
ConTEXt
conversion to PDF

category: METAPOST

version: 2000.03.27

date: May 23, 2000

author: Hans Hagen

copyright: PRAGMA / Hans Hagen & Ton Otten



conversion to PDF

ConTEXt METAPOSTmptopdf

The file mptopdf provides a quick way to convert METAPOST files to PDF using a slightly stripped down
plain TEX, PDFTEX, and a few ConTEXt modules.

First generate a format, which in WEB2C looks like:

pdftex --ini mptopdf

Since this conversion only works with PDFTEX or PDF-ε-TEX, the session is aborted when another TEX

is used. When finished, the resulting fmt file should be moved to the right location.

The conversion itself is accomplished by:

pdftex &mptopdf \relax filename.number

The \relax is needed since we don’t want to process the file directly. Instead we pick up the filename
using \everypar. Since this file is still the first one we load, although delayed, the jobname is as we
expect. So, at least in WEB2C, the result of the conversion comes available in the file filename.pdf.
This conversion process is roughly compatible with:

texexec --pdf --fig=c --result=filename.pdf filename.number

This uses ConTEXt, and is therefore slower. Therefore, we provide a small PERL script that does a
faster job, using the minimal format. Given that a format is generated, one can say:

mptopdf somefile
mptopdf somefile.123
mptopdf mp*.*

The results are copied into files named somefile-number. This mechanism will also be available in a
next release of TEXUTIL.

The TEX implementation is rather simple, since we use some generic ConTEXt modules. Because we
need a few register allocation macros, we preload plain TEX. We don’t load fonts yet.

1 \input syst-tex

We check for the usage of PDFTEX, and quit if another TEX is used.

2 \ifx\pdfoutput\undefined
\message{Sorry, you should use pdf(e)TeX instead.}
\expandafter \endinput

\fi

The conversion to PDF is carried out by macros, that are collected in the file:

3 \input supp-pdf

We use no output routine.

4 \output{}

Since we need to calculate and set the bounding box, we definitely don’t want to indent paragraphs.

5 \parindent=0pt

We use \everypar to pick up the filename and process the METAPOST graphic.



conversion to PDF

mptopdf ConTEXt METAPOST

6 \everypar{\processMPfile}

The main macro shows a few PDFTEX primitives. The main work is done by the macro
\convertMPtoPDF which is defined in upp-pdf}. Thi macro interprets the METAPOST file. Close read-
ing of this macro will probably learn a few (PDF) tricks. Apart from some path transformations,
which are needed since PDF has a different vision on paths, the graphic is positioned in such a way
that accuracy in PDF xforms is guaranteed.

7 \def\processMPfile#1 %
{\pdfoutput=1
\hsize100in
\vsize\hsize
\setbox0=\vbox{\convertMPtoPDF{#1}{1}{1}}%
\ifdim\wd0<1in \message{[warning: width<1in]}\fi
\ifdim\ht0<1in \message{[warning: height<1in]}\fi
\pdfpageheight=\ht0
\pdfpagewidth=\wd0
\voffset=-1in
\hoffset=\voffset
\box0
\bye}

Since acrobat has troubles with figures smaller than 1 inch, we issue a warning. When embedding
graphics in documents, a size less that 1 inch does not harm.

The resulting PDF file is about as efficient as such a self contained file can be. However, if needed, this
PDF file can be converted to EPS using for instance the pdftops program (in WEB2C) or GHOSTSCRIPT.

8 \dump


