexers. A lexer is responsible for highlighting

the syntax of your document. The way a TEX file is treated is configured in

the file:

tex.properties

You can edit this file to your needs using the menu entry under options in

the top bar. In this file, the following settings apply to the TEX lexer:

lexer.tex.interface.default=0

lexer.tex.use.keywords=1

lexer.tex.comment.process=0

lexer.tex.auto.if=1

10

The option lexer.tex.interface.default determines the way keywords

are highlighted. You can control the interface from your document as well,

which makes more sense that editing the configuration file each time.

% interface=all|tex|nl|en|de|cz|it|ro|latex

The values in the properties file and the keywords in the preamble line have

the following meaning:

0 all all commands (preceded by a backslash)

1 tex TEX, 𝜀-TEX, pdfTEX, Omega primitives (and macros)

2 nl the dutch ConTEXt interface

3 en the english ConTEXt interface

4 de the german ConTEXt interface

5 cz the czech ConTEXt interface

6 it the italian ConTEXt interface

7 ro the romanian ConTEXt interface

8 latex LATEX (apart from packages)

The configuration file is set up in such a way that you can easily add more

keywords to the lists. The keywords for the second and higher interfaces are

defined in their own properties files. If you’re curious about the way this is

configures, you can peek into the property files that start with scite-context.

When you have ConTEXt installed you can generate configuration files with

mtxrun --script interface --scite

You need to make sure that you move the result to the right place so best

not mess around with this command and use the files from the distribution.

Back to the properties in tex.properties. You can disable keyword color-

ing alltogether with:

lexer.tex.use.keywords=0

but this is only handy for testing purposes. More interesting is that you can

influence the way comment is treated:

lexer.tex.comment.process=0

When set to zero, comment is not interpreted as TEX code and it will come

out in a uniform color. But, when set to one, you will get as much colors as

a TEX source. It’s a matter of taste what you choose.

11

The lexer tries to cope with the TEX syntax as good as possible and takes

for instance care of the funny ^^ notation. A special treatment is applied to

so called \if’s:

lexer.tex.auto.if=1

This is the default setting. When set to one, all \ifwhatever’s will be seen

as a command. When set to zero, only the primitive \if’s will be treated.

In order not to confuse you, when this property is set to one, the lexer will

not color an \ifwhatever that follows an \newif.

The MetaPost lexer

The MetaPost lexer is set up slightly different from its TEX counterpart,

first of all because MetaPost is more a language that TEX. As with the TEX

lexer, we can control the interpretation of identifiers. The MetaPost specific

configuration file is:

metapost.properties

Here you can find properties like:

lexer.metapost.interface.default=1

Instead of editing the configuration file you can control the lexer with the

first line in your document:

% interface=none|metapost|mp|metafun

The numbers and keywords have the following meaning:

0 none no highlighting of identifiers

1 metapost or mp MetaPost primitives and macros

2 metafun MetaFun macros

Similar to the TEX lexer, you can influence the way comments are handled:

lexer.metapost.comment.process=1

This will interpret comment as MetaPost code, which is not that useful (op-

posite to TEX, where documentation is often coded in TEX).

12

The lexer will color the MetaPost keywords, and, when enabled also ad-

ditional keywords (like those of MetaFun). The additional keywords are

colored and shown in a slanted font.

The MetaFun keywords are defined in a separate file:

metafun-scite.properties

You can either copy this file to the path where you global properties files

lives, or put a copy in the path of your user properties file. In that case you

need to add an entry to the file SciTEUser.properties:

import metafun-scite

The lexer is able to recognize btex--etex and will treat anything in between

as just text. The same happens with strings (between "). Both act on a per

line basis.

Using ConTEXt

When mtxrun is in your path, ConTEXt should run out of the box. You can

find mtxrun in:

<contextroot>/tex/texmf-mswin/bin

or in a similar path that suits the operating system that you use.

When you hit CTRL-12 your document will be processed. Take a look at the

Tools menu to see what more is provided.

Extensions (using LUA)

When the Lua extensions are loaded, you will see a message in the log pane

that looks like:

- see scite-ctx.properties for configuring info

- ctx.spellcheck.wordpath set to ENV(CTXSPELLPATH)

- ctxspellpath set to c:\data\develop\context\spell

- ctx.spellcheck.wordpath expands to c:\data\develop\context\spell

13

- ctx.wraptext.length is set to 65

- key bindings:

Shift + F11 pop up menu with ctx options

Ctrl + B check spelling

Ctrl + M wrap text (auto indent)

Ctrl + R reset spelling results

Ctrl + I insert template

Ctrl + E open log file

- recognized first lines:

xml <?xml version='1.0' language='nl'

tex % language=nl

This message tells you what extras are available.

Templates

There is an experimental template mechanism. One option is to define tem-

plates in a properties file. The property file scite-ctx-context contains

definitions like:

command.25.$(file.patterns.context)=insert_template \

$(ctx.template.list.context)

ctx.template.list.context=\

itemize=structure.itemize.context|\

tabulate=structure.tabulate.context|\

natural TABLE=structure.TABLE.context|\

use MP graphic=graphics.usemp.context|\

reuse MP graphic=graphics.reusemp.context|\

typeface definition=fonts.typeface.context

ctx.template.structure.itemize.context=\

\startitemize\n\

\item ?\n\

\item ?\n\

14

\item ?\n\

\stopitemize\n

The file scite-ctx-example defines xml variants:

command.25.$(file.patterns.example)=insert_template \

$(ctx.template.list.example)

ctx.template.list.example=\

bold=font.bold.example|\

emphasized=font.emphasized.example|\

|\

inline math=math.inline.example|\

display math=math.display.example|\

|\

itemize=structure.itemize.example

ctx.template.structure.itemize.example=\

<itemize>\n\

<item>?</item>\n\

<item>?</item>\n\

<item>?</item>\n\

</itemize>\n

For larger projects it makes sense to keep templates with the project. In

one of our projects we have a directory in the path where the project files

are kept which holds template files:

..../ctx-templates/achtergronden.xml

..../ctx-templates/bewijs.xml

One could define a template menu like we did previously:

ctx.templatelist.example=\

achtergronden=mathadore.achtergronden|\

bewijs=mathadore.bewijs|\

ctx.template.mathadore.achtergronden.file=smt-achtergronden.xml

ctx.template.mathadore.bewijs.file=smt-bewijs.xml

15

However, when no such menu is defined, we will automatically scan the

directory and build the menu without user intervention.

Using SCITE

The following keybindings are available in SciTE. Most of this list is taken

from the on-line help pages.

keybinding meaning (taken from the SciTE help file)

Ctrl+Keypad+ magnify text size

Ctrl+Keypad- reduce text size

Ctrl+Keypad/ restore text size to normal

Ctrl+Keypad* expand or contract a fold point

Ctrl+Tab cycle through recent files

Tab indent block

Shift+Tab dedent block

Ctrl+BackSpace delete to start of word

Ctrl+Delete delete to end of word

Ctrl+Shift+BackSpace delete to start of line

Ctrl+Shift+Delete delete to end of line

Ctrl+Home go to start of document; Shift extends selection

Ctrl+End go to end of document; Shift extends selection

Alt+Home go to start of display line; Shift extends selection

Alt+End go to end of display line; Shift extends selection

Ctrl+F2 create or delete a bookmark

F2 go to next bookmark

Ctrl+F3 find selection

Ctrl+Shift+F3 find selection backwards

Ctrl+Up scroll up

Ctrl+Down scroll down

Ctrl+C copy selection to buffer

Ctrl+V insert content of buffer

Ctrl+X copy selection to buffer and delete selection

Ctrl+L line cut

Ctrl+Shift+T line copy

16

Ctrl+Shift+L line delete

Ctrl+T line transpose with previous

Ctrl+D line duplicate

Ctrl+K find matching preprocessor conditional, skipping

nested ones

Ctrl+Shift+K select to matching preprocessor conditional

Ctrl+J findmatching preprocessor conditional backwards,

skipping nested ones

Ctrl+Shift+J select tomatching preprocessor conditional back-

wards

Ctrl+[previous paragraph; Shift extends selection

Ctrl+] next paragraph; Shift extends selection

Ctrl+Left previous word; Shift extends selection

Ctrl+Right next word; Shift extends selection

Ctrl+/ previous word part; Shift extends selection

Ctrl+\ next word part; Shift extends selection

Affiliation

author Hans Hagen

copyright PRAGMA ADE, Hasselt NL

more info www.pragma-ade.com

www.contextgarden.net

version November 11, 2011

